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Abstract: The star centroid estimation is the most important operation, which directly 

affects the precision of attitude determination for star sensors. This paper presents a 

theoretical study of the systematic error introduced by the star centroid estimation 

algorithm. The systematic error is analyzed through a frequency domain approach and 

numerical simulations. It is shown that the systematic error consists of the approximation 

error and truncation error which resulted from the discretization approximation and 

sampling window limitations, respectively. A criterion for choosing the size of the 

sampling window to reduce the truncation error is given in this paper. The systematic error 

can be evaluated as a function of the actual star centroid positions under different Gaussian 

widths of star intensity distribution. In order to eliminate the systematic error, a novel 

compensation algorithm based on the least squares support vector regression (LSSVR) 

with Radial Basis Function (RBF) kernel is proposed. Simulation results show that when 

the compensation algorithm is applied to the 5-pixel star sampling window, the accuracy of 

star centroid estimation is improved from 0.06 to 6 × 10−5 pixels. 

Keywords: star sensor; subpixel; centroid estimation; systematic error compensation; 

LSSVR 
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1. Introduction 

The star tracker is a satellite-based embedded system which estimates the orientation of the satellite 

in space. This information is essential for any space mission, as it supplies all attitude data required for 

satellite control. There are other sensors used for the same purpose (gyroscope, sun tracker, 

magnetometer, GPS), but star trackers are more accurate and allow for attitude estimation without 

prior information [1]. For these reasons star trackers are used onboard 3-axis stabilized spacecraft. Star 

trackers estimate the orientation directly from the images of stars taken by an onboard camera. The 

estimation is based on a comparison of the star locations in the image with those in the predefined 

catalogue. One important factor influenced the performance of the star tracker is the star centroid 

location estimation in the image. This process becomes difficult when noise exists. This work applies 

the Least Square Support Vector Regression (LSSVR) with Radial Basis Function (RBF) kernel to 

improve the estimation process. 

The noise influence on the estimation process can be divided into two types, the random noise and 

the systematical noise. The random noise includes the short noise, dark current noise, CCD readout 

noise, and radiation noise, which are closely related with the hardware of the CCD sensor [2]. In order 

to obtain high accuracy star locations in the image, sub-pixel centroid algorithms should be adopted, 

namely, the center of mass (COM), polynomial and B-spline interpolators [3]. The systematic noise is 

due to the nature of the centroid algorithm. The systematic noise of the centroid algorithm can cause 

several arc-seconds accuracy loss, so it is essential to analyze the systematic error and design a 

compensation method to improve the accuracy of star centroid location estimation in the image. In this 

paper, the systematic error is discussed in detail and the random noise will be only briefly analyzed. 

The properties of the systematic error have been investigated by many scholars. In general, 

systematic error of centroid estimation is related with the energy distribution of starlight on star image 

(Gaussian width), the frequency of sampling, the size of sampling window and the actual position of 

star point. Grossman et al. [4] pointed out that the systematic error was reduced by increasing degrees 

of blur and by the wider defocusing of the neighbor pixels of the starlight. However, Hegedus et al. [5] 

pointed out that the error firstly decreases and then increases as star Gaussian width is increased. 

Stanton et al. [6] obtained a roughly sinusoid functional relationship between systematic error and the 

actual position of star point under fixed blur size. Alexander et al. [7] analyzed the systematic error 

through a spatial-frequency-based approach caused by the center of mass algorithm. Jean [8] 

supplemented Alexander’s work and proposed a Fourier phase shift method to calculate the sub-pixel 

position under more complex signals. Rufino et al. [9] obtained the starlight intensity distribution point 

spread function (PSF) considering diffraction and CCD defocus, and used the BP neural network 

method to compensate the systematic error. JIA et al. [10] studied the systematic error utilizing a 

frequency domain method considering sampling frequency limitation and sampling window limitation. 

He also proposed an analytical compensation algorithm to reduce the systematic error of star centroid 

estimation. 

