
Sensors 2011, 11, 7908-7933; doi:10.3390/s110807908
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Network Coding on Heterogeneous Multi-Core Processors for
Wireless Sensor Networks
Deokho Kim 1, Karam Park 2 and Won W. Ro 1,?

1 The School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea;
E-Mail: nautes87@yonsei.ac.kr

2 Mobile Communications, Samsung Electronics, Suwon 443-373, Korea;
E-Mail: karam.park@samsung.com

? Author to whom correspondence should be addressed; E-Mail: wro@yonsei.ac.kr.

Received: 24 May 2011; in revised form: 3 August 2011 / Accepted: 10 August 2011 /
Published: 11 August 2011

Abstract: While network coding is well known for its efficiency and usefulness in wireless
sensor networks, the excessive costs associated with decoding computation and
complexity still hinder its adoption into practical use. On the other hand, high-performance
microprocessors with heterogeneous multi-cores would be used as processing nodes of the
wireless sensor networks in the near future. To this end, this paper introduces an efficient
network coding algorithm developed for the heterogenous multi-core processors. The
proposed idea is fully tested on one of the currently available heterogeneous multi-core
processors referred to as the Cell Broadband Engine.

Keywords: network coding; sensor nodes; parallel algorithms; heterogeneous multi-core
processors

1. Introduction

Network coding is a new coding technique first proposed by Ahlswede et al. to enhance network
throughput and effectiveness on multi-nodal environments [1] such as wireless sensor networks (WSN).
A new paradigm has emerged for computer network systems enabled by network coding; advances
in network coding techniques have influenced information and coding theory, computer network
performance, and wired/wireless communication systems. In addition, network coding lends itself

Sensors 2011, 11 7909

particularly well to multicasting, enhancing the effectiveness of multicasting compared to traditional
coding approaches.

In fact, use of network coding techniques to various real world applications has been introduced [2,3].
Further more, network coding has the potential to deliver a number of benefits in various domains
such as wireless networks, sensor networks, network security, peer-to-peer (P2P), and on-demand video
streaming service [2,4–16]. In wireless network systems, the network coding can increase transmission
efficiency at routers by forwarding the coded packets as a passive acknowledgement [11] and can
increase performance of ad-hoc networks as well as save the energy with many to many broadcast
environment [12,13]. In addition, the coded packets which are on the fly cannot be decoded until the
sufficient number of packets are collected, thus network coding can simplify implementation of secure
network as well [14,15]. In practical approach, Liu et al. analyze the performance of network coding on
real-world commercial systems with 200 GBytes of real-world traces which had been collected during
Summer Olympic Games in 2008 [16].

While network coding has several advantages and is a promising technique for the future of network
systems, one crucial drawback is the associated volume of computational overhead, which may hinder
its adoption in practical use. Network coding requires encoding the data before it is sent and decoding
it after it is received. However, the decoding algorithm has O(n3) computational complexity, using a
variant of Gaussian elimination where n is the size of a coefficient vector. The computation overhead
associated with the decoding operation is very costly, especially with the low computing environment
such as wireless sensor networks. As a result, the benefits of the network coding technique may be
canceled out by the long decoding delay.

On the other hand, multi-core processors have recently become widespread and can be found
in a variety of systems [17], from high performance servers to special purpose wireless sensor
networks [18,19]. In fact, the current research on sensor networks mainly uses a light-weighted processing
node as a sensor node. However, we also expect that the future WSN systems would require more
computing power, especially for the multimedia sensors. Therefore, the multi-core processor would
be a possible choice for the sensor node. Especially, a prototype of multi-core platform as a sensor
node is introduced in the previous research [18]. This paper is based on the expectation that the
future WSN would popularly use multi-core processors and require parallelized random linear network
coding. In addition, using advanced microprocessor features such as the multimedia extension in WSN
is investigated in the previous literature as well [20]. In fact, processor development has resulted in a
progressively increasing number of cores in a single chip. There are two kinds of multi-core processor
design paradigm; one group integrates homogeneous multiple cores on a single chip whereas the other
group incorporates heterogenous cores.

In this paper, we present a parallel algorithm of network coding for heterogeneous multi-core
processors especially targeting to utilize the technique in WSN. We select the already available
heterogeneous platform, the Cell BE, as a prototype of heterogeneous multi-core processors and adjust
the workload distribution on each core for efficient network coding. The Cell BE is a heterogeneous
multi-core processor designed to provide both generality and intensive computing power with the single
instruction multiple data (SIMD) paradigm. Therefore, the design of Cell BE lends itself well to the
adoption of SIMD which can be efficiently utilized in wireless multimedia sensor networks [20]. Indeed,

Sensors 2011, 11 7910

GPU also can be chosen as a high performance computing device for wireless sensor networks. However,
we concern that using GPU requires additional general purpose processor support. This might introduce
additional hardware and software overhead.

In fact, using the Cell BE processor in sensor nodes may not be so desirable due to the size and power
consumption. However, the main target of this paper is to show the efficient parallel algorithms of the
network coding on heterogeneous processors and demonstrate the possible advantages and feasibility
of the algorithm. We formulate an appropriate load balancing method to achieve this, which is based
on the concept of divisible load theory (DLT), which was initially introduced by Bharadwaj et al.
and Drozdowski in the context of distributed and cluster systems [21–23]. In addition, we consider
three different approaches incorporating parallelized decoding across the multiple heterogeneous cores,
employing Galois field computation methods.

Via real machine experiments, we demonstrate that the proposed technique delivers improvements in
decoding speed. With proper load balancing, we achieve a maximum speed-up of 2.15, compared to the
performance results without load balancing. In addition, we compare our idea to the results obtained in
two homogenous multi-core processors which provide competitive computing power. Compared to the
Intel quad-core system, our approach achieves a maximum speed increase of 2.19, with 1 MB of data and
a coefficient matrix of size 64 × 64. When we compare our performance to that of an AMD processor,
we observe a maximum speed-up of 3.12 for 128 KB of data and a coefficient matrix of size 64 × 64.

The rest of this paper is organized as follows. We describe the network coding theory and brief
overview of the Cell BE architecture in Section 2. Then, we propose parallelized network coding
implementations for use on the Cell BE, as well as an extension to the SIMD instruction set in Section 3.
In Section 4, experimental performance results are presented and analyzed. In Section 5, related works
are explained. Finally, we conclude the paper in Section 6.

2. Background

In this section, we will first introduce the overview of the Cell BE. In addition, some necessary
knowledge on the concept of network coding will be presented.

