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Abstract: This paper describes a novel sensor system to estimate thennod a stereo
camera. Local invariant image features are matched betwaies of frames and linked
into image trajectories at video rate, providing the sdechVisual odometryi.e., motion
estimates from visual input alone. Our proposal conducts mmatching sessions: the
first one between sets of features associated to the imag#ee ddtereo pairs and the
second one between sets of features associated to comseftatnes. With respect to
previously proposed approaches, the main novelty of thipgsal is that both matching
algorithms are conducted by means of a fast matching afgonvhich combines absolute
and relative feature constraints. Finding the largeste@lset of mutually consistent
matches is equivalent to finding the maximum-weighted €igm a graph. The stereo
matching allows to represent the scene view as a graph whnghrge from the features
of the accepted clique. On the other hand, the frame-todramtching defines a graph
whose vertices are features in 3D space. The efficiency o&pipeoach is increased by
minimizing the geometric and algebraic errors to estimhte final displacement of the
stereo camera between consecutive acquired frames. Tpegawapproach has been tested
for mobile robotics navigation purposes in real environtaend using different features.
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Experimental results demonstrate the performance of thgsal, which could be applied
in both industrial and service robot fields.

Keywords: visual odometry sensor; stereo vision sensor; robotic; toed constraint
matching algorithm; maximum-weighted clique

1. Introduction

In order to accomplish higher-level tasks, autonomous faotmbots must typically be able to
determine their pose (position and orientation) while mgvi To address this problem, absolute
localization approaches usually employ the estimatiorhefrbbot’s displacement in the environment
between consecutively acquired perceptions as one ofitipits. Typically, this relative localization
or pose tracking is performed using wheel odometry (frormtje@ncoders) or inertial sensing
(gyroscopes and accelerometers). However, wheel odoteetmiques cannot be applied to robots with
non-standard locomotion methods, such as legged robosd&s it suffers from precision problems,
since wheels tend to slip and slide on the flobf [On the other hand, inertial sensors are prone to
drift. Vision is an alternative to these systems which hasguaed growing importance in the mobile
robotics community due to their low cost and the informatiogy can provide compared to other robotic
sensors. In robotics and computer vision, visual odometfinds the process of estimating the pose
of a robot by analyzing the images provided by the camera®)med on it. As other visual-based
techniques, this issue has come into vogue in these lass.y&drus, Nistért al. [2] proposed an
approach to estimate the motion of a stereo pair or singleecain real-time. This approach employs
Harris corners and uses normalized correlation over ar 11 window to evaluate potential matches.
Konolige and Agrawal3] describes a frame-frame matching in real time to estinfa&e3D egomotion
and use this estimate for visual Mapping. Similar work isspreéed by Kleiret al. [4], which is applied
for the SLAM problem. The MER'’s visual odometry (MER-V(j][also uses a corner detector and a
pseudo-normalized correlation to determine the best mdtalses the on-board position from wheel
odometry as an initial estimate to decrease run time. Weatlatim of tracking a large number of features
and still not relying on this initial estimate, the MER-VOshlaeen improvedqd]. The visual odometry
implemented for the Mars Science Laboratory (MSL) misssoatleast four times more computationally
efficient than the MER-VO, but it follows similar guidelineBhese approaches perform a feature-based
stereo matching as a preliminary stage.

The matching process represents a crucial step for an aecusaal odometry sensor. In fact,
it constitutes the main hurdle to overcome in order to achiawobust approach. In the Nistérs
proposal 2], corners are matched between consecutive pairs of fraf@®btain the set of accepted
matches both in stereo and in video, all features which aegtaio disparity limit from each other are
matched. Only pairs of corners which mutually have eachraakehe preferred mate are accepted as
valid matches. This algorithm assumes very small robotlatgment between frames. The approach
from Prettoet al. [7] employs a similar strategy to estimate the relative canmeodion from two
calibrated views, but it matches interest points betweanrs pé frames using the Best Bin First (BBF)
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algorithm. This strategy is described as a feature tracl@hgfeatures are selected and located in the
subsequent frame using spatial correlation search. The-MBRind MSL-VO also rely on feature
tracking. Other approaches use feature matching ratherttheking P]. In these approaches, features
are selected and then matched based on a descriptor asdowittt the feature. These approaches do
not necessarily require an initial motion estimate, buy tlegjuire salient detectors and stable descriptors
to work well with large robot motions. The Hirchmuller'S][and Howard’s §] approaches employ a
stereo range data for inlier detection.