This paper analyzes the systematic error caused by the center of mass (COM) centroid estimation 

algorithm. Through the frequency domain approach analysis and numerical simulations, it is found that 

the systematic error consists of an approximation error and a truncation error. The approximation error 

results from the discretization approximation, which is caused when the spacial frequency of a star 



Sensors 2011, 11  

 

 

7343

image is higher than the sampling frequency of the detector. The truncation error will appear when the 

size of the sampling window is smaller than the Gaussian width of the star intensity distribution. A 

criterion for choosing the size of the sampling window is given to reduce the truncation error as much 

as possible. Through numerical simulations, the systematic error can be evaluated as a function of the 

actual star centroid positions under different Gaussian widths of the star intensity distribution. In order 

to eliminate the systematic error, a novel systematic error compensation algorithm based on the least 

squares support vector regression (LSSVR) with Radial Basis Function (RBF) kernel is proposed. This 

novel algorithm can control the function estimation kernel shape and prediction accuracy. The 

experimental results demonstrate that the proposed approach can improve the accuracy of the star 

centroid position estimation dramatically. 

The rest of this paper is organized as follows. In Section 2, the error of star centroid estimation 

algorithm is analyzed from three aspects through a frequency domain approach and numerical 

simulations: the integral error, the approximation error and the truncation error. A detailed description 

of our novel compensation algorithm based on the LSSVR is given in Section 3. In Section 4, the 

performance of the LSSVR compensation algorithm is evaluated. Finally, the conclusions of the paper 

are drawn in Section 5. 

2. Error Analysis of Star Centroid Estimation Algorithm 

It is well known that the star centroid calculation is used to pinpoint location. In order to adopt 

digital centroid algorithms to achieve sub-pixel accuracy in star centroid position estimation, the star 

sensor camera should be defocused slightly in order to spread the star energy over several neighboring 

pixels [11]. The center of mass (COM) algorithm is the most widely method used to calculate the 

centroid position of star images, and the error analysis is based on the COM algorithm [1,2,4,10]. 

2.1. The Integral Error of Center of Mass (COM) Algorithm 

It is evident that the sub-pixel accuracy star centriod cannot be obtained by one single pixel directly. 

The COM algorithm uses several neighbor pixels around the brightest pixel to calculate the sub-pixel 
star centroid position. The ideal star centroid position in the image plane is  and , which can be 

computed by: 

 (1)

where W is the sampling window area that include all validated neighbor pixels around the starlight in 

the image plane, x and y are the coordinates of the pixels in W, I(x, y) is the detected signal irradiance 

intensity at pixel (x, y). Equation (1) is the COM algorithm’s theory model, it should be discretized 

when it used in digital computation. After the discretization, Equation (1) can be written as: 

 (2)
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where and  are the actual star centroid position in the image plane after discretization. W in 

Equation (1) replaces the discrete n pixels to constitute the sampling window,  and  are the 

coordinates of the geometric center of the i-th pixel, and  is the irradiance intensity integration of the 

i-th pixel. 

From Equation (2), it can be found that there are three factors can influence the star centroid 
estimation accuracy: the size of sampling window W, the i-th pixel coordinates  in W and the signal 

intensity  in corresponding pixels. The systematic error is caused by the discrete approximation of 

the coordinate  and truncating the sampling window W, and the uncertainty in detecting  leads to 

random noise. The 1-D situation in the x direction will be discussed, and the analysis is also valid for 

both the x and y direction in 2-D situation. Assuming the systematic error and the random noise are 

small and not correlated, then the integral error of the COM can be described by the expression [9]: 

 (3)

where  is the integration error of ,  is the systematic error resulting from the use of the pixel 

geometrical center to substitute the irradiance integration over a whole pixel and truncating the 
sampling window.  is the random error caused by various noises, namely, the short noise, dark 

current noise, CCD readout noise, and radiation noise etc. 
Firstly, we consider random error which is caused by the uncertainty in detecting . We assume 

that the measured signal intensity  at the pixel  consists of two components: a ‘true’ intensity , 

and the noise intensity , then the . The derivatives in Equation (3) can be computed 

from Equation (2), and can be written as: 

 (4)

where the total signal , the ‘true’ signal , and the ‘true’ star centroid position 

.  

If the  is small, the , then through the Equation (4), we can find that the random error is 

inversely proportional to the signal to noise ratio (SNR). Enhancing the SNR can then reduce the 

random noise effectively. In this study, the random error analysis is not the key content. Many random 

noise elimination algorithms are described elsewhere [4,12] and are not covered in this paper. 

In this paper, the analysis of systematic error is our main topic. From Equation (3), one also can use 
a derivative of the parameter  to determine the systematic error, and this can be expressed as: 

 (5)

As we can see, the systematic error  cannot be calculated directly through Equation (5), 
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express the systematic error explicitly, we will analyze the systematic error using the frequency 

domain based method and numerical simulations. 

2.2. Theoretical Analysis of the Systematic Approximation Error under Sampling Frequency Limitation 

In this section, frequency domain analysis is adopted to get more information about the relationship 

between the systematic error and the ideal star centroid position just consideration of sampling 

frequency limitation. Under the condition of the spacial frequency of star image being higher than the 

sampling frequency of the detector, one type of systematic error named approximation error in 

calculating the star centroid position will be caused. We derive an approximate sinusoidal relationship 

between the approximation systematic error and the ideal star centroid position. The theoretical 

relationship function can inspire us to design some novel algorithms to compensate the systematic 

error. 

The star image sampling process is illustrated in Figure 1, and can be divided into two steps. The 

waveform e(x) is the intensity profile of the starlight stripe projected on the surface of the CCD. The 

signal intensity function e(x) is convoluted with the pixel sensitivity function p(x) to generate the 

continuing pixel signal function f(x). After multiplying the pixel sampling function t(x), we can get the 

discrete signal function g(x), which can be written as: 

 (6)

When the CCD’s fill factor is approximated to 100%, the pixel sensitivity function p(x) is equal to a 
rectangle function. t(x) is the sampling function, its sampling frequency is  and is a comb 

function, T is the length of pixel. The p(x) and t(x) are given as follows: 

 (7)

Figure 1. The process of star image sampling: e(x) is the starlight stripe intensity profile 

function; p(x) is the pixel sensitivity function; f(x) is the continuing pixel signal function; 

t(x) is the sampling function; g(x) is the discrete pixel signal function. 
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The Fourier transform of the continuous function f(x) can be written as: 

 (8)

and the derivative of the can be expressed by  as: 

 (9)

Then the ideal centroid position  of f(x) can be calculated through Equations (8) and (9), as stated 

by Alexander [7]: 

 (10)

Likewise, the centroid of the sampled function can be written as: 

 (11)

As described above, is the ideal star centroid position and  is the actual star centroid position 

with approximation systematic error. The following step, we will begin to analyze the  influenced 

by the approximation systematic error and get its theoretical model through frequency domain 

analysis.  

Starlight can be viewed as point light sources, so the starlight signal intensity distribution spread 

point function is approximated reasonably by the Gaussian function and the 2-D situation function can 

be written as [2,10,13]: 

 (12)
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From the Equation (11), the approximation systematic error  can be written by: 

 (16)

From Equation (6), the G(s) can be written by , according to the form of  in 

Equation (7) and sampling frequency , the G(s) can be given as: 

 (17)

Then the derivative of  is written by: 

 (18)
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Taking the Equations (20) and (21) into the Equation (19) to get the approximation systematic error 

 as: 

 (22)

 is the sampling frequency and we measure all distances in units of the pixel length ( ), 

and in Equation (14) the d equals to , so the Equation (22) can be rewritten by: 

 (23)

From Equation (6), it follows that: 
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following part, we also use numerical simulations to verify the theoretical expression of the 

approximate systematic error in Equation (28). 
Designing the numerical simulations, the ideal star centroid position  is varied from 0 to 1 with 

the interval of 0.002, and set the Gaussian width  from 0.1 to 1.2 with the interval of 0.1. Because 

the starlight signal intensity point spread function (PSF) is reasonable approximated by the 2-D 

Gaussian function in Equation (12) and is symmetrical in the x and y direction. Just the 1-D situation  
in the x direction is considered. Therefore the actual star centroid position  can be calculated by the 

following equation: 

 (29)

Then, the approximation systematic error can be expressed by: 

 (30)

There is one premise should be stated. The fill factor of the active pixel sensors is assumed to be 

100% and each pixel has the same photon response. Then, the detected signal intensity of the i-th pixel is: 

 (31)

where  equals to  in Equation (13). 

The sampling window size is fixed at 5 × 5 pixels. Under different Gaussian widths, a group of 

curves between the approximation systematic error and the ideal star centroid position  can 

be obtained. The 3-D numerical simulation results of the relationships between  and  is shown 

in Figure 2. 

Figure 2. Numerical simulations of the relationship between the approximation  

systematic error of the COM algorithm and the ideal star centroid positions under different 

Gaussian widths. 
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Through the Figure 2, it can be seen that the systematic error  and the  has an 

approximately sinusoidal relationship when the Gaussian width  is small ( ), and the 

result is consistent with the theoretical analysis in Equation (28), but, when the  is large, there is a 

linear relationship between  and . This is an interesting result, and we will introduce another 

type of systematic error named truncation systematic error here to describe this phenomenon. The 

approximation systematic error is caused by the sampling frequency limitation and the truncation 

systematic error is caused by the sampling window limitation. The truncation error will appear when 

the size of sampling window is smaller than Gaussian width and will be discussed in detail in the next 

section. 

2.3. Theoretical Analysis of the Systematic Truncation Error under Sampling Window Limitation 

In this section, we will analyze the truncation error and give the criterion for choosing the sampling 

window size to reduce the systematic error as much as possible. The simulations above show that the 

truncation error will appear when the sampling window size is relatively small. The sampling window 

area decides how many validated neighbor pixels around the star signal in the image plane were 

involved in calculating the star centroid position. In Figure 3, we will demonstrate how the sampling 

window size introduces error into the star centroid position estimation. 

Figure 3. (a) The width of Gaussian is larger than the sampling window size; (b) The 

width of Gaussian is smaller than the sampling window size. 

 

Figure 3(a), shows that the Gaussian width  is larger than the sampling window size. We can 

see that the  is a part of the  and  has truncated some effective pixels from the original 

star signal. Then, the  has fewer pixels to be used in calculating the star centroid position and will 
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Here, we also use the numerical simulations (designed in Section 2.2) to analyze the truncation 
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and give the 2-D experiment results under  = 0.3, 0.4, 0.5, 0.7, 0.9, 1.1 in Figure 4, and also give 

out the number of pixels occupied by the Gaussian curve under different Gaussian widths in Figure 5.  
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Figure 4. The 2-D result of systematic error of star centroid position estimation under 

different Gaussian widths. 

 

Figure 5. The number of pixels occupied of star under different Gaussian width . 

 

From Figure 4, it can be seen that the relationship between  and  changed from approximately 

sinusoidal to linear with the Gaussian width increases. Combining Figures 4 and 5, we can explain the 

reason of the truncation error clearly. When the Gaussian width is smaller than 0.5, we can find that 
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When the Gaussian width is larger than 0.5, the number of pixels occupied by the Gaussian curve 

exceeds the 5-pixel window size. In this case, the star signal is truncated by the smaller sampling 

window size. Only partial effective pixels can be involved in calculating the star centroid position 

estimation. Under this condition, the error is dominated by the truncation systematic error. 

In order to reduce the truncation error as much as possible, a criterion for choosing the size of the 

sampling window is put forth. The size of sampling window should be a little larger than the Gaussian 
width. The Gaussian width (PSF size) is decided by the defocusing. If a small displacement  from 

the image plane, the Gaussian width will increase and its diameter is [14]: 

 (32)

where the F# is the optics number of the image sensor. The unit of the D is μm. 

The size of sampling window can be chosen following the function below: 

 (33)

where fix is the corresponding function in MATLAB, which rounds the elements towards zero. The 
term  is the single pixel size of the image plane (e.g., STAR250 ),  

is the Gaussian width of the star signal. In order to let the sampling window size be larger than the 
Gaussian width, the sampling window size  adds one additional pixel on the Gaussian width. 

Under this operation, we can reduce the truncation systematic error as much as possible. Then, the 

systematic error of the COM algorithm is just dominated by the approximation error. 

Through an appropriate numerical simulation, we can get the relationship between the systematic 
error , the ideal star centroid position  and the actual star centroid position contaminated by 

the error. From the Equation (30), we can calculate the ideal star centroid position  as follows: 

 (34)

3. The LSSVR Compensation Algorithm 

The relationship between the systematic error 
,

σ 
gX x

 and the actual star centroid position  is the 

basis of our compensation algorithm. We will design a novel algorithm based on the least squares 

support vector regression (LSSVR) to estimate the systematic error, which can be used to eliminate the 

systematic error caused by the nature of the COM algorithm. 

3.1. The Least Squares Support Vector Regression  

The support vector machine (SVM) technique was developed by Vapnik in 1995 [15]. SVM is 

motivated by statistical learning theory based on the principle of structural risk minimization, shown to 

be superior to the traditional empirical risk minimization principle employed by traditional neural 

networks. It can be applied in classification and regression. SVR is used to find out the underlying 

relationships between input and target output vector, especially for modeling nonlinear relationships. It 

has been proven to be a powerful method for solving problems in nonlinear density estimation and 
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function estimation [16,17]. LSSVR, proposed by Suykens, is an alternate formulation of SVR [18]. 

The reason for choosing LSSVR as the function estimation is its lower memory requirements, as well 

as the achievement of a global solution within a fast training speed [19,20]. The primary ridge 

regression model of LSSVR in the function estimation problem is formulated as: 

 (35)

subject to the equality constraints: 

 (36)

where  is a positive real constant and  is slack variable. In this function estimation problem, the 

Lagrangian is:  

 (37)

where  are Lagrange multipliers. The conditions for optimality are given by [21]: 

 (38)

After eliminating the and , the Karush-Kuhn-Tucker (KKT) system is obtained as: 

 (39)

where , , , .  is the kernel 

function, which can be expressed as the inner product of two vectors in some feature space. There are 
many Mercer kernel functions  that can be chosen, such as 

(hyperbolic tangent kernel), (polynomial kernel) and 

 (the RBF kernel). Finally, for an input x, we can predict the output of 

the LSSVR model in response to the input x as: 

 (40)

where  and  are the optimal solutions of Equation (39). 

Through the Equation (40), we can find that the LSSVR just calculates sets of linear Equations 

rather than solving the dual problem in SVR. Furthermore, if we use the RBF kernel, only two 
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parameters  are needed for LSSVR in Equation (39). However, except for the parameters 

are needed in SVR, the parameter also should be considered which is the regression error in the  

e-insensitive loss function. The advantage of low computation complex of LSSVR makes it suitable 

for our systematic error compensation algorithm. 

3.2. LSSVR Calculation 

The LSSVR model is used for function estimation. In practice, we can’t get the ideal star centroid 
position  but can get the actual star centroid position  calculated by Equation (29). According to 

the Equation (40), we can use the LSSVR to estimate the functional relationship between the 
systematic error  and the actual star centroid position . If we use the RBF kernel, the 

estimation function can be written as:  

 (41)

where the x is the input of actual star centroid position  in practical operation.  and  are the 

optimal solutions of Equation (39). Then, when we input the  into the LSSVR model, it will predict 

its corresponding output of systematic error , and we can use Equation (34) to calculate the ideal 

star centroid position . Through this operation, we can achieve the aim of eliminating the systematic 

star centroid position error caused by the nature of the COM algorithm. 

4. Experimental Results and Analysis 

In this section, we design a number of experiments to verify the performance of the systematic error 

compensation algorithm based on the least square support vector regression. The experiments are 

prepared in three steps. Firstly, before using the LSSVR for function estimation, we should obtain the 

input training samples through the numerical simulations. Secondly, some parameters can influence 

the performance of the LSSVR for function estimation. We should use the cross-validation method to 

get the optimal value of the parameters to guarantee the fitting and prediction accuracy of the LSSVR 

model. Thirdly, we use our compensation algorithm in the processing of a simulated star image to 

judge the performance of our proposed LSSVR systematic error compensation algorithm. All these 

simulations are carried on MATLAB 7.1 software platform run on a Pentium IV 2.8 GHz processor.  

4.1. Pre-Process the Training Samples 

In order to use the LSSVR for regression the relationship between the ideal star centroid position , 

the actual star centroid position (under the systematic error) and the systematic error  under 

different Gaussian width in Equation (34), we should design a number of numerical simulations to get 

the relationship function among them. Considering the real image sensor STAR250, its image plane 

size is 512 × 512 pixels, single pixel size is 25 µm, FOV size is 8° × 8°. The starlight projected onto 

the image plane can be viewed as point light sources, and the starlight signal intensity spread point 

function is reasonable approximated by the Gaussian function. Just considering the x direction, it can 
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be expressed by Equation (13). We also assume the fill factor of the active pixel sensors is 100% and 

each pixel has the same photon response. Then, the detected signal intensity function can be given by 

Equation (31). As mentioned in Sections 2.2 and 2.3, there are two situations that should be 

considered. The first one is when the sampling window size is larger than the Gaussian width; in this 

case the systematic error is dominated by the approximation error. Another is when the Gaussian width 

is larger than the sampling window size; in this case the systematic error is composed of the 

approximation error and the truncation error. In actual operation, the Gaussian width is increased as the 

star light intensity is strengthened, soif we use a set sized sampling window, such as 3 × 3 or 5 × 5 

pixels, both situations above will exist. The experiments take full consideration of the two situations 
above, and we set the sampling window size to be 5 × 5 pixels. The Gaussian width  is set to be 

0.3 (situation 1) and 0.9 (situation 2), respectively. Other values of  also can be simulated using 

the same method and form the compensation template to eliminate the systematic error under different 
scenarios.  

We assume the one single starlight is projected on the position (50,160). Just considering the x 

direction, the star centroid position of the starlight in x direction will range from 50 to 51. We 
subdivide the one pixel into 300 equivalent parts, and the ideal star centroid position in x direction  

from the 50.0033, 50.0066, … , till 51, the simulation step is 0.0033 pixels. If higher star centroid 

position accuracy is desired, one can reduce the interval of the simulation step but then one must 
sacrifice the computation time for training the LSSVR. For every trial, we will record the  and the 

corresponding actual star centroid position , then their different is the systematic error . Under 

 and 0.9, we can get their relationship, seen in Figure 6. 

Figure 6. (a) The relationship curve between  and  under . (b) For 

. 

 
(a) 

 
(b) 

In Figure 6, we can see that the maximum systematic error is nearly 0.06 pixel under and 

nearly 0.1 pixel under . In the STAR250, one pixel accuracy is 56.25″. Then, 0.06 pixel is 

approximately 4 arc-second, and the error is big enough to influence the accuracy of the star sensor. It 

is necessary to design a compensation algorithm to reduce the systematic error. Three hundred training 

samples can be used to train the LSSVR model to estimate the function above. 
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4.2. The Fitting Accuracy of the LSSVR 

The fitting and prediction accuracy are the two main aspects used to judge the quality of our 

LSSVR model. There are three main parameters that can influence the fitting and prediction accuracy, 
these are the parameter  of the RBF kernel, degree d of the polynomial function, and parameter  of 

slack variable in Equation (37). The number of training samples is 300, a relatively small number, so 

we employ the leave-one-out cross validation approach to choose the optimal parameters. In the 

optimization of these parameters, the root mean squared error of prediction (RMSEP) of the assessing 

set is used as an evaluation criterion: 

 
(42)

where  is the ideal star centroid position ,  is the prediction output of LSSVR model(with 

input of actual star centroid position ). N is the number of prediction samples. Using the criterion of 

Equation (42), we compared the performance of RBF kernel and the polynomial kernel. The RMSEP 

of the RBF kernel is smaller than that of polynomial kernel by at least one order of magnitude, so we 

choose the RBF kernel and the LSSVR parameters and  are optimized. , γ = 2.6 × 105 are 

used in the calculation. The performance of the regression of the LSSVR is shown in Figure 7. 

Figure 7. (a) The fitting performance of the LSSVR under . (b) For . 

 
(a)

 
(b) 

 

In Figure 7, we can see that the fitting curve nearly overlaps with the relationship function in  

Figure 6, and it illustrates that the fitting accuracy of the LSSVR is pretty high under two situations. 

The corresponding fitting errors of the LSSVR are shown in Figure 8. 
The fitting error is defined by the difference between the actual systematic error and the 

predicted systematic error  which is the output of the LSSVR model. From Figure 8, we can see 

that under the two situations, the maximum fitting errors of the LSSVR are all smaller than 4 × 10−5 

σ γ

2

1

* * 2

1 1

1
ˆ[ ( )]

1
ˆ[ ( ( , ) )] 1α

=

= =

ℜ = − −

= − − − =



  

N

RMSEP g i
i

N N

g i i i
i i

x Y f x
N

x Y K x x b i N
N

iY 0x ( )f x

ˆgx

σ γ 2σ =

0.3PSFσ = 0.9σ =PSF

,
σ 

gX x

lssvrσ



Sensors 2011, 11  

 

 

7357

pixels, but a high fitting accuracy cannot illustrate the performance of the LSSVR model completely. 

What we are most concerned with is the prediction accuracy of the LSSVR model. 

Figure 8. (a) The fitting accuracy of the LSSVR under . (b) For . 

(a) (b) 

4.3. The Prediction Accuracy of the LSSVR 

Firstly, we should give the definition of the prediction accuracy of the LSSVR model. We use the 
LSSVR model to predict the systematic error with the input of the actual star centroid position , 

then the star centroid position after compensation can be calculated as: 

 (43)

where  is the actual star centroid position in practical operation (input of LSSVR),  is the 

predicted systematic error (output of the LSSVR), and  is the star centroid position after 

compensation. Through the Equation (43), we can get the prediction error of the LSSVR model in the 

following Equation: 

 (44)

where  is the ideal star centroid position,  is the prediction error of the LSSVR. 

With the optimal parameters, a LSSVR model was trained using the 300 samples of data in  

Section 4.1. In order to test the prediction performance of the trained LSSVR model, we select 500 star 

points which are projected on the CCD image plane randomly. We also just consider the x direction, 

and all the 500 star centroid positions of the star in the x direction will range from 100 to 201. The 

experiments are shown in Figure 9. 
The 500 random experiments results under  and  are shown in the left side of 

Figure 9(a,b). The right sides of Figure 9(a,b) are corresponding enlarged pictures of the left side. The 
blue line is the ideal star position  and the red line is the compensated star centroid position . 

From the right side of the Figure 9, we can see that every compensated  is very close to its 
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corresponding ideal position . It demonstrates that our trained LSSVR model can achieve high 

prediction accuracy. The prediction error of the LSSVR model is shown in Figure 10. 

Figure 9. (a) Experiments of random star positions under . (b) For . 

 
(a) 

 

 
(b) 

From Figure 10, we can see that the prediction errors of our LSSVR model are smaller than 6 × 10−5 

pixels under the two situations and . The result shows that the proposed 

compensation algorithm can achieve high star centroid position accuracy under different Gaussian 

widths. The accuracy of our systematic compensation algorithm is much higher than methods proposed 

by other scholars, such as the neural network method [9] that can reach 5 × 10−3 accuracy and the 

analytical compensation method [10] which can reach 2 × 10−4 accuracy. 
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Figure 10. (a) The star centroid position error before and after compensation under 
. (b) For . 

 
(a) 

 
(b) 

4.4. The Performance of the Compensation Algorithm in Simulations 

In addition to the single star point simulations, we also apply the compensation algorithm to 

simulated star image testing. We select a star sensor field of view (FOV) point randomly, and suppose 

the point’s right ascension, declination and the angle rotation are (130, 60, 60). The FOV size is  

18 degree, using the sky2000 version 4 star catalog (developed by the NASA’s Goddard Space Flight 
Center), the stars’ magnitudes in the image are all lower than 6.5 and the . The simulated 

star image is shown in Figure 11. 

Figure 11. The simulated star image pointing at (130, 60, 60). 

 

In Figure 11, we can see that there are 20 stars in the star image. We select 10 of them to compare 

their errors before compensation and after compensation. The results are shown in Table 1. 
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Table 1. The systematic error before and after compensation of the simulated star image. 

Star 
number 

Ideal x 
position 

Actual x 
position before 
compensation 

Error before 
compensation 

(pixel) 

Actual x 
position after 
compensation 

Error after 
compensation 

(pixel) 
1 188.533005 188.574817 0.041812 188.5330528 0.0000478 
2 33.886746 33.898649 0.011903 33.8867553 0.0000093 
3 −83.046154 −83.009843 0.036311 −83.04461024 0.0000516 
4 200.032901 199.976565 0.056336 200.0329395 0.0000385 
5 94.366492 94.328661 0.037831 94.3664767 0.0000153 
6 −38.586794 −38.600159 0.013365 −38.5867838 0.0000102 
7 24.180883 24.170196 0.010687 24.1808541 0.0000289 
8 79.488555 79.526198 0.037643 79.4885707 0.0000157 
9 69.740746 69.773062 0.032316 69.7407809 0.0000349 
10 −95.161995 −95.120380 0.041615 −95.1620123 0.0000173 

Through the experiments above, we can find that the systematic error compensation proposed by 

the Least Squares Support Vector Regression can achieve high accuracy star centroid positions 

estimation and meet the high attitude pointing accuracy requirements of star sensors. 

4.5. The Performance of the Compensation Algorithm in Actual Images Experiments 

In addition to the simulated images testing, we also apply the compensation algorithm on some 

actual images. The actual night sky images were captured on NAOC’s observation station in 

XingLong, Hebei Province (China), in December 2009. We took about 900 images under different 

directions. The CANON 20D camera is used, whose focal length is 50 mm, the pixel size is 6.42 µm, 

the field of view is 25.36 × 17.06 degree, and the plane size is 3,504 × 2,336 pixels. In order to reduce 

the effects of image distortion, we just used the 12 × 12 degree field of view in the center of each 

image. One night sky actual image is shown in Figure 12. 

Figure 12. One night sky actual image with FOV 12 × 12 degree. 
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We used the zenith observation method to test the accuracy of the star tracker [22,23]. The zenith 

method takes the Earth as an evenly rotational turntable. It needs a high accuracy spirit level to make 

sure the star tracker is pointed in the zenith direction. The star tracker captured the pictures from the 

zenith direction and calculated the attitude. Then, we use our knowledge of astronomy to figure out the 

ideal zenith direction at the shooting time. Comparing the star tracker’s attitude with the zenith ideal 

attitude, we can test the accuracy of the star tracker and thus prove the effectiveness of our LSSVR 

compensation algorithm. 

In the 900 sky night actual images, there are about 100 images pointing at the zenith. We selected 

66 images to test the accuracy of the star tracker and thus test our LSSVR compensation algorithm. 

The 66 images are taken under different noise conditions. Through the 66 actual images, we can 

calculate 66 attitude directions by the star tracker. According to the shooting time and place, we also 

can calculate 66 ideal zenith directions through the zenith observation method. Before calculating the 

accuracy of the star tracker, we should eliminate the constant bias on star tracker’s optical axis caused 

by the assembly. We choose 10 images from the 66 images to calculate the mean of constant bias on 

the star tracker’s optical axis. After eliminating the constant bias on the optical axis, we can get the 

accuracy of the star tracker on the yaw axis and roll axis. The experimental results are shown in  

Figure 13. 

Figure 13. (a) The accuracy of the star tracker on the yaw axis. (b) The accuracy of the 

star tracker on the roll axis. 

(a) (b) 

From Figure 13, we can see that the accuracy of the star tracker after compensation is higher than 

before compensation. The actual images experiments can test the performance of our compensation 

algorithm under different random noise conditions. The 66 actual images are taken under different 

random noise conditions. Through the Figure 13, we also can see that when the random noise is large, 

the compensation performance is not obvious. When the random noise is small, the accuracy of the star 

tracker is very high after compensation. The high performance of our LSSVR compensation algorithm 

under large random noise condition is to be further studied and improved in our future work. 
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5. Conclusions 

This paper analyzed the systematic error of star image centroid estimation utilizing frequency 

domain analysis and numerical simulations. The sampling frequency limitation and sampling window 

size limitation are fully considered and the systematic error is then divided into an approximation error 

and a truncation error. Through the frequency domain analysis, an approximate sinusoidal and linear 

relationship between systematic error and actual star centroid position are obtained under sampling 

frequency limitation and under sampling window size limitation, respectively. A novel systematic 

error compensation algorithm based on the LSSVR is presented. According to the two types of 

systematic errors, a number of experiments are designed to test the LSSVR compensation algorithm. 

Simulation results show that after compensation, the residual systematic error of star centroid 

estimation is less than 6 × 10−5 pixels under 5 × 5 pixel sampling window size. Compared to the neural 

network method and the analytical compensation algorithm, the proposed method’s accuracy is one or 

two orders of magnitude higher than that of these two algorithms and can meet the requirements of 

high accuracy star sensors. Since we have not considered the influence of random noise to the 

proposed method, the high performance of our LSSVR compensation algorithm under large random 

noise conditions is to be further studied in our future work. 
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