2.1. Overview of the Cell BE

The Cell Broadband Engine (Cell BE) is a heterogeneous multiprocessor that was developed by
Sony, IBM, and Toshiba in 2000. Although it has been long time from the first release of the Cell
BE, it has 256 GFLOPS (Giga Floating Operation Per Second). It still provides good performance as a
single chip processor compared to one of today’s high-performance commercial processors, Intel Core i7
series (Intel Core i7 975 has theoretical performance 221.44 GFLOPS) [24]. In addition, the Cell BE is
appropriate to show heterogeneous program models. The Cell BE consists of one Power 64 architecture
processor, referred to as a Power Processor Element (PPE), and eight co-processors, referred to as
Synergistic Processor Elements (SPEs). The Cell BE also includes Directed Memory Access (DMA)
controller and high bandwidth data bus, referred to as an Element Interconnection Bus (EIB). These
various components are presented in Figure 1. The Cell BE processor incorporates a Single Instruction

Sensors 2011, 11 7911

Multiple Data (SIMD) execution unit, high power and area efficiency, large memory bandwidth, a large
bandwidth on-chip coherent bus, and a high-bandwidth flexible I/O [25].

Figure 1. The block diagram of the Cell BE architecture.

SPE 1

SPU

Local Store
256KB

MFC

PPE

PPU

L1 32KB

L2 512KB

Element Interconnect Bus (96B/cycle)

SPE 3

SPU

Local Store
256KB

MFC

SPE 5

SPU

Local Store
256KB

MFC

SPE 7

SPU

Local Store
256KB

MFC

SPE 0

SPU

Local Store
256KB

MFC

SPE 2

SPU

Local Store
256KB

MFC

SPE 4

SPU

Local Store
256KB

MFC

SPE 6

SPU

Local Store
256KB

MFC

Dual channel

Memory
Controller

Memory
Controller

256 MB
Ram

256 MB
Ram

External
I/O

The PPE is a dual-threaded, dual-in-order issue 64 bits Power-architecture processor. It has a 32 KB
instruction cache and a 32 KB data cache, as well as a 512 KB L2 cache. In addition, the PPE has an
AltiVec vector extension unit and floating point and integer SIMD instruction set.

The SPEs are composed of a Synergistic Processor Unit (SPU), a 256 KB local store, and a Memory
Flow Control (MFC). The execution performance of the SPEs affects much of the overall computational
performance of the Cell BE. The SPU contains a 128 bit wide dual-issue SIMD unit fully pipelined to all
precisions, with the exception of the double precision vector unit. The SPE can access main storage with
an effective address (EA) translation by MFC and asynchronously transfer data to local storage, which
has both narrow (128 bits) and wide (128 bytes) features.

The Element Interconnect Bus (EIB) is a coherent bus that can transfer up to 96 bytes/s. It consists
of four 16 bytes rings, each of which is only capable of unidirectional data transfer, clockwise or
counter-clockwise, each ring supporting up to three simultaneous data transfers. The Cell BE employs
dual channel Rambus XDR DRAM, which is capable of transferring 12.8 GB/s per 32 bits memory
channel. It is therefore capable of supporting total bandwidth of 25.6 GB/s [26].

2.2. Benefit of Using Network Coding

We will introduce the principles and advantages of using network coding in this subsection. Figure 2
presents a simple example of communication networks, which is represented as a directed graph [1].

Each directed edge represents a pathway for information transfer. Node S represents source and
the nodes D and E are destinations. The other nodes are intermediaries, routing information to the
destination nodes. If we assume that each link is limited in bandwidth one bit per unit time, in
a traditional routing protocol, we are incapable of attaining higher throughput than the given limit.
However, using network coding, we can achieve better throughput in excess of this limit.

Let us assume that we have generated data bits a and b from source node S, and that we wish to route
the data to destination nodes D and E. Data bit a is transported via path S-A-C, S-A-D and data bit b
via S-B-C, S-B-E.

Sensors 2011, 11 7912

Figure 2. Advantage of using network coding.

S

B

A

C

E

D

Z

a a
a

b b

b

a⊕b
a⊕b

a⊕b

At the edge spanning nodes C and Z, constrained by our bandwidth limitation, we can only transport
one of either a or b, per unit time. Suppose that we send a along the edge between nodes C and Z. In
this case, node D could not receive b and would only be capable of receiving a twice, from A and Z. In
addition, if we send b at the same time, node E would face the same problem. As it is not possible to
transfer data bits a and b to both nodes D and E simultaneously, routing is inadequate.

When using network coding, we are able to generate new data by first encoding a and b, and then
routing the encoded data through the directed linkage between nodes C and Z. As a simple example,
we use a bitwise xor to encode data bits a and b. The new data is thus encoded as ‘a xor b’ and is
sent along paths C-Z-D and C-Z-E, simultaneously. Node D would therefore receive data bits a and
(a xor b) from nodesA and Z, respectively. Further, nodeE would receive both data b and (a xor b) from
nodes B and Z. Therefore, both nodes D and E can collect data bits a and b using the xor operation. In
conclusion, using a network coding technique allows us to achieve an enhanced multicast throughput of
two bits to both nodes, subject to the same base network capacity of one bit per unit time.

2.3. Random Linear Network Coding

To fully leverage the potential benefits of the network coding technique in a practical system, the
encoding and decoding operations must be fast enough (i.e., they must not act as bottlenecks to the
transmission process). The execution time of the network coding is primarily dependent upon the coding
method used. We employ the random linear coding [27] in our Cell BE implementations, as it is widely
used and known to be asymptotically optimal in any network format.

A given segment of data, such as a single file, will be divided into a specific number of blocks,
referred to as packets, prior to being transferred over a network, as shown in Figure 3. In this figure,
pk represents kth block and ci is a coded data, which is a linear combination of blocks. In other words,
ci =

∑n
k=1 ei,kpk where n is the number of blocks and the coefficient ei is an element vector that is

selected at random from a finite field, F . The coded data ci is combined with the coefficient vector;
[ei,1, . . . , ei,n] is stored in the header and broadcast to the destination. A transfer unit, comprised of the
coded data and coefficient block, is presented in Figure 4.

While the packets are being routed, the packets are re-encoded within nodes along the pathways to
their destinations before being passed to downstream nodes. When a packet arrives at its destination
node, it is stored in local memory so the coded data can be decoded and recovered to the original data
set [p1, . . . , pn]

T . To decode encoded data, the destination node must have all n transfer units, with

Sensors 2011, 11 7913

linearly independent coefficient vectors. Suppose a destination node has collected n transfer units and
that the coefficient vector, original data, and coded data set are represented by ET = [eT1 , . . . , eTn],
CT = [cT1 , . . . , cTn], P T = [pT

1 , . . . ,pT
n], respectively, where superscript T implies a matrix transpose

operation. Since we multiply the matrices with formula C = EP to encode original data, we can
rearrange this to obtain P = E−1C, allowing us to recover the original data by multiplying the inverse
matrix of E with C. To perform the decoding operation, the coefficient matrix, E, must be an invertible
matrix, thus all coefficient vectors, ei, should be linearly independent of each other.