This paper proposes a visual odometry system which coraigtgo consecutive feature matching
stages (see Figur®. The first stage matches points of interest obtained frameft and right images,
achieving stereo matching. This matching will be constdihy the stereo geometry—matched points
must be in the same epipolar line—and considering the featascriptors. Taken into account these
constraints, a consistency matrix is computed for all paewcombinations of matches. Weights are
assigned to the non-zero elements of this matrix as a functidhe distance between the computed
descriptors of the matched features. These weights aresglyeproportional to the distance between
descriptors,i.e., they increase when the distance between descriptors adase This matrix is
used to find the largest-valued set of mutually consisterithes. This is equivalent to finding the
maximum-weighted clique on a graph defined by this adjacemalrix. The aim is to provide a set
of features which will be defined by their 3D world positiomsthe camera coordinate system. These
features are considered as natural landmarks in the emvéonnand they emerge from the scene as
a graph, not as individual items. Then, the second stagemesfmatching between sets of natural
landmarks associated to consecutively acquired pairseséstimages. This matching will be also
constrained by the relative distance between the positibiie 3D features and the computed difference
between their descriptors. This second matching stagestssthted as a maximum-weighted clique
problem. This last stage allows to track the robot pose uamébsolute Orientation (AO) technique
and minimizing not only the algebraic error, but also thergetic error [LO].

Figure 1. Problem statement: given the pairs of stereo images takkeamést — 1 andt,
the robot motion is estimated from the natural landmdiks’. Two graphs emerge from the
stereo and feature matching stages.
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This approach is very related to the works of Hirchmul@rdnd Howard 8]. However, contrary
to these approaches, we do not employ a dense disparity maputed by a separate stereo algorithm.
When computing resources are limited, generating thiselemsp could be undesirablé][ Besides,
these approaches usually need images with textures. Orteeland, Howard’s approach employs a
corner detector and uses the sum-of-absolute differeis?B ) between feature descriptors to compute
the score matrix for all pairwise combinations of featurelsoth feature sets. In our experiments, we will
employ different detectors and descriptors. Scale-iavafeatures, such as the SIFIT1], will allow
to match features although the robot does not move a smadindis between subsequently acquired
frames. However, the invariance against rotation and steege is computationally very costly with
SIFT. When significant scale changes and rotations arowneldtical axis is not present, other descriptor
like the Speeded Up Robust Features (SURFE)] pr corner-like image features, has been chosen and
tested (see Section 3). Finally, whereas the Howard’s weés & maximum clique algorithm to obtain
a structural consistent feature matching, this paper mepto search for a maximum-weighted clique.
The paper is organized as follows: SectiBrdescribes the proposed approach for stereo visual
odometry. Experimental results and a comparison of theqeeg approach with other related methods
are presented in Secti@ Finally, the main conclusions and future work are drawneot®n4.

2. Proposed Approach for Stereo Visual Odometry

The aim of the visual odometry sensor is to calculate an eséirof each 6DOF (degree of freedom)
robot pose, with translatiod™® and rotationR' in the t'* frame. In the proposed approach, two
consecutive image pairs acquired by the stereo camerastetban the robot are matched to estimate
the displacement of the mobile platform. The quality of thniatching process is crucial to obtain an
accurate estimation. Thus, a significant advance in visdametry algorithms is the possibility of
improving the matching process using consecutive ste®je®pr proposal follows this scheme, whose
block diagram is illustrated in Figuiz As shown in the figure, the proposed visual odometry algorit
consists of two matching processes performed in five stepstly- each new image pair is acquired
and two sets of points of interest and their associated ig¢si3 are obtained. Both sets of features
are the input of the next step, which computes the stereohamgtc A robust matching is achieved by
building a consistency matrix for all pairwise combinagaf tentative matchings. Then, the algorithm
finds the largest-valued set of mutually consistent magshioy looking for the maximum-weighted
clique on the graph with adjacency matrix equal to the comgbubnsistency matrix. The 3D locations
of these natural landmarks in the environment are calallstehe third step using the output of the
stereo matching process. Next, the 3D landmark associstigprperforms matching between the sets of
features which belong to consecutively acquired stereg@®aThe output of this step is employed to
estimate the robot displacement at current instant of tlBaeh one of these steps is explained in details
in the next Sections.
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Figure 2. Overview of the proposed visual odometry approach.
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2.1. Local Invariant Image Features

Local features are image patterns that differ from its imiaedsurroundings. They are typically
associated to changes of image properties./lgandI’, be the right and left images captured using the
stereo camera at tinte This first step detects the set of features in the left arftt igages /', and ",
respectively. As it will show in SectioB we have tested different feature detectors and descrjpitozs
corner-like image features (Harris detectb8][and a simple descriptor associated to the corners based
on the correlation window of the neighborhood), SIFT and Syste Figur&(a, b)). These features are
associated to vectors which represent the locdtion) and other properties associated to the particular
descriptor, like scale and orientation (see Figg)reDepending on the final application, like robot speed,
environment, type of robot (e.g., wheel or legged robotsyould be better to choose a specific pair of
detector/descriptor.
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Figure 3. (a) SIFT features found for the left and right images from theresh image £,
andF",). The scale and orientation are indicated by the size amthation of the vectors;
(b) SURF features calculated using the stereo system in amoughvironment. Scale are
illustrated by the size of the circles (orientation is natwh in the figure).

(b)

2.2. Stereo Matching and Stereo-Based Point Location

In this section, we formulate the stereo matching problena agaph-theoretic data association
problem. The main advantage of our method with respect terattereo matching approaches is its
robustness in the data association stage, which will finatlgrove the ego-estimation of the robot
motion. This stereo matching does not provide a dense depth mihich is not necessary for us
since our proposal deals not with mapping but only with redeliocalization. Contrary to other related
approachesg], our aim is to deal with good individual matchings, avoglifailures due to scenarios
where a dense stereo map cannot be correctly obtained.

The fundamental data structure of this step is the correfgrose graphl4], which represents valid
associations between the two sets of feature descripteesHigured). Complete subgraphs or cliques
within the graph indicate mutual associations compatib#éind, by performing a maximum-weight
clique search, the joint compatible association set enednfabm the better matchings of descriptors
may be found. Construction of the correspondence graphriierpged through the application of relative
and absolute constraints. Thus, vertices of the graphatelindividual association compatibility and
are determined by absolute constraint. On the other haadrtts of the correspondence graph indicate
joint compatibility of the connected vertices and are deteed by relative constraints. The weight
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associated to each vertex is related to the similarity measfucorresponding descriptors. The method
used to calculate the correspondence graph has three rtegess

Figure 4. \ertices represent tentative matchings when considediddually. Arcs indicate
compatible associations, and a clique is a set of mutualhsistent associations (e.g.,
the cliqgue{1,5,4} implies that associationg!!, — ftr,, f24, — 27, f3, — f37,
may coexist).
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1. Definition of the vertices of the correspondence graphthe proposed method, graph vertices
are associated to tentative matchings of features ffdmand £, after applying an absolute
constraint. Let/F;| and |F",| be the number of feature descriptors for left and right insage
respectively. Firstly, the algorithm generates the maffix(|F’;| x |F",;|) for all pairwise
combinations calculating the Euclidean distance betwieeim associated descriptors. Therefore,
the matrix item associated to the matching of two similatuezs presents a low value. On the
other hand, high values &t correspond to dissimilar features. Besides, this matrmaslified
at the same time to satisfy some of the constraints descnib8det al.[15] (epipolar, disparity,
unique match constraints, and, if these parameters arkalalgiorientation and scale). Pairwise
matched features whose matrix values are lower than a fixedhbldU!. constitute the set of
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tentative matchings. Thus, graph vertices are defined asdhef all possible combinations
of these pairwise descriptors (e.g., vertex 1 in Figiie valid if descriptorF', is a possible
correspondence af'7",). A weight array whose items are equal to the inverse of thatiwe
matchings off; is also stored. These weights will be used to find the largaisted set of mutually
consistent matches.

2. Definition of the arcs of the correspondence grapbr all pairwise combinations of matchings in
T,, a relative constraint matrix is calculatel,. To do that, a relative constraint on the image
coordinates is used. This relative constraint takes intmaat feature parameters that allow
to reference one feature with respect to the other. Fornaostaif SIFT descriptors are used,
the vector will be defined by = (o, s)?, whereo and s are the orientation and scale values
associated to the descriptor. In this particular case, mgbanatched descriptors is consistent if
the Euclidean distance between theectors from two SIFT descriptors in the left image is simila
to the Euclidean distance between the corresponding vectbe right image. That is, a pair of
matches (%!, f7,) and (7!, f7,) are consistent iff they satisfy the relative constraint:

lw; = will < Ug, (1)

being

ah = (o oy + ot = sty

i = (o= P 4 (s )
where ¢, s); and @, s); denote the orientation and scale values of a SIFT desc@ptdi}, is a
threshold defined by the user. Thus, the corresponding @nthe relative constraint matrir;
contains a 1 value if the constraint is satisfied (arc in tlag@lg), and O otherwise. For instance, in
Figure4, the relative constraint betweeri'(,, f>,) and (f*",, f>",) matches, and then vertex
1 is connected to vertex 5. On the contrary, the relative tcainé between (*!,, f>!,) and
(f4r,, £37,) does not match. Hence, vertices 6 and 5 are not connected.

(2)

3. Maximum-weight clique detectionThe set of mutually consistent matches which provides a
largest total weight is calculated. This is equivalent ofliiig the maximum-weight clique on
a graph with adjacency matri;. Specifically, the approach to solve the maximum-weiglojLedi
problem implements the algorithm proposed by Kumlandé}. [This algorithm is based on the
classical branch and bound technique, but employing thksracking algorithm proposed by
Ostergard 17] and a vertex-coloring process to define a more efficientipgustrategy. After
applying the maximum-weight clique algorithm, this stadgeains a set of mutually compatible
associations, that is, a set of matched features. In this thayalgorithm takes into account
structural relationships to avoid bad associations, whkmhd result in erroneous displacement
estimates. Figur® shows the pairwise descriptors after using the proposeécstmatching
algorithm. As it is illustrated in the figure, the quality dfet matching process is guaranteed
even though the number of features is high. In the exampleisfigure, the number of matched
features was 21.

Each detected feature is readily characterized by the Siantéocalization of the point of interest
provided by the stereoscopic vision system.
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Figure 5. Matched SIFT features between left and right images fronsteeeo pair shown
in Figure3. Red line represents matched points.

2.3. 3D Feature Association

Let I/”, and I;” represent the pairs of stereo images taken with the roboterat two
consecutive intervals of time. For each pair of images, {hy@@ach detects the points of interest
and computes their descriptors, performing the stereo hmagcas it is described in Sectioh.2
This process will provide two sets of natural landmarks,; and L;. Then, the proposed approach
performs the 3D feature matching using the same data asisociachnique described in Secti@r?,
that is, the correspondence problem is achieved betweernwbesets of 3D features applying
absolute and relative constraints. Firstly, a measureanlist between feature descriptors is used
to obtain the matriXI'=. Thus, entries il whose value are lower than a fixed thresh@lﬁ
constitute the set of tentative matchings. The inverse ekeéhvalues are stored in a weight
array. Next, the relative constraint is used to generateatifjacency matrix?; from the set of
possible pairwise landmarks. Similar to the stereo matgkiage, this relative constraint takes into
account features parameters that will allow to reference kamdmark with respect to the other.
Thus the relative constraint associated to the locationashepair of landmarks,Z{ ,, L] ,) and
(Li, L)), is used:

ILi_ — Li_|| - ||ILi — L}|| < U}, 3)

where ||Li — || is the Euclidean distance between landmark locations &hds an user-defined
threshold. Finally, the maximum-weight clique algorithsrapplied to the adjacency matik- and the
set of mutually consistent matchings is computed. Figuitkistrates the feature association between
two consecutive frames— 1 andt. The output of this stage provides a set of accurate paimvetehed
features, which are used to obtain the displacement egtimat
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Figure 6. Feature association results for two different displacdmeAfter applying the
maximum-weighted clique algorithm the number of pairwisgched features is 7 and 13 for
the left and right images, respectively (3D coordinateheflandmarks are also included).

2.4. Stereo Head Pose Estimation

The purpose of the two-stages matching process describgewous Sections is to provide a set
of 3D landmark matchings between consecutive frames. M.edenote the set oiV,, 3D landmark
matchings M = {(mi_,, m})}i=1.n,,- This set will allow to estimate the robot’s displacemertinezn
two consecutive acquired frames. In the related literatiime problem is typically accomplished by
means of absolute orientation techniques. The solutiorhisf groblem consists of minimizing the

error function
Ny Ny

E(R,TY) = > i ||mi_ — (Ragm{ + AT)]

i=1 j=1

i (4)
wherem!_, andm] are matched landmarks belonging/tf, 7;; is a binary value defined dsif m!_,
andm! have been matched 6otherwise, and?’ and7" are the rotation and translation matrices whose
values are sought. As it was shown i8], SVD decomposition and quaternion techniques produce
the best results. In this work, we use the well-known SVD mégie described in19]. This method
estimates the 6DOF robot pose decoupling the parameteesibgring each of the points sets about their
centroids. However, this computation of motion minimizegeaor on the 3D feature location (algebraic
error). It produces a permanent motion bias. In order togedlt,) an image based errarg,, geometric
error) should be minimizedlD]. Thus, the previous result based on the SVD technique & asanitial
estimate T}, of the iterative process for minimizing this geometricoerrNonlinear LSE optimization
(Gauss—Newton), starting from this initial guds9n order to ensure convergence, is used for estimating
the final robot posel[0].
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3. Experimental Results

In this section, the proposed visual odometry sensor hasdesdyzed. The main novelty of this work,
the combined constraint matching algorithm which incluthessearch for the maximum-weight clique
on the graphs, is evaluated in terms of robustness and catigndl load for different descriptors, and
it is compared with other three feature matching approachiess, results of the proposed approach are
compared against (i) a matching algorithm based on the geertransformation modeP0] (RANSAC
+ epipolar geometry), (ii) the Best-bin-first (BBF) searcithod proposed by Beis and Low&], which
is a modification of the k-d tree algorithm, and (iii) the ntatg approach also based on the combined
constraint algorithm which uses the search for the maximiiopne described in our previous worRk7).

Feature matching accuracy is very important and dependseoieature types. Choice of algorithms
to extract features and descriptors depends on the envanand application. In order to evaluate
the proposed Visual Odometry method, different detectodsdescriptors have been used in different
real scenarios: corner-like image features (Harris carfes]), faster but less stables, and SIFI1]
or SURF [L2], more stables but higher computational load. Typicaltg major problem of the SIFT
feature detector is the long time taken to extract the featinom the images when compared to other
approaches. Implementation of SIFT for GPU (SiftGPRE] [has been used in this paper as a previous
stage to detect features from the stereo image pair. Theacbke image descriptor is based on the
correlation window of the neighborhood surrounding therldazorners. Rest of the methods have been
implemented in C++. To compare the proposed approach againgrevious work, the same parameters
employed to build the emerged graphs have been used. Finalydescribe a set of experiments
conducted in real robot environments (indoor and outdomrleémonstrate the validity of the visual
odometry sensor. These scenarios include dynamic elerfeegtspersons), occlusions, ambiguities and
situations where the robot closes a loop while moving. Besith order to validate our results, the robot
was moved in a closed loop on a typical indoor environmert¢uéating the error between the start and
end poses.

Previously, to properly evaluate the matching stages, nersessary to carry out a correct selection
of a set of parameters. Specifically, these parameters soeiated to thresholds in the graph emerging
stages. Next subsection explains the method used for dstgrthese parameters. Then, SectiGr3
and3.3describe the features matching algorithms and the visuahetry application, respectively.

3.1. Estimation of Parameters

Our approach needs to adjust a set of thresholds which deesrthe reliability of the composed
graph. The values of these design parameters are assomdtezlabsolute and relative constraints of
the graph emerging steps. Therefore, these threshold®aceilted according to the matching stage in
where they are usedé€., stereo or feature matching).

Stereo Matching Stage

e TheUL threshold is related to the nodes of the grépHor the stereo matching stage. Given two
features, this parameter determines the higher value fimgbmonsidered as pairwise matched



Sensor011, 11 7273

features, according to absolute constrairg.,(the similarity of the descriptor or the epipolar
constraints).

e TheU}, threshold is related to the arcs of the graph This parameter evaluates the consistence
of two nodes of the graph (two pairwise matched featurespraang to local constraints. In
this stage, this relative constraint will depend on theueatype (e.g., the orientation and scale
information associated to the descriptors or the distahtdgedeatures).

Feature Matching Stage

. Thquff threshold is defined as the higher value for considering &ndiinarks acquired in different
instants of time as candidate to be a correct match usinduabsmnstrainti(e., the similarity of
the descriptors). Similar to the stereo matching stags,thiieshold is related to the nodes of the
graphG ; for the feature matching stage.

e The U}; threshold is also related to the arcs of the graphthat is, its adjacency matrix. Given
two pair of candidates for being real matched Iandmalﬂ{tsis the higher value for determining
their consistence according to local constraints (3D looatf the features).

The benchmark performed to set them correctly has beenasioit the two stages. This step is
based on Blanco’s worlkH]. For both descriptors, SIFT and SURF, optimal threshotdsalculated by
minimizing the probabilityP,,.. of misclassifying a association as a valig ¢r an invalid ¢v) candidate.

It is described as:

Perr(UT7 UR) = P(w)Perr(UT, UR|’UJ) + P(U)PeTT(UT, UR‘U)
= P(w)P(dU < UTa(Sij < UR|’UJ) (5)
+ P(U)[l — P(dw < UTaéij < UR‘U)]

Where a misclassification will occurs when: (i) a distadgeis less than both threshold$ and
Ug, and it was a wrong correspondence, or (ii) a valid pairingsdaot pass the thresholtls andUy.
Considering no a priori information about the probabilifybeing in a valid or invalid association, that
is P(v) = P(w) = 1/2, the method evaluates the joint conditional densiti€s;, ¢;;|v) andp(d;;d;;|w)
from histograms according to a set of 40 pairs of images withabhdmarks for which is known the

ground-truth {e., its location in 3D space). Tablé summarizes the thresholds for the minimum
classification errof,,.,. for the SIFT and SURF descriptors.

Table 1. Estimation of parameters for the visual odometry algorithm

Parameter Stereo matching SIFT (SURF) Parameter Feature mahing SIFT (SURF)
Ut 200 (150) Ul 200 (150)
U, 0.5(0.5) U, 100 (100)

3.2. Evaluation of the Robustness and Time Processing

Robustness and computational load of the proposed matetgugithm have been evaluated and
compared against three different matching methods: the Blgbrithm 1], the matching method
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based on the geometric transformation mo@6] pnd the matching approach presented in our previous
work [22]. To validate the approach, a set of images collected by a&ahms been used. These images
correspond to regular combinations of camera movemergs (etation or translation), scenes where
there is a significant change (e.g., dynamic object) anducaptvhere there are significant ambiguities
(e.g., similar objects). This set consists of 100 pairs & 83240 images acquired in indoor and outdoor
environments. Figuré(a—c) show a representative selection for each case of.study

Figure 7. A set of 320x 240 images acquired by the camera has been used to evaluate
the robustness and time processing of the matching algoritta) a camera movement
(translation and rotation)(b) a significant change in the scene; gl ambiguities due

to similar objects in the scene.

For each image, the SIFT features are compulddl dnd matched using each particular matching
method. Using this set of pairwise matched features, we reweually selected 50 correct matches of
them, or the maximum number of correct matches, if thereem®than 50 correct matches (this value is
considered a%otal positives Next, incorrect pairwise matched features are randomhegated. These
outliers are added to the positive set in increasing amosatthat they are going to represent fron¥0
to 90% of the total resulting set in increments of20 Next, the matching algorithms are applied to
the final set of matched features. For every percentage téjtthis process is repeated 100 times
(100 timesx 100 images = 10,000 samples per each percentage of outliers)

To evaluate the robustness of the matching algorithm whiciné¢luded in the proposed visual
odometry system, we defines the following measurements:

NumberTrueMatches
Totalpositives

TruePos =

(6)
Number FalseMatches
Number False M atches+ NumberTrueMatches

Precision =
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whereNumber True Matches the number of correct matché@¢umber False Matchas the number of
incorrect matches, antbtal positivess the number of correct matches selected at the beginnitigeof
tests. The average performance of the matching methodslaétéotal experiment is given in Figuge
and summarized in Tabe Figure8(a) represents the evolution of thieuePosagainst the percentage of
outliers. From this figure, it can be noted that the avefiagePosvalue is high for each algorithm when
the percentage of outliers is lower than’&0After this value, due to the high number of outliers, the
efficiency of the algorithms decreases. However, it can Ipeemmated that the structure-based features
matching algorithm used in this work presents a strong tghiti eliminate incorrect matches, even
with a very high percentage of outliers. This is also illagtd in Figure8(b), where the evolution of
the precisionhas been drawn. Similar to tA@uePosvalue, the precision rapidly decreases for all the
matching algorithms analyzed in this comparative studindéhis decreasing less pronounced in the
proposed structure-based features matching algorithnes&kwo graphs show the high performance
of the weighted maximum clique strategy for solving matghpnoblems. Figur®(a—c) illustrate three
visual examples of the proposed matching algorithm f&% & outliers (results of the matching process
proposed in this work for the images of the Figifa—c), respectively).

Figure 8. Performance of the matching algorithms used in the comiparatudy for
various percentage of outlier&@) True Positives against to different percentage of outliers
(b) Evolution of the precision against to different percentafeoutliers; and(c) Time
processing against the percentage of outliers. See thiotaxiore details.
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Table 2. Performance of the matching algorithms used in the comiparstudy for various
percentage of outliers.

Algorithm Statistical Percentage of outliers [%0]
10 30 50 70 90

True positive 0.945 0.921 0.916 0.813 0.69
Weighted Precision 0.912 0.871 0.843 0.812 0.77
Time processing (s) 0.011 0.024 0.098 0.145 0.32
True positive 0.919 0.904 0.818 0.587 0.18§
Non-weighted Precision 0.900 0.861 0.811 0.525 0.23
Time processing (s) 0.021 0.082 0.114 0.438 0.96
True positive 0.921 0.919 0.803 0.564 0.16
BBF Precision 0.879 0.801 0.717 0.561 0.22
Time processing (s) 0.081 0.102 0.377 0.691 1.14
True positive 0.951 0.948 0.912 0.781 0.5Z7
RANSAC + epipolar Precision 0.952 0.947 0.829 0.711 0.37
Time processing (s) 0.010 0.018 0.111 0.599 1.99

O kP PO ®© ©FR ©F P

Figure 9. lllustrative examples of the matching algorithm proposedur visual odometry
system for three different image tests used in the comparatudy (results of the matching
process for the images of the Figuf@—c), respectively). On the top, the initial matching

which includes the 8@ of outliers is shown. Below, results of the matching aldoritused

in our approach have been drawn.
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On the other hand, computational load of the matching algorihas been also tested using these
same experiments. FiguBfc) draws the time processing for the algorithm against gregntage of
outliers (all the experiments in this section were execired 1.66 GHz Pentium PC computer with
1 Gb of RAM). As is noted in the figure, for low percentage oflieus, the performance of all the
algorithms is similar, but they diverge when the percentE#grutliers is incremented (up to %). From
the Figure8(c), it can be appreciated that the matching algorithm basestructure used in our visual

odometry system provides the best time processing results.

3.3. Evaluation of the Visual Odometry Application

To test the validity of the whole visual odometry system, e an ActiveMedia Pioneer 2AT robot
equipped with a stereoscopic camera (see Figta)) and a 1.66 GHz Pentium PC, equipped with
a graphic processing unit NVIDIA 8800. The stereo head isShel-MDCS from Videre Design, a
compact, low-power color digital stereo head with an IEEB4L8igital interface. The camera was
mounted at the front and top of the vehicle at a constant @tiem, looking forward. Images obtained
were restricted to 328 240 pixels. Images were rectified before using the propogprbach.

Figure 10. Activmedia P2AT robot used in the experimen(s—e)four different image pair
acquired by the stereo camera across the robot motion inr8tadst. Stereo and feature

matching are shown in the figure (red and green lines, respsot
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Our robot was teleoperated through two different scenariaoor and outdoor, while capturing
real-life stereo images. In each scenario, the robot fahbwifferent trajectories in order to compose a
set of tests with which to evaluate the proposed visual odignag@proach. Real tests for the indoor
scenario are located at the research laboratories of tt& dg8up in Malaga, a typical office-like
environment where dynamic objects like persons were ptebethis scenario, two different tests were
achieved. On the other hand, real tests for the outdoor soem@ located at the campus of Teatinos
at University of Malaga, a semi-structured environmenthvd high presence of people in the robot
surrounding, and a sequence acquired by a stereo pair ntbomi@ moving cary|.
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In the first test, the robotic platform starts in a room, isvein across a corridor and finishes its
motion in a new room. The total distance traveled is about 40nma similar experiment, the robot
is teleoperated, and it moves from a room, across the coymttzses a loop and finishes its motion in
the same initial room. The total distance traveled in thit i about 80 m. The main novelty of this
experiment is the presence of persons moving along the tagettory. On the other hand, in the test
for the outdoor environment, the robot starts in the hallhef faculty, is driven across the faculty and
it finish the motion, after closing a loop, in other place df thitial hall (the total distance traveled in
this test is about 150 m). People and dynamic objects ardyhpgbsent in this scenario. For each test,
the experiment have been repeated 10 times trying to dravedot by a similar path until the end of
its motion.

Figure 11. Trajectories estimated by visual (Harris, SIFT and SURF) arheel odometry
(black, red, cyan and green line, respectively) for the fast. Blue lines define the trajectory
estimated by the laser scan matching. Robot poses at theredpimes shown in Figurg0
are labeled.

y ~@— wheel odometry

[mm]

—a— visual odometry (SIFT)  -Ji=
s visual odometry (SURF) /

laser odometry

X [mm)]

The experimental results have been focused on the accufdbg proposed algorithm. For all the
experiments at the University of Malaga, the robot motitamts in the pose’ = (0,0,0°)7 and it was
teleoperated across the environment. In the FigiXb—e), we have illustrated four different captures
from this real environment. Each image in the figure repressiie stereo pair at two consecutive frames,
top and bottom of the image, and the images used for the &atatching process (right image). The
stereo matching and the feature matching is shown with redgaeen lines, respectively). The wheel
odometry is also saved and compared to the visual odometry ttarris, SIFT or SURF features, and
the results are also compared to the estimate of the rolpettoay using the results of the scan matching
algorithm proposed by the author@g]. This last algorithm was demonstrated to be an accurate and
robust method for estimating the robot trajectory. We aesthis laser odometry the ground truth of
the robot motioni(e., statistical evaluation of our method is calculated usimg results of the scan
matching algorithm, which error was demonstrate to be lawan 1.2% and 0.8% for translation and
rotation motions, respectively). Figufiel shows the trajectories estimated by the proposed algorithm
(black, red and cyan line for Harris, SIFT and SURF featurespectively) for this first trial. The wheel
odometry (green line) and the trajectory estimated by tla@ sgatching algorithm (blue line) are also
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drawn in the figure. Besides, the robot poses at the captmestshown in Figuré0(a—d) have been
marked over this trajectory. As it is drawn in the figure, timmal odometry obtains an reliable estimate
of the robot displacement, more similar to the trajectotynested by the scan matching algorithm, and
improving the internal odometry at the end of the experim@&hiere are small differences between the
visual odometry obtained using SIFT, SURF or Harris cornausthe final error is similar.

For the second trial, the final location estimate by the psepoalgorithm was, for Harris,
SIFT and SURF, respectivel§s, 752mm, —210mm, —89.45°)T, (4, 340mm, —135mm, —92.15°)T and
(4,410mm, —143mm, —92.0°)", while the odometry estimate by the wheel odometry vBag§dmm,
—1,392mm, 66.15°)". In Figure 12(a—d), four different stereo captures from this second real
environment have been included, similar to Figl@ewhere the stereo matching results are represented
by red and green color, respectively. The trajectoriesmedd by the visual odometry algorithm
proposed in this work, by the robot wheel odometry and by ttes snatching algorithm have been
shown in Figurel3 (the robot poses at the capture times shown in Fig@e also marked over this
figure).

On the other hand, the results for the test in the outdooraseis shown in Figurel4(a) (.e.,
trajectories estimated by the visual odometry, wheel odgnaad scan matching algorithms are drawn
using black, green, red, cyan and blue colors, respecjivePs is shown in the figure, the pose
estimated by the wheel odometry differs from the pose estidhy both visual and scan matching
algorithm. The wheel odometry accumulates a high error etetid of the robot motion. However,
results from the proposed approach are very similar to tee pstimated by the scan matching algorithm.
Figurel4(b, c) show two different captures from this real environir{g#re robot poses at the instant time
of this capture are marked in Figuté(a)).

Figure 12. (a—d)Four different image pairs acquired by the stereo camesadhe robot
motion in the second reported trial. Stereo and featuremraare shown in the figure (red
and green line, respectively).
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Figure 13. Trajectories estimated by visual (Harris, SIFT and SURF) &wheel odometry
(black, red, cyan and green lines, respectively) for theseéceported test. Blue line defines
the trajectory estimated by the laser scan matching. Blie mpresent the map obtained
using the scan data acquired by the laser range finder. Ralsesmt the captured times
marked over Figuré?2.
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Figure 14. (a)Trajectories estimated by visual and wheel odometry (hlestt, cyan and
green line, respectively) for the third test (outdoor scen)aBlue lines define the trajectory
estimated by the laser scan matching; @nyl (c) two captures from the stereo camera and
the results of the both matching processes.

—@— wheel odometry

b Visual odometry (SIFT)

—m— Visual odometry (SURF)

laser odometry

Table 3 summarizes the results described in this section. The acgwf the visual odometry in
each test is indicated by the 2D root-mean-square distdRigkS) at the final robot pose, taking into
account the estimate given by the scan matching algorithesuls of these experiments demonstrate
the accuracy of the visual odometry algorithm. The resglemror is less than 1.5% of the traveled
distance, or lower if the used descriptors are SIFT or SURBId&s, the time processing of the matching
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stages (less than 20 ms) allows the robot to use this algoritin estimating the robot displacement
between consecutive frames. As is shown in the results,dtigracy of the visual odometry based on
Harris corner is slightly lower than SIFT or SURF featuras, &ppropriate for this type of application.
However, the improvement on the computational load is r&atde compared to SIFT or SURF
descriptors. These results associated to the visual odpibnased on corner-like image features can
be improved using other type of descriptor more complexd€ds of these and more experiments are
available in the address: http://robolab.unex.es/videsisalodometry).

Table 3. Evaluation of the algorithm for real experiments in indoardaoutdoor
environments (average values).

Visual odometry SIFT (SURF) [Harris] Dead reckoning
Run Distance (m) Frames Average time (mg) 2D RMS error % 2D RMS error %
Indoor
1 41.3 615 14.4 0.16 m (0.26 m) [0.62m]  0.38% (0.6%) [1.5% 1.67m 4.05%
2 79.12 1018 17.2 0.61 m (0.54 m) [1.2m] 0.77% (0.68%) [1.5%] 2.12m 2.67%
Outdoor
1 148.66 2508 20.7 0.88m (0.85m)[1.34 m] 0.59% (0.58%) [0.9%] 12.1m 8.1%

We have evaluated the use of the SIFT descriptor in the peapasual odometry algorithm when
it is used on a vehicle, like a car, which moves at velocityhkigthan the previous robot. Thus, a
sequence of 865 image pairs taken from a stereo camera ndoomi@ moving vehicle has been used.
This sequence is available o29. The acquisition device is a Videre Design MEGA-D steremeea
pair installed near the rearview mirror. The sequence i9$5320x 240, color. The ground-truth of the
motion is not included in the dataset. Besides, there isaug-closing. Thus, it is not possible to obtain
statistical information about the experiments. We havg exaaluated the number of false positives and
true positives detected in the stereo images. For the esgtijgence, we have aleatory selected 50 frames
at the instant time and the next framei.g., at the instant time + 1). For each pair, the number of
false positives and true positives has been evaluatedatgpéhe total number of correspondences.
The percentage of true positives was high, (96%—-98%), andhans low values of false positives
(0.2%—-0.4%).

Finally, in order to validate our results, the robot was nmbue a closed loop on a typical indoor
environment (the same used in previous experiments) oven,3@d used the error in start and end
poses. Tabld compares this error for vehicle odometry and visual odoyneising different features)
for five loops.

Table 4. Loop closure error in percentage.

Run Number 1 2 3 4 5

Distance (m) 30.2 62.30 95.0 1285 155.7
Dead reckoning| 2.25% 11.25% 21.5% 33.0% 51.25M%
SIFT descriptor| 0.70%  1.2% 09% 1.1% 1.2%
SURF descripto 0.75%  1.1% 1.8% 1.5% 1.7%

Harris corners | 1.2% 1.4% 1.7% 1.5% 2.1%
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4. Conclusions and Future Work

This paper has presented a new approach to solve the visoaletd/ problem. The main novelty
of this proposal is that the matching stage has been cordibgteneans of a structural matching which
combines absolute and relative feature constraints in timsecutive stages. The first stage solves the
stereo matching problem and returns a set of natural laridncharacterized by their features descriptors
and their 3D positions on the camera coordinate system. ,Tthensecond stage matches the sets of
natural landmarks detected at two consecutive instantgma @.e., frames). The set of matchings
provided by this second stage allows to find an estimate afbet displacement between both frames.
Both stages obtain the set of accepted matchings taken¢otuat the structural configuration of the
involved features. This is implemented at both stages usiggaph approach: given the consistency
matrix which stores all pairwise combinations of matchibgsveen the two set of features, this matrix
is considered as an adjacency matrix and then the set of fiyutoasistent matchings with the large
weight is computed. This maximum-weight clique is foundhgsa fast algorithm based on the classic
branch and bound strategy. This algorithm employs a heuvisttex-coloring to implement the pruning
criteria [L6] and a backtracking search by color classkg.[ Experimental results demonstrate the
accuracy and robustness of the matching stage and the widoiadetry algorithm for different detectors
and descriptors.

Future work will be focused on the integration of all step® iprogrammable logic devices such as
FPGASs, in order to reduce the computational time. The GPUdcbe also employed to solve other
tasks different from the SIFT or SURF detection and degorpiVith respect to the theoretical aspects,
the algorithm for the maximum-weight clique problem coulel dbompared to other approaches such
as the ones that formulate the problem as a continuous giadmimization problem with simplex
constraints27]. Other features can be also tested.
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