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Abstract: This paper presents the development of a wearable accelerometry system for 
real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable 
motion detector is a single waist-mounted device to measure trunk accelerations during 
walking. Several gait cycle parameters, including cadence, step regularity, stride regularity 
and step symmetry can be estimated in real-time by using autocorrelation procedure. For 
validation purposes, five Parkinson’s disease (PD) patients and five young healthy adults 
were recruited in an experiment. The gait cycle parameters among the two subject groups 
of different mobility can be quantified and distinguished by the system. Practical 
considerations and limitations for implementing the autocorrelation procedure in such a 
real-time system are also discussed. This study can be extended to the future attempts in 
real-time detection of disabling gaits, such as festinating or freezing of gait in PD patients. 
Ambulatory rehabilitation, gait assessment and personal telecare for people with gait 
disorders are also possible applications.  
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1. Introduction  

Gait dynamics reflect one’s mobility which can be affected by physical impairment, age progress 
and changes in health status. Ambulatory gait parameters can be important measures to assess 
functional ability, balance control and to predict fall risk. Individuals with degenerative mobility, e.g., 
Parkinson’s disease (PD) patients or older adults usually have gait disorders such as reduced walking 
speeds with increased cadences, reduced step/stride lengths, and increased inter-stride variability [1]. 
PD patients of advanced stage might have encountered episodic gait disturbances, like festinating or 
even freezing of gaits (FOG) that could lead to falling and adverse health outcomes [2,3]. Regularity, 
rhythm and symmetry are important gait cycle parameters that can be apparently altered in walking 
patterns among people of varied mobility [2-4]. Therefore, the monitoring of the above gait cycle 
parameters can be beneficial to assess the mobility and risk of occurrence of episodic gait disturbances. 

Gait evaluation is frequently based on observational interpretations which are subjective and may 
vary among clinicians or investigators. As a consequence, gait monitoring and analysis techniques 
have been widely developed and studied. Gait dynamics can be accurately measured by using optical 
motion capture systems which utilize high-speed infrared cameras to record the three-dimensional 
positions of retro-reflective markers attached to the joints and segments of the human body [5]. Gait 
detection techniques utilizing pressure sensors embedded in an overground walkway [6] have also 
been used. These techniques can detect foot contact (heel strike and toe-off) and even the foot pressure 
distribution to investigate temporal gait parameters. However, those systems are expensive, and the 
sophisticated instrumentation requires specialized personnel. Therefore the uses of those systems are 
usually limited in laboratory or clinical environments. Simpler systems based on pressure detection, 
such as the portable in-shoe pressure measurement system have also been presented [7,8]. The systems 
utilizing in-shoe pressure detection can only provide simple temporal gait measures while 
accelerometer-based or video-based systems can provide temporal and spatial gait measures, even 
accurate measurement of lower limbs and body movement. 

Accelerometry using wearable systems has drawn a vast amount of research interest in the study of 
human movement. Accelerometers have widely been used in wearable systems for movement 
classification, fall detection, estimation of energy expenditure and gait analysis [9,10]. Accelerometers 
in combination with gyroscopes that measure angular velocity and accurate orientation have also been 
developed [11,12]. Though the pathological gaits have been well studied and described, only a few 
studies have investigated recognition of abnormal gaits using wearable accelerometry systems. A 
shank-mounted accelerometer was used to monitor the FOG in PD patients by means of a “freeze 
index” computed by frequency spectral analysis. However, the power spectral analysis can hardly be 
performed in real-time on compact wearable systems [13]. A wearable system using ARM7 processor 
was also demonstrated to detect FOG in real-time from every collected 0.32 s acceleration data [14]. 
Due to the computation constraints, it was reported that a longer sample data will produce longer 
latency of the system which might not be acceptable for practical uses. 

The development of cost-effective approaches to real-time gait monitoring is important and 
beneficial. This paper presents the development of a wearable accelerometry system for real-time gait 
cycle parameter recognition. A waist-mounted wearable motion detector was designed to measure 
trunk accelerations during walking. The autocorrelation procedure is implemented in the system to 
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derive several gait cycle parameters, including cadence, step regularity, stride regularly and step 
symmetry. For validation purposes, five PD patients and five young healthy adults were recruited in 
order to investigate whether the gait cycle parameters among the two subject groups of different 
mobility can be quantified and distinguished by the proposed system. Practical considerations and 
limitations for implementing real-time gait cycle parameter recognition in an embedded wearable 
system are also discussed. If the gait cycle parameters can be identified in real time, continuous 
detection of gait variability would be possible. This paper can lead to a future development of wearable 
systems enabling real-time recognition of abnormal gaits, such as shuffling, festinating, or freeze of 
gait in PD patients, by examining patterns of various gait cycle parameters and other possible 
characteristics in acceleration patterns. Ambulatory rehabilitation, gait assessment and personal 
telecare for people with gait disorders are also possible applications. 

2. Method 

2.1. Instrumentation 

The wearable motion detector is a single waist-mounted device that measures trunk accelerations of 
human movements. Figure 1 shows the circuit board assembly and the prototype of the wearable 
motion detector. It uses a tri-axial accelerometer module (KXPA4-2050, Kionix) that senses 
accelerations in the sensitivity of 660 mV/g over the selected range of ±2 g. The accelerometer module 
has an internal built-in low pass filter at cut-off frequency of 50 Hz. This circuit limits the bandwidth 
of the signal outputs and therefore reduces the higher frequency components which are not related to 
actual human movements. A PIC microcontroller (PIC18LF6722, Microchip) offers flash memory of 
128 kbytes and SRAM of 3,936 bytes. It samples the analog output signals via a 10-bit A/D conversion 
at the sampling rate of 50 Hz. Real-time signal processing can be implemented in the PIC 
microcontroller. The wearable motion detector also uses a wireless 2.4 GHz ZigBee RF module (XBee 
2.0, Digi International) to transmit real-time recognized gait cycle parameters to a personal computer 
(PC). The gait cycle parameters can be displayed on the PC screen for telemonitoring and data logging. 
Powered by 3 AAA batteries (DC4.5V), the wearable motion detector measures 90 mm × 50 mm × 25 mm 
in size and 120 g in weight. The battery life can last up to approximately 50 h when the wearable 
motion detector is continuously in use. 

Figure 1. The prototype of the wearable motion detector. 
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The wearable motion detector was clipped to the pant belt of the subjects. The detector is positioned 
near the middle between the anterior superior iliac spine and the right iliac crest around the pant belt. 
The pant belt on the subject was fastened medium to tight without causing discomfort to the subject, as 
this adjustment can reduce misalignment of orientation and vibration of the instrument which will 
generate signal artifacts and noises.  

2.2. Subjects and Gait Data Collection 

For validation purposes, five elderly Parkinson’s disease patients (four males and one female,  
78 ± 9.8 yr) diagnosed as Hoehn & Yahr (H&Y) stage II to III and five young healthy subjects without 
mobility impairment (all males, 26 ± 3.1 yr) were recruited for gait data collection. The data collection 
was approved by the Institutional Review Board (IRB) at the Far-Eastern Memorial Hospital, Taiwan. 
The recruited subjects were provided with necessary information about the measurement and they gave 
their informed consents before the data collection.  

Before gait data measurement, the Timed Up and Go (TUG) test, which is a validated simple and 
quick measure for mobility assessment [15], was conducted to quickly screen the mobility level of all 
the subjects. The time for the PD patients to perform the TUG test is 23.9 ± 7.9 s, while the young 
healthy subjects took only 10.6 ± 2.2 s. The distinct difference in the TUG test results show a generally 
degenerative mobility level in the PD patient group. 

The 5-meter-walk test (5WMT) was conducted in a laboratory. In the 5MWT, the subjects wore the 
wearable motion detector at their waists while walking on a 5-meter level walkway three times at their 
own normal and faster walking paces. The accelerations along the vertical (VT), antero-posterior (AP) 
and medio-lateral (ML) directions were recorded at the sampling rate of 50 Hz. The initiation of data 
sampling of the wearable motion detector triggered the start of synchronized video recording during 
the test for gait observation and cadence validation. 

2.3. Gait Cycle Parameters Recognition 

Walking can be generally regarded as a repeated movement of human body. Therefore the measured 
accelerations during walking should also reveal periodic signal patterns. The autocorrelation procedure 
is a method to estimate the repeating characteristics over a signal sequence containing periodic patterns 
and irregular noises. Moe-Nilsson et al. have demonstrated the fundamentals of the autocorrelation 
procedure for computing gait cycle parameters, which is the basis of the recognition method in this 
study [16].  

In the work by Moe-Nilsson et al., and the subsequent work by Yang et al. [17] and Keenan et al. [18] 
using autocorrelation for gait cycle analysis, the gait cycle parameters were computed in an off-line 
manner. In this paper, the autocorrelation procedure is implemented in an embedded wearable system 
for real-time gait cycle parameter recognition, which extends its possible applications. The 
autocorrelation procedure for computing gait cycle parameters is described below. Practical 
considerations and limitations for implementing the autocorrelation procedure in the embedded system 
for real time gait cycle parameter recognition are also discussed. 

Consider a time-discrete acceleration sequence containing N signal points [ NN xxxxx ,1321 ,,,, − ], 
Equation (1) calculates the autocorrelation coefficient ma , which is the sum of the products of ix  
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multiplied by another signal mix +  at the given phase shift m. The phase shift m can be either positive or 
negative integers from 0 to 1−N , or from 0 to N−1 . Therefore, from an N-point acceleration  
sequence, its autocorrelation sequence ],,,,,,[ 1101 mmmam aaaaaA −+−−=  can be represented by 12 −N  
autocorrelation coefficients obtained at every phase shift m. The autocorrelation sequence can either be 
“biased” or “unbiased”. The unbiased autocorrelation sequence as shown in Equation (2) is preferred 
because the biased method generates noticeable attenuation of coefficient values next to the zero phase 
shift from a limited number of data: 

mi
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im xxa +

−

=
∑=
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The segments from ma−  to 1−a  and from 1a  to ma  in an autocorrelation sequence are symmetric 
with its zero phase shift 0a  located at the center of the sequence. Normalized to 1 at the zero phase 
shift 0a , only the right half segment 0a  to ma  of the autocorrelation sequence is considered for 
simplicity. Figure 2 depicts an example of an autocorrelation sequence computed from the VT 
accelerations measured at waist during normal walking paces. The first coefficient peak 1D  next to the 
zero phase shift indicates the first dominant period, and the second peak 2D  the second dominant period. 
The peaks 1D  and 2D  can be detected by a simple derivative-based method and zero-crossing 
identification, which are commonly used in detecting peaks in physiologic signals, such as PQST points 
in ECG signals. The two peaks can also be found on the autocorrelation sequence computed from the AP 
acceleration sequence. From repeated observations, the two peaks on the VT autocorrelation sequence 
appear in the same positions as the peaks on the AP autocorrelation sequence. Therefore superimposing 
the VT and AP autocorrelation sequences can better highlight the exact positions of the two peaks.  

Figure 2. The example of an autocorrelation sequence computed from the vertical 
acceleration measured at waist during walking. 
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The following gait cycle parameters can be derived from the autocorrelation sequence: 
Step regularity and stride regularity: A signal sequence with perfectly repetitive pattern produces 

its autocorrelation sequence containing the peak magnitudes identical to its zero phase shift at every 
dominant period, i.e., the magnitudes at every dominant period is 1 for a normalized autocorrelation 
sequence. The magnitude 1D  represents step regularity, as defined by Moe-Nilssen et al. [16]. This is 
because the first dominant period indicates the maximal similarity between the acceleration sequence 
and its m-point shifted duplicate. The m-point span approximates the duration of a step. Similarly, the 
second dominant period indicates the maximal similarity between the acceleration sequence and its  
2-step shifted sequence, and therefore the magnitude 2D  represents stride regularity [16]. Note that the 
first and second dominant periods do not represent which of the steps (left-leg or right-leg) as there is 
no such information given in the autocorrelation procedure. 

Step symmetry: Step symmetry is defined as the ratio of step regularity to stride regularity, or 

21 / DD  that indicates the symmetry between two steps of both legs [16]. In this paper, the step 
symmetry is 21 / DD  if 12 DD ≥ , and 12 / DD  when 12 DD < . Note that this definition is altered from 
the definition originally given by Moe-Nilssen et al. [16] and its modified version by Yang et al. [17]. 
In this definition, the step symmetry always ranges from 0 to 1, which would be more interpretable.  

Cadence: Cadence is the step rate per minute. Let S be the number of steps taken over the time 
period t (in second). Cadence can thus be expressed as Equation (3). The number of steps S can be 
expressed as the number of the total samples N divided by the number of the coefficients n between the 
zero phase shift and the first dominant period, i.e., nNS /= . The time period t during walking can 
also be alternatively expressed as N divided by the sampling frequency f, i.e., fNt /= . As a result, 
cadence (c) can be estimated by Equation (4), which was given by Moe-Nilssen et al. [16]: 

t
Sc 60=         (3) 

n
f

f
N
n
N

t
Sc 606060 ===       (4) 

A non-overlapping sliding window technique is used to cyclically produce gait cycle parameters in 
real time from the VT, AP, and ML accelerations. Longer window lengths can produce more precise 
gait cycle parameters because the data of more steps is included. However, considering the  
real-time processing constraints, longer window lengths will cause longer computation latency and less 
reserved margin of memory capacity. Taking the hardware memory capacity and computation  
latency of the wearable motion detector into account, the window length is set at constant 3.5 s. 
According to the assumed average cadence of 105 steps/min that approximates regular walking cadence 
75–135 steps/min [19,20], the choice of 3.5-second data can includes approximately 6 steps, which 
should be sufficient for autocorrelation processing.  
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3. Results and Discussion 

3.1. Results of the Experiment 

To derive the gait cycle parameters, the VT acceleration was first used to compute the autocorrelation 
sequence because the VT component can represent the characteristics of each step for classification of 
walking [21]. In this study, the autocorrelation sequences computed from the healthy young subjects 
exhibit a more smooth and monotonic pattern, while the counterparts obtained from the PD patients 
contain visible fluctuations and are less regular. Figure 3 shows one example of such observations in 
this study. The peak magnitudes at the dominant periods from a PD patient’s pattern are relatively 
lower than that from a healthy young subject’s pattern.  

Figure 3. The example of autocorrelation sequences (VT acceleration) computed from a 
young healthy subject (above) and a PD patient (below). 

 

Figure 4 shows the autocorrelation sequences computed from VT and AP accelerations obtained 
from a healthy subject and a PD patient. The young healthy subject has better step and stride regularity 
(larger magnitudes at the peaks D1 and D2) than the PD patient. This shows that the periodic 
characteristics of gait in the PD patient are not steadily and perfectly reproduced. It is shown that the 
dominant periods on the VT and AP patterns coincide with each other, even though the two patterns 
may vary differently. The comparison of both the VT and AP autocorrelation sequences can improve 
the accuracy in identifying the dominant periods when the dominant periods cannot be clearly 
determined from the VT autocorrelation sequence alone.  

Table 1 shows the mean values of the recognized gait cycle parameters of all subjects of the two 
groups. Comparing the cadences derived from the autocorrelation procedure, the average cadence of the 
PD group (102.2 ± 15.2 steps/min) is slightly higher than that of the healthy group (98.6 ± 5.8 steps/min). 
The elevated cadences at longer TUG time for the PD patient group indicate reduced step length and 
walking speed, which conforms to the literature result [1]. In fast 5MWT, the average cadence of the 
PD group was 108.1 ± 15.6 steps/min, which was approximately 5.8% increased from their normal 
cadences. The healthy group had an average cadence of 113.9 ± 6.2 steps/min in fast 5MWT, which 
was approximately 16.9% increased from their normal cadence. This indicates a limited performance 
margin for the PD group due to their degenerative mobility. 
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For the gait regularity and symmetry, the PD patient group has the step regularity of 0.39 ± 0.16 and 
the stride regularity of 0.43 ± 0.2 during normal walking paces. The healthy group has higher step 
regularity (0.61 ± 0.14) and stride regularity (0.79 ± 0.09). Similar trends can be observed in their fast 
walking paces. Therefore, the result shows that the PD patients cannot well regulate their repeating 
steps and strides compared with the healthy group. Note that the step symmetry during normal walking 
from the PD group is slightly higher than that from the healthy group, while the step symmetry during 
fast walking in the PD group is lower than that in the healthy group. This mixed results regarding step 
symmetry need further investigations. In the current definition of step symmetry, it is possible to 
obtain higher step symmetry from the gaits with both low step regularity and stride regularity that are 
close to each other. Altered definitions of step symmetry have been used [18], and it is also of 
important interest in the future to investigate which definition can be suitably applicable.  

Figure 4. The example of the VT and AP autocorrelation sequences computed from a 
young healthy subject (above) and a PD patient (below). 
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Table 1. Gait cycle parameters derived from the subjects. 

 
PD Healthy 

Mean ± SD p-value mean ± SD p-value 
TUG test 23.9 ± 7.9 s 0.852 10.6 ± 2.2 s 0.982 

5MWT 
(normal) 

Cadence 102.2 ± 15.2 0.835 98.6 ± 5.8 0.980 
Step regularity 0.39 ± 0.16 0.952 0.63 ± 0.13 0.856 
Stride regularity 0.43 ± 0.20 0.934 0.80 ± 0.09 0.066 
Step symmetry 0.81 ± 0.14 0.575 0.78 ± 0.16 0.901 

5MWT 
(fast) 

Cadence 108.1 ± 15.6 n/a 113.9 ± 6.2 0.533 
Step regularity 0.37 ± 0.17 n/a 0.76 ± 0.08 0.545 
Stride regularity 0.47 ± 0.12 n/a 0.80 ± 0.08 0.360 
step symmetry 0.75 ± 0.22 n/a 088 ± 0.09 0.924 

The cadence obtained by the method was compared with that measured from the synchronized 
video. The mean absolute percentage error is 4.89%. As the subjects repeated each test item three 
times during the data collection, it is hypothesized that the subjects repeated the tests without 
significant variance so that the results of gait cycle parameter recognition can be valid. Therefore, the 
one-way ANOVA test was used to investigate whether each test item shows significant variance in 
both the subject group. In general, there is no significant difference (significant level 0.05) between the 
results from each test of the subjects. Note that because some of the PD subjects were unable to 
perform fast 5MWT, the test in the PD subjects’ fast 5MWT are excluded in Table 1 due to the limited 
data samples. 

3.2. Discussion 

Several studies have reported the use of the vertical accelerations for autocorrelation  
procedures [16,17]. In this study the VT, AP and ML acceleration components were compared to 
examine which axis is most sensitive to steps and produces identifiable pattern related to the gait cycle 
parameters. From our observation from the autocorrelation sequences of the 10 test subjects, the ML 
acceleration component is considered least descriptive and least sensitive to walking movement. This 
was also observed in a previous study by the authors [22]. In the study by Keenan et al. [18], the VT 
and AP components were also used for autocorrelation process for the same reason even triaxial 
accelerations were measured. Though the ML acceleration component measured from the back over 
the L3 region has been shown good results in autocorrelation procedure [16], this could be because of 
different positions to attach the devices were used. In the future developments, the ML accelerations 
may be used to distinguish left‐leg or right‐leg steps [23]. The real-time 3D orientation of the trunk can 
be synchronously computed from the vertical acceleration, or from the combination of the three 
acceleration components for better accuracy. However, trunk orientation reveals less information in 
interpreting gait patterns, and thus it is not used throughout the recognition procedure. 

The wearable motion detector developed in this study measures walking movement at the sampling 
rate of 50 Hz. As a low-pass filter circuit (fc = 50 Hz) was internally built in the accelerometer module 
to reduce the signal components of higher frequencies that would not be relevant to human movements 
in daily living, ideally the sampling frequency above 100 Hz should be better. However, the sampling 
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rate 50 Hz here is used because of the limitations of available memory capacity (data to be buffered), 
computation capability of the low-cost PIC microcontroller, and the constraint of a real-time system 
requiring minimized cyclic processing time. Moreover, intense and faster movements could rarely 
occur in daily living home environments. Compounding the above considerations, the sampling rate 
50Hz was used, though higher sampling rate is certainly better if capable hardware is available. 

Step regularity, stride regularity and step symmetry obtained from the autocorrelation procedure are 
the general temporal gait estimates in terms of signal periodic characteristics. Cadence can be easily 
validated by comparing the synchronized video recording. Tura et al. have validated the step and stride 
regularities to well correlate with the indices obtained from step and stride duration measured from 
pressure insoles [24]. Offline analysis using autocorrelation method usually processes large acceleration 
data to compute the gait cycle parameters that indicate its overall gait performances. Real-time 
recognition of the gait cycle parameters using cyclic processing may be affected by a high instantaneous 
variability. An extra continuous 25-meter walk data from three healthy young subjects in their constant 
walking paces was additionally used to check the effect of using shorter window lengths to calculate 
the gait cycle parameters. As shown in Table 2, the gait cycle parameters obtained from the multiple 
sliding windows (window length 3.5 s) can moderately to highly approximate the gait cycle parameters 
obtained from the entire single window. However, for data in varied walking speeds, it was found that 
gait cycle parameters obtained from the multiple sliding windows were sensitive and can reflect the 
episodic signal variability. 

Table 2. Gait cycle parameters derived from multiple sliding windows and the entire single window. 

 
Multiple sliding windows 

Entire 
single window

Mean coefficient 
of variance (CV) 

Mean 
percentage error 

Mean ± SD 

Cadence 
(steps/min) 

1.21% 0.67% 
113.3 ± 4.1 111.1 
103.4 ± 0.0 103.4 
111.1 ± 0.0 111.1 

Step regularity 8.53% 2.44% 
0.763 ± 0.073 0.793 
0.679 ± 0.042 0.665 
0.785 ± 0.077 0.773 

Stride 
regularity 

9.34% 4.47% 
0.869 ± 0.128 0.903 
0.793 ± 0.052 0.746 
0.816 ± 0.061 0.877 

Step symmetry 7.78% 2.04% 
0.884 ± 0.061 0.878 
0.858 ± 0.057 0.892 
0.867 ± 0.085 0.881 

As real-time gait cycle parameter recognition is developed, continuous detection of disabling gaits 
could be applicable. Figure 5 shows the process flowchart of the algorithm. After the data sampling 
(P1), the median-filtering process (P2) is applied to the sampled data to eliminate signal spikes that are 
not related to human movement. The VT and AP autocorrelation sequences are generated (P3) from 
the sampled data. In the process P4 both the VT and AP autocorrelation sequences are superimposed to 
obtain a peak-highlighted sequence which is used for peak detection. The P5 process locates the 



Sensors 2011, 11  
 

 

7324

positions of the first and second dominant periods in the VT-AP superimposed sequence. If the process 
D1 fails to identify the positions of the first and second dominant periods in the VT-AP superimposed 
sequence (D1 = No), the procedure returns to the process P1 to restart next data sampling. If that 
positions are identifiable (D1 = Yes), the peak search process (P6) finds the first and second dominant 
periods, D1, and D2 in the VT autocorrelation sequence according to the peak position located from the 
VT-AP superimposed sequence. The gait cycle parameters are then computed in the process P7 and the 
estimates output is provided prior to the next new processes from P1. 

With the available gait cycle parameters in consecutive identification periods, a knowledge base of 
gait disorders and the pattern characteristics, i.e., shuffling, festinating and freeze of gaits can be 
integrated in the future to facilitate the potential capability in real-time and continuous detection of 
disabling gaits in PD patients. 

Figure 5. The process flowchart of real-time gait cycle parameters recognition. 
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4. Conclusions 

This paper presents the use of a wearable motion detector for real-time gait cycle parameter 
recognition. The wearable motion detector is a single waist-mounted device that utilizes a tri-axial 
accelerometer to measure trunk accelerations during walking. The autocorrelation procedure is used to 
estimate cadence, step regularity, stride regularity and step symmetry from the measured trunk 
accelerations in real time. In this study, the gait cycle parameters among the two subject groups of 
different mobility (PD patients and the young healthy adults) can be quantified and distinguished by 
the system. The wearable motion detector has been developed by the authors for real-time physical 
activity identification, and its connection to a telecare system has also been presented [22]. The system 
developed in this paper can lead to future research interests and development regarding real-time 
detection of gaits disorders in PD patients. Mobility assessment, ambulatory rehabilitation for PD 
patients can be the possible applications. 
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