Figure 3. Data encoding at the sending node.

Figure 4. Data received at the receiving node.

Coded Data

e1

Transfer Unit

c1

c2

c3

cn

… …

Using a variant of Gaussian Elimination, we can obtain matrix P . When the destination receives
transfer units, it constructs coefficient and coded data matrices, as shown in Figure 4, to prepare for the
process of Gaussian elimination. Typical Gaussian elimination or LU decomposition for the purpose
of decoding at the destination requires that all n transfer units first be collected, before starting the
process. However, we can use progressive decoding instead of multiplying by the inverse matrix. With
the progressive decoding [28], we do not need to wait until all transfer units to be received. Although all
units may not have been received, the decoding process can still be initiated, and continue to progress as
each unit is made available. In addition, the progressive network coding can be processed regardless of
the arrival order of the coded packet. It is due to the fact that changing of the row order does not affect
the decoding results as it uses linearly independent coefficient matrix.

Let n represent the number of blocks and m represent the block size. The computation complexity
of standard Gaussian Elimination is O(n3). However in the decoding process associated with network

Sensors 2011, 11 7914

coding, there is an extra matrix of size m, represent by ci in Figure 4. Therefore, the computational
complexity in network coding is increased to O((n+m)× n2).

An additional peer within a file swarming system can reduce download delay by n, receiving at most
n block simultaneously. However, the resultant decoding delay, which increases in proportion to n3,
offsets the reduction in download delay, thus the benefit is canceled out. Therefore, in order to achieve
some measure of benefit from a large n, an efficient, fast decoding implementation is required.
That is, we can achieve greater performance gains in larger n, if we are able to overcome the
computational delay.

2.4. Overview of Progressive Network Coding

A variety of decoding methods that employ the random linear network coding technique is based
on matrix inversion algorithms [29,30]. Though using the traditional algorithms is a proven method of
parallel decoding in network environments, there is an additional cost incurred from network transmission
delay. As the system must wait until all packets are received to compose the matrices used in the
aforementioned traditional decoding algorithms, this delay is particularly problematic. As such, we
can obtain greater performance using progressive decoding in packet switching network environments,
which are subject to these transmission delays.

The traditional matrix inversion algorithms require a complete matrix to perform the decoding
operation; this results in additional delays due to the waiting period. In contrast, progressive decoding
requires only one row of the matrix to proceed with decoding. As such, progressive decoding is more
suitable to network environments that are subject to long transmission delays.

The decoding process for traditional matrix inversion algorithms can be expressed with a
computational complexity of O(n3), after the last row has arrived. However, with the progressive
decoding we can initiate the decoding process when as each row is received. Since we have already
finished computation of all prior rows, the most recent row can be processed with complexity of O(n2).
In our evaluation, we employs progressive decoding to implement parallel decoding algorithms on
the Cell BE.

Shojania and Li were the first to demonstrate the effectiveness of parallelization in network coding
with their Progressive Parallelized Network Coding algorithms [28]. However, our previous research
has identified inefficiencies and unbalancing in their work, particularly with respect to large coefficient
matrix sizes and has proposed Dynamic Vertical Partitioning (DVP) algorithm [31]. We employ the DVP
algorithm here for the Cell BE system, and suggest enhancements, which require a balanced workload
implementation, across the heterogeneous multi-core processor.

Figure 5 presents the specific operations of progressive decoding, from Stage A to Stage E and Table 1,
which introduced in [28] shows description of the operations and percentage of each operation step. In
fact, Figure 5 depicts a decoding process after operations on the (k − 1)th’s row has just been finished
and the kth row just arrives at the destination node.

Figure 5(a) depicts the operations at Stage A; the decoding process begins in the second figure within
Figure 5(a). At the beginning, the first row is multiplied with the first element of the arriving row, and
the resulting row is subtracted from the arriving row. The same operations are performed for the second

Sensors 2011, 11 7915

row; it is multiplied with the second element of the arriving row and the resultant row is subtracted from
the arriving row. These operations are continued until all leading values are reduced to “0”.

After the operations of Stage A are finished, the next decoding process identifies the first non-zero
coefficient element (Stage B). It then determines whether the new row is linearly independent of the
previously received rows (Stage C). The newly arriving row is then divided along the first non-zero
element of the row, referred to as the pivot (Stage D) in Figure 5(b). Finally, we reduce the values of this
same column across all previous rows to “0” (Stage E) depicted in Figure 5(c).

Figure 5. Processes on Stage A to Stage E; (a) During Stage A operation; (b) After Stage D
operation; and (c) After Stage E operation.

(a)

(b)

(c)

Table 1. Five Stages of Progressive Decoding [28].

Stage Procedure Description and Workload Distribution

A
Using the previous coefficient rows, reduce the leading coefficients in the
new row to zero (50.05%)

B Find the first non-zero coefficient in the new coefficient row. (0.05%)
C Check for linear independence with existing coefficient rows. (0.00001%)
D Reduce the leading non-zero entry of the new row to 1. (0.38%)
E Reduce the coefficient matrix to the reduced row-echelon form. (49.5%)

3. Load Distribution and Progressive Decoding on Cell BE

In the network coding research conducted previously by Shojania and Li [28], computational effort is
statistically distributed amongst multiple threads. However, as the size of the coefficient matrix increases,

Sensors 2011, 11 7916

dynamically distributed computation has the potential to improves the performance with well distributed
load balancing as demonstrated in our previous research [31]. In this section, we first introduce the
previously proposed three algorithms which are tested on the Cell BE system; in addition, we develop a
new algorithm for using on the heterogeneous Cell BE processor considering the load balance.

In the previous work [31], three types of partitioning algorithms have been proposed, including
Horizontal Partitioning (HP), Row by Row Partitioning (RRP), and Dynamic Vertical Partitioning (DVP);
the three approaches are presented in Figure 6. In this figure, each algorithm reflects the relevant
operation in Stage E when the fourth row is received and subsequently parallelized into two threads.
Both HP and RRP divide the workload on a row-by-row bases. However, HP divides rows between
threads in a sequential manner, while RRP divides them using a round-robin approach. DVP divides
the workload with vertical and only takes the computational region into consideration. To implement
these three algorithms on the Cell BE processor, we use SPEs to decode and the PPE to manage the SPE
threads, to handle the synchronization, and to decode partial data which is distributed with considering
load balancing between the asymmetric core properties.

Figure 6. Parallelization algorithms of network coding on Homogeneous processor; (a) HP;
(b) RRP; and (c) DVP.

(a) (b) (c)

3.1. Synchronization on the Cell BE

For an efficient decoding operation, we first distribute the computational region as shown in Figure 7.
The Cell processor provided in Play Station 3, which is our experimental platform, is configured with two
of the eight SPE cores disabled; therefore, we can only use seven programmable cores as one PPE core
and six SPE cores. As the PPE has dual-threaded and dual issue hardware, it has two threads running
simultaneously. Different from the PPE, the SPEs are able to manage only one thread per core. As
indicated by the thread distribution method detailed in Figure 7, PPE thread 1 manages pivot column’s
elements and should transfer the elements to the other SPE threads before processing a newly received
row. In addition, the Cell BE has a communication system called mailbox which delivers 32 bit data
between the cores [32,33]. In fact, we use the mailbox system to synchronize the threads as well as to
transfer the elements.

The mailbox system is designed for each SPE and implemented with an asymmetric manner; both
the inbound and outbound mailboxes are contained in each SPE and messages are transmitted to the
MFC from the SPE via the EIB. The mailboxes have one outbound entry and four inbound entries. At
each SPE, a 32 bit inbound mail is read by the SPE and an outbound mail is sent by the SPE. A reading
operation from SPEs stalls when the inbound mailbox entry is empty. As soon as a new message becomes

Sensors 2011, 11 7917

available, the reading operation resumes. This stalling is also caused for a writing operation when the
outbound mailbox entry is full.

Figure 7. Dynamic resource distribution to Cell BE.

Actual Computation Region

1 0

0 1

PPE
thread 1

PPE
thread 1

PPE
thread 1

1

PPE

PPE
thread 1

New Row

PPE
thread 2

PPE
thread 2

PPE
thread 2

PPE

PPE
thread 2

SPE0
thread

SPE0
thread
SPE0
thread

SPE0

SPE0
thread

SPE5
thread

SPE5
thread
SPE5
thread

SPE5

SPE5
thread

…
…
…
…

…

… ……

Synchronization can be achieved by using the outbound mailbox entry in the following manner. Each
SPE writes a mail in the outbound entry and continuously checks whether the PPE reads the mail
and makes the outbound entry empty. At receiving all mails from the SPEs, the synchronization is
achieved. This also implies that the PPE is responsible to wait until it receives all the mails. After the
synchronization is guaranteed, each SPE waits a reply which contains a pivot element from the PPE.

On the other hand, we also propose to use the inbound mailbox solely for synchronization, which
provides better performance with simple implementation. The PPE transfers the pivot element to the
inbound mailbox entry and the SPE continuously checks until the pivot element is completely transferred.
In this way, we can simply eliminate the necessity of synchronization messages from the SPE side. This
is possible due to the fact that any stalled reading operation with an empty inbound entry can be used for
the synchronization purpose.

3.2. Considering Load Balancing Effects on Cell BE

In this subsection, we propose our approach which enables an optimized workload distribution on
the Cell BE. Figure 7 depicts the computational area required to process and to dynamically distribute
the workload. The previous work has already considered load balancing on a general, homogeneous
processor (e.g., Intel or AMD multi-core processors), however, the Cell BE is a heterogeneous processor
which has an asymmetric core architecture. The SPEs have been designed to deliver higher computational
power than the PPE, especially with the SIMD instruction set. As such, we must consider the difference
between these two types of cores in order to achieve proper workload distribution.

For that purpose, we first have defined a value called ppefactor which decides the workload distribution
ratio of the PPE versus the SPE. For example, when ppefactor is set to 0.1, the PPE takes 10% of
the available work, and the remainder is assigned to the SPE. Before considering load balancing on
the asymmetric core architecture, the cores would have equally divided workload. In order to find the
optimal workload distribution, the proposed idea is strongly dependent upon heuristic.

Once the workload distribution over PPE and SPE is defined, the data partitioning to use the SIMD
instructions should be defined. Although the data computation region is dynamically partitioned by DVP,
architectural optimization can be achieved as the Cell BE processor supports those SIMD instruction set.
The SIMD instructions for PPE and SPEs enables 128 bit operations. For that reason, the data are
divided into chunks each of which is as large as 16 bytes. When the size of data is not a multiple of 16,

Sensors 2011, 11 7918

the remainder is assigned to PPE. For example, When a data size is 117 bytes, each chunk is constructed
from the right most element in the data (the right most column). This means that there exist 7 chunks and
remaining 5 bytes which are the left most 5 bytes. Then, the five bytes are assigned to one of the PPE
threads and remaining 7 bytes are assigned to the other PPE thread and SPEs. This method is superior
to the method in which each core has an equal number of elements.

After addressing the workload distribution on each thread, we need to select a proper computation
method between the table-based approach and the loop-based approach for Galois field multiplications.
We now explain these two approaches in Section 3.3 and the selected method is then fully tested in
Section 4.2.

3.3. Galois Field Operation for SIMD

The random linear network coding uses the Galois field numbers and accompanies computation
overhead due to the time-consuming multiplication operations. In this subsection, we propose an
optimization technique of Galois field operation which is previously proposed for GPU [34].

Increasing granularity of the Galois multiplication is hard to expand when using a table look-up
method [34]. As the size of Galois field increases, memory requirement grows rapidly. In fact, increasing
granularity of Galois field by 1 byte means a table size which is 256 times larger. This requires more
cache and memory space. Furthermore, the SPEs do not have caches; they only have 256 KB SRAM,
referred to as the local store. Therefore, it cannot contain any large sized tables or it can waste a large
amount of local memory to hold the tables.

To provide sufficient granularity of the multiplications, Shojania et al. imported a loop-based approach
which is based on the actual computations. Although the loop-based approach needs more computations
than the table lookup method, it provides a faster computation time with the help of the SIMD instruction
sets [28,34–36].

In the previous work [34], Shojania et al. suggested a word length wide multiplication method
referred to as Rijndael’s finite field [37,38]. The method can perform four multiplication operations
of the numbers in the Galois field at once. The Galois field numbers are as large as one byte and denoted
as GF(28).

They successfully applied the loop-based multiplication on the multiple scalar processors on a GPU
which is depicted in Figure 8. The key optimization in the work is to eliminate branch operations by
using polynomial mask operations. This helps to improve performance of a division operation with a
irreducible polynomial variable. As a result, the execution time has been reduced.

Although they highly optimized the loop-based multiplication method by reducing diversity of control
flow on branch instructions, there still exists possible reduction of one more branch instruction. Since
the branch instruction causes stalls within a pipeline, any branch instruction in a loop crucially degrades
performance of the Galois field multiplication; in fact, the speed of the Galois field multiplication highly
affects the performance of network coding. For that purpose, we target to removes the remaining branch
within the loop represented as (3) in Figure 8. This branch operation also can be replaced with the bitwise
operations when the multiplication is optimized into the SIMD instructions. In addition, the replacement
only causes less than five instructions to execute. On the other hand, if the branch instruction in line (2)
is replaced to the bitwise operations, it requires a significant number of additional instructions to execute

Sensors 2011, 11 7919

in the loop when the factor is zero. For that reason, the branch instruction in line (2) should remain for
overall performance.

Figure 8. Optimized loop-based multiplication of GF(28) for GPU.

byte g mul (byte factor , word data) {
word PrimPolyMask , resu l t = 0; (1)
while (factor != 0) { (2)

i f ((factor&1)!=0) (3)
resu l t=resu l t ˆ data ; (4)

PrimPolyMask=data&0x80808080 (5)
PrimPolyMask=PrimPolyMask>>7 (6)
PrimPolyMask=PrimPolyMask∗0x1d; (7)

data=data&0x7f7f7f7f ; (8)
data=data<<1; (9)

data=data ˆPrimPolyMask; (10)
factor=factor>>1; (11)

}
return resu l t ; (12)

}

Figure 9. The loop-based SIMD multiplication in GF(28).

vector byte g mul (byte factor , vector byte data) {
vector byte PrimPolyMask , resu l t = 0; (1)
vector byte ResultMask ; (2)
while (factor !=0) { (3)

ResultMask=vector and (factor , 1) ; (4)
ResultMask=vector cmpeq(ResultMask , 1) ; (5)

resu l t =(ResultMask & vector xor (resul t , data)) + (6)−a
(˜ ResultMask & resul t) ; (6)−b

PrimPolyMask=vector and (data&0x80) ; (7)
PrimPolyMask=vector cmpeq(PrimPolyMask,0x80) ; (8)

data=data<<1; (9)
data=(PrimPolyMask & vector xor (data ,0x1b)) + (10)−a

((˜PrimPolyMask) & data) (10)−b

factor=factor>>1; (11)
} (12)
return resu l t ; (13)

}

Sensors 2011, 11 7920

The proposed Galois field multiplication based on the SIMD instruction set is shown in Figure 9. The
main difference compared to the previous code in Figure 8 can be found in (4) to (6). The branch
operation is replaced with the masking operation in ResultMask and the execution condition in the
branch is calculated with a vecor cmpeq, which is generally included in the SIMD instruction set. A
vector cmpeq operation checks whether each element in a vector is identical to the responsible element
of the other vector. With comparing each element in both vectors, the operation set all bits of an element
to 1 when the two elements are identical. Therefore, if the condition is true, the result becomes XOR-ed
data (Figure 9(a)). Otherwise, the result is not changed (Figure 9(b)).

An SPE calculates 80 KB within 211 µs with the original code. After the modification, an SPE finishes
the same operation within 200 µs. The optimization technique brings performance improvement 5.5%.

4. Experimental Results and Analysis

In this section, we first evaluate the previous parallelized network coding algorithm developed for
the homogeneous multi-core processors on the Cell BE; we simply translate the previous approach
to the SIMD instruction set of the Cell BE. Then, we compare the multiplication methods which are
table-based, loop-based, and using SIMD instruction set multiplication. Further, we compare parallelized
decoding performance of applying the specific multiplication methods on PPE and SPEs. We also
evaluate partitioning of PPE workload applying the three multiplication methods adaptively, using
ppefactor. Finally, we evaluate our parallelized progressive decoding method on the Cell BE and we
compare it to the commercially available homogeneous multi-core systems, such as Intel and AMD
quad-cores. The specifications of the evaluation environments are described in Table 2.

Table 2. Experimental Environments.

Sony PlayStation3 Intel Quad Core AMD Quad Core

SPEC

CPU Cell BE Intel Core 2 quad Q9400 AMD phenom-X4 9550
Clock 3.2 GHz 2.66 GHz 2.2 GHz
RAM 512 MB 2 GB 4 GB

Cache
Size

L1 : 32 KB
L2 : 512 KB

L1 : 4 × 64 KB
L2 : 2 × 3 MB

L1 : 4 × 128 KB
L2 : 4 × 512 KB
L3 : 2 MB shared

OS
Linux

Yellow Dog Linux 6.1
Linux

Fedora Core7
Linux

Fedora Core8
Number
of Cores

(1 + 6) 4 4

4.1. Implementation of Previous Work

We evaluate the previously proposed algorithms for homogeneous multi-core processors, HP, RRP,
and DVP on the Cell BE architecture. Firstly, these algorithms are implemented with using only SPEs
and SIMD instruction set for the SPE. Figure 10 presents execution time on the decoding operation that
was discussed in Section 2.4. Experimenting with the entire coefficient matrix size, HP and RRP exhibit

Sensors 2011, 11 7921

similar performance. In contrast, DVP exhibits even better performance. As the SPEs decode the data
without a data cache, the dissimilarity between the HP and RRP algorithms does not affect the required
decoding time.

Figure 10. Decoding time of HP, RRP, and DVP on the Cell BE with various coefficient
matrix size; (a) 64 × 64; (b) 128 × 128; (c) 256 × 256; and (d) 512 × 512.

(a) (b)

(c) (d)

The maximum performance difference between HP and RRP is only 1.69% and on average, there
is only 0.04% difference. In addition, DVP shows a maximum 31% enhancement over HP and RRP.
Therefore, in the next section, we perform the remaining experiments using DVP. As in the homogenous
multi-core processor, the advantage of DVP in terms of load balancing brings better results. Detailed
explanation on DVP can be found in [31].

The difference between Horizontal Partitioning (HP) and Row by Row Partitioning (RRP) comes
from the different manner by which row is distributed to the different cores in Stage E. The results can
be explained by the presence (or lack thereof) of a data cache. However, the Cell BE does not have a data
cache on its SPEs. Therefore, there would be no distinctive difference between the two algorithms when
implemented upon this architecture. In other words, the heterogeneous processor which has a simplified
memory hierarchy to access local memory fast cannot provide efficiency of horizontal partitioning, even
though it is a different and well balanced approach for cache embedded systems.

4.2. Computation Time on Galois Field

In this subsection, we evaluate the decoding performance of each Galois field multiplication method.
For the analysis, we choose to use the 128 bit SIMD instruction set to parallelize the Galois
field multiplications.

Let COMPUTE represent the loop-based algorithm, TL the table-based algorithm, and VECTOR the
parallelized SIMD implementation of the loop-based algorithm, for the Galois field operations. We
estimate the performance of the three multiplication methods on real machines: an Intel Core 2 quad
Q9400, an AMD Phenom-X4 9550, and the Cell BE, all of which are described in Table 2.

Sensors 2011, 11 7922

Figure 11 presents the normalized performance of the TL and VECTOR methods over the COMPUTE
method, on each type of core. All the cores display speed-up factors greater than ’1’ compared to the
COMPUTE algorithm. In fact, COMPUTE obviously incurs greater overhead than TL, thus TL should be
faster than COMPUTE. In addition, VECTOR, a parallelized method using SIMD instructions, is faster
than all the other methods in processing 128 bit multiplications in parallel. The speed advantages in the
PPE and SPE, obtained when using the VECTOR algorithm, are significant and noticeable.

Figure 11. Speed-up of Galois Field operation.

In particular, the VECTOR algorithm executed on the PPE shows a speed increase by a factor of 7.71.
Although the PPE incorporates data cache, just as other generic processors, the PPE has less than half of
L1 data cache size compared to the other generic processors. In addition, the L2 cache is much smaller
compared to the cache of the other general purpose processors. Therefore, the VECTOR algorithm
exhibits a greater speed-up than other generic processors because it strongly depends on computation
capability of SIMD execution unit. On the other hand, the SPE also has no data cache and merely has
high-bandwidth embedded SRAM, referred to as the local store. However, it shows similar speed-up
results compared to the other processors since its local store is as fast as the data caches.

In Figure 12, we present the speed increase exhibited by TL and VECTOR with respect to COMPUTE,
in the performance of actual decoding, using each method on the Cell BE architecture. Each method
using DVP (PPE with 2 threads and SPE with 6 threads) is evaluated on the different core architecture,
with varying data sizes between 16 KB and 1 MB, on a coefficient matrix of size 128. In real decoding
processes, the speed increase of TL is increased on PPE, but decreased on SPE compared with result on
Figure 11. On the other hand, VECTOR shows lower performance. As TL depends on the performance
of cache rather than computing power and performance of entire decoding process affected by cache, TL
shows the improved performance with PPE. However, with the absence of data cache, SPE shows lower
performance using TL. Furthermore, VECTOR requires computing power and entire decoding process
has additional overhead compared to the single multiplication. Therefore, it represents lower speed-ups
compared to the results shown on Figure 11.

Despite of the low performance on small data size of SPE, SPE represents similar speed-ups when
data size becomes large. Since SPE should be controlled by PPE to synchronize the decoding process
between SPEs and transfer data from main memory, the SPE shows lower performance with small data
size when the synchronization and data transfer overhead charges large proportion.

From the results in Figure 12, we intuitively find the parallelized SIMD multiplication is the optimal
solution to achieve high-performance decoding.

Sensors 2011, 11 7923

Figure 12. Speed-up of decoding time compared with COMPUTE on 128 × 128 coefficient
matrix size; (a) PPE; (b) SPE.

(a) (b)

4.3. Synchronization with Mailbox System

In Section 3.1, we introduce an efficient way to implement synchronization with the asymmetric
mailbox system. With the inbound mailbox, the cores can synchronize at each decoding steps and can
share values in the pivot column at once. We have compared decoding speed of the two synchronization
methods based on inbound mailbox and outbound mailbox respectively in Figure 13. For the three
kinds of computation approaches, COMPUTE, TL, and VECTOR, the decoding procedure is tested with
varying the synchronization method and simply divided workload for each thread.

Figure 13. Inbound mailbox synchronization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

COMPUTE TL VECTOR

Outbound Inbound

In experimental results, the synchronization method, which combines synchronization and the data
transfer, reduces more than 10% of decoding time. COMPUTE and TL show remarkable reduced
results since the three methods already have severe synchronization overhead by unfairness of workload
distribution which does not consider the computation capability different types of cores. Consequently,
the synchronization with inbound mailbox systems reduces performance degradation by inefficient
synchronization methods and the performance degradation caused by absence of proper workload
distribution. The performance improvement by well balanced workload is tested in the next subsection.

4.4. Partitioning on PPE

In Section 3.2, we explained the different factors that must be considered in determining workload
distribution for the PPE and the SPEs. We have examined three multiplication methods on the PPE

Sensors 2011, 11 7924

and compared result of each method to the performance achieved with utilizing only the SPEs. The
performance results are depicted in Figure 13. The amount of workload dedicated on PPE is as large as
the amount assigned to one SPE. We employ parallelized multiplication using the SIMD instruction set
on the SPEs, rather than table-based multiplication, which is better suited to processors that have a local
cache. Even if we also use the PPE in decoding, Figure 14 shows that lower increases in speed occur
than are witnessed when only using the SPEs (with the exception of PPE VECTOR).

Figure 14. Decoding time of three algorithms which using PPE compared with only
using SPEs with coefficient matrix size of 512; (a) PPE COMPUTE; (b) PPE TL;
(c) PPE VECTOR.

(a) (b) (c)

In this section, we propose an approach to the factorization of workload between cores, and we
evaluate the decoding time when varying distribution factor, which we refer to as ppefactor. Then, we
use the configuration with equally divided workload distribution at each core as a performance baseline.

Figure 15 presents average speed-ups observed when varying the ppefactor for PPE COMPUTE,
PPE TL, and PPE VECTOR algorithms. PPE VECTOR is a unified parallel algorithm that uses
parallelized SIMD multiplication on either of the PPE and SPEs. In contrast, PPE COMPUTE and
PPE TL are hybrid parallel algorithms. These employ computation-based and table-based multiplication
on the PPE and they use only parallel SIMD multiplication on the SPEs.

In order to parallelize the progressive decoding algorithm across multiple cores, it is necessary to have
a synchronization barrier that blocks excessive progression by any one particular thread. Synchronization
employing a barrier greatly decreases performance when load balancing results in uneven distribution
between cores. Thus, we evaluate the sensitivity of the three algorithms with respect to ppefactor. We
do this because it will be necessary to dynamically redistribute the workload to all threads in an efficient
manner, from a performance perspective.

Figure 16 depicts the measured average increase in speed that is observed when we decode data size
from 16 KB to 1 MB, with a coefficient matrix varying in size from 64 to 512, with optimal values of
ppefactor. For the small data size, since the portion that is assigned to PPE is smaller than the portion to
SPE, its variation of the factor does not significantly affect the performance. However, if the data size is
large enough to compare with coefficient matrix size then it shows high speed-up results.

In Figure 15(a–c), we can identify the most relevant local maximum values represented in Table 3,
associated with each method. In Table 3, we have realized performance increase 8% with ppefactor
of 2.38 even with PPE VECTOR. It means that PPE is assigned a greater workload than the SPE. With

Sensors 2011, 11 7925

this fine tuning on workload distribution, parallelization using the SIMD instruction set results in high
performance on the Cell BE.

Figure 15. Speed-up with various ppefactor; (a) PPE COMPUTE; (b) PPE TL; and
(c) PPE VECTOR.

(a)

(b)

(c)

Table 3. Speed-up compared Equally Distributed Decoding.

COMPUTE TL VECTOR

Optimal factor 0.32 0.88 2.38
Maximum speed-up 2.15 1.42 1.26
Average speed-up 1.59 1.03 1.08

Sensors 2011, 11 7926

Figure 16. Speed-up of the algorithms compared with the result of having factor “1”
when varying coefficient matrix size; (a) 64 × 64; (b) 128 × 128; (c) 256 × 256; and
(d) 512 × 512.

(a) (b)

(c) (d)

4.5. Overall Decoding Performance

We compare the performance results of our factorized parallelization, to the results obtained using a
ppefactor of 1 in Figure 16. It presents comparison between the performance exhibited both before and
after the factorization of the PPE, with varying sizes of the coefficient matrixes, from 64 to 512. After
identifying the optimal ppefactor, we obtain a speed increase of more than 1.5, using PPE COMPUTE.
On the other hand, PPE VECTOR and PPE TL exhibit negligible speed increases. These results are
arranged and presented in Table 3. It is readily apparent that factorization is an important consideration
when we decompose and rearrange tasks on heterogeneous multi-core processors.

Figure 17 presents observed decoding times with coefficient matrices of varying sizes, from 64
to 512, when decoding different volumes of data, between 16 KB and 1 MB. We have shown above,
in Section 4.2, that the parallelized Galois field multiplications using the SIMD instruction is the fastest
implementation method on a homogeneous multi-core processor. In order to ensure a legitimate
comparison with our implementations on the Cell BE, we implemented network coding on the Intel
and AMD quad-core processors using only SIMD instructions. We have compared computing-based
(PPE COMPUTE), table-based (PPE TL), and SIMD-based (PPE VECTOR) multiplication methods
on the PPE to the SPE using SIMD-based multiplication. In addition, the implementations of
PPE COMPUTE, PPE TL, and PPE VECTOR exhibit average increases in speed of 0.32, 0.88,
and 2.38, respectively, under experimental evaluation, as noted in Section 4.4. All implementations
are compiled with the O3 level of the GNU GCC.

Sensors 2011, 11 7927

Figure 17. Decoding time on real machine with varying coefficient matrix size; (a) 64× 64;
(b) 128 × 128; (c) 256 × 256; and (d) 512 × 512.

(a) (b)

(c) (d)

In Figure 17, it can be seen that PPE COMPUTE demonstrates a low decoding speed when dealing
with small data, however, it performs in a manner comparable to homogeneous processors as data size
increases. This is because it incurs delay when the PPE is forced to wait for the SPEs during the
decoding operation. In contrast, the other multiplication methods, which use table-based or parallelized
SIMD-based multiplication on the PPE and parallelized SIMD-based multiplication on the SPE, on the
Cell BE, exhibit fast decoding times in all experimental ranges. This gap increases with data size, as the
gains from parallelization are enhanced.

Figure 18 shows the average speed-ups varying the data size for all coefficient sizes; 64, 128, 256,
and 512. It shows that the speed-ups are improved proportional to the data size; as the amount of
computation increases, more data transmission to SPEs from main memory can be hidden. As we have
shown in Figures 17 and 18, Cell BE is efficient for large data size of network coding when we use,
especially, parallelized SIMD instruction.

Figure 18. Average speed-up of network coding on real machine with varying data size;
(a) Intel; and (b) AMD.

(a) (b)

Sensors 2011, 11 7928

5. Related Work

Ahlswede et al. were the first to introduce network coding and demonstrate its usefulness [1]. After
this initial work, the maximum theoretical throughput of network coding was proven, and achieved, using
linear network codes, by Koetter and Medard [39]. As suggested by Chou et al. [27] and Ho et al. [40],
our implementations employ random linear network coding, which is believed to be the most practical
approach to multicast flow scenarios, as the target to parallelize. Network coding research then spread
to wireless network systems after its utility had been demonstrated by Lun et al. [41] in that context.
Katti et al. proposed a number of practical solutions using multiple unicast flows [42] and Park et al.
showed improvements in the reliability of ad hoc network systems [43].

The applications of network coding have been proposed in [44] and recent studies of feasibility
in real testbeds have been performed and documented [45]. Especially, several previous literatures
introduced to use network coding techniques in wireless sensor networks [5–10]. Widmer and Le Boudec
introduced a network coding based forwarding scheme for wireless sensor networks where nodes sleep
most of the time [5]. Al-Kofahi and Kamal handle the problem of survivability of many-to-one flows
in wireless sensor networks (WSN) using the network coding technique [6]. In addition, Hou et al.
proposed AdapCode, which is a reliable data dissemination protocol developed for any software update.
Their proposed method relies on adaptive network coding to reduce broadcast traffics in the process of
dissemination [9]. Using network coding in the design of practical health care wireless sensor networks
is also presented in [10]. Using multi-core processors in the cloud computing environment also has been
proposed [46].

In addition, Lee et al. introduced a discussion of the utility of network coding in mobile systems [47].
Further, Gkantsidis et al. showed that smooth, fast downloads and efficient server utilization can be
achieved using network coding [4]. Lastly, Shojania and Li consider adoption the network coding to
practical applications in mobile networks with the Apple iPhone [48].

Parallelized network coding was first suggested by Shojania and Li [28]. The authors used hardware
acceleration and proposed a multi-threaded design utilizing multi-core systems. Research has also been
conducted, from a variety of perspectives, which focuses on reducing the computational complexity of
encoding/decoding operations [49,50]. Park et al. suggested enhanced forms of parallelization network
coding algorithms with reduced computational complexity [31,51]. Whereas, our work is focused on
improving decoding performance via the adoption of algorithms for use in a heterogeneous processor,
referred to as the Cell BE.

Many algorithms have been proposed to parallelize matrix calculation, such as the parallelization of
matrix inversion [52], parallel LU decomposition [29], and parallelization of Gauss-Jordan elimination
with block-based algorithms [30]. However, due to the network transfer delay, Park et al. employ a more
aggressive method of network coding, referred to as “progressive” decoding [28].

Approaches to enhancing the performance of the progressive decoding were proposed in Parallelized
Progressive Network Coding [28]. The approaches are based on Gauss–Jordan elimination algorithm.
A simple description of one variant of Gauss–Jordan elimination, as explained in [28], is presented in
Table 1 of this paper. Over the entire decoding process, Stage A and E comprise the majority of the
workload; according to [28], Stage A makes up 50.05% of the workload, while Stage E has 49.5%.

Sensors 2011, 11 7929

The load-balancing problem has been emphasized in divisible load theory [21–23]. Drozdowski and
Lawenda introduced a method of verifying divisible load size for heterogeneous distributed systems [53].
Cariño et al. suggested a factoring method for dynamical load-balancing in [54]. The usefulness of
hardware acceleration has been shown by Shojania et al. [34] and Chu et al. [55] on a GPGPU.

6. Conclusions

In this paper, we introduced an efficient random linear network coding algorithm with an appropriate
load balancing method for a heterogeneous multi-core processor. We especially designed the proposed
architecture considering the wireless sensor network environment. Our algorithm introduced a proper
load balancing method and a hybrid progressive decoding algorithm considering different computing
capability of cores. We achieve a maximum speed increase by selectively using multiplication algorithms
that are (1) table-based in dealing with small coefficient and data sizes and (2) parallelized and employing
SIMD instructions in dealing with large coefficient sizes as shown in Figure 19.

Figure 19. Speed-up of PPE TL over PPE VECTOR with varying data size.

We compared performance of the proposed approach to one of the fastest progressive decoding
algorithms, executed on homogeneous processors. From this comparison, we demonstrated improved
performance results using our method. Table 4 represents maximum and average speed-ups of network
coding about various matrix sizes (64, 128, 256, and 512) compared to the homogeneous processors.
Our proposed implementation shows improved performance in most of the experiments. We achieved a
maximum speed-up of 2.19 at 1 MB data with a coefficient matrix of 64 compared to the Intel quad-core
processor. In addition, we obtained a maximum speed-up of 3.12 at 128 KB data with coefficient matrix
of 64 compared to the AMD quad-core processor. The proposed method shows greater efficiency in
dealing with especially large data sizes.

Table 4. Comparison of Homogeneous Processors.

COMPUTE TL VECTOR

Intel
Maximum speed-up 1.80 1.90 2.19

Average speed-up 1.05 1.27 1.36

AMD
Maximum speed-up 2.71 3.00 3.12
Average speed-up 1.77 2.19 2.31

Sensors 2011, 11 7930

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government
(KRF-2008-313-D00871).

References

1. Ahlswede, R.; Ning, C.; Li, S.-Y.R.; Yeung, R.W. Network information flow. IEEE Trans. Inf.
Theory 2000, 46, 1204–1216.

2. Sanchez-Avila, C.; Sanchez-Reillol, R. The Rijndael Block Cipher (AES proposal): A comparison
with DES. In Proceedings of 2001 IEEE the 35th International Carnahan Conference on Security
Technology, London, UK, 16–19 October 2001; pp. 229–234.

3. Li, B.; Wu, Y. Network coding. Proc. IEEE 2011, 99, 363–365.
4. Gkantsidis, C.; Miller, J.; Rodriguez, P. Comprehensive view of a live network coding P2P

system. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06,
Rio de Janeiro, Brazil, October 2006; pp. 177–188.

5. Widmer, J.; Le Boudec, J.Y. Network coding for efficient communication in extreme networks. In
Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, WDTN ’05,
Philidelphia, PA, USA, August 2005; pp. 284–291.

6. Al-Kofahi, O.M.; Kamal, A.E. Network coding-based protection of many-to-one wireless flows.
IEEE J. Sel. Areas Commun. 2009, 27, 797–813.

7. Woldegebreal, D.H.; Karl, H. Network-coding-based cooperative transmission in wireless sensor
networks: Diversity-multiplexing tradeoff and coverage area extension. In Proceedings of the
5th European Conference on Wireless Sensor Networks, EWSN’08, Bologna, Italy, 30 January–
1 February 2008; pp. 141–155.

8. Platz, D.; Woldegebreal, D.H.; Karl, H. Random network coding in wireless sensor networks:
Energy efficiency via cross-layer approach. In Proceedings of 2008 IEEE the 10th International
Symposium on Spread Spectrum Techniques and Applications, ISSSTA ’08, Bologna, Italy,
25–28 August 2008; pp. 654–660.

9. Hou, I.H.; Tsai, Y.E.; Abdelzaher, T.; Gupta, I. AdapCode: Adaptive network coding for code
updates in wireless sensor networks. In Proceedings of the IEEE 27th Conference on Computer
Communications, INFOCOM 2008, Phoenix, AZ, USA, 13–18 April 2008; pp. 1517–1525.

10. Egbogah, E.E.; Fapojuwo, A.O. A survey of system architecture requirements for health care-based
wireless sensor networks. Sensors 2011, 11, 4875–4898.

11. Wu, Y.; Chou, P.A.; Kung, S.Y. Information Exchange in Wireless Networks with Network
Coding and Physical-Layer Broadcast; Technical Report MSR-TR-2004-78; Microsoft Research:
Cambridge, UK, 2004.

12. Widmer, J.; Fragouli, C.; LeBoude, J.Y. Energy efficient broadcasting in wireless ad hoc networks.
In Proceedings of First Workshop on Network Coding, Theory, and Applications, NetCod ’05,
Riva del Garda, Italy, 7 April 2005.

Sensors 2011, 11 7931

13. Fragouli, C.; Widmer, J.; Le Boudec, J.Y. A network coding approach to energy efficient
broadcasting: From theory to practice. In Proceedings the 25th IEEE International Conference
on Computer Communications, INFOCOM 2006, Barcelona, Spain, April 2006.

14. Cai, N.; Yeung, R. Secure network coding. In Proceedings of 2002 IEEE International Symposium
on Information Theory, Lausanne, Switzerland, 30 June–5 July 2002; p. 323.

15. Cai, N.; Yeung, R. Secure network coding on a wiretap network. IEEE Trans. Inf. Theory 2011,
57, 424–435.

16. Liu, Z.; Wu, C.; Li, B.; Zhao, S. UUSee: Large-Scale operational on-demand streaming with
random network coding. In Proceedings of IEEE INFOCOM, San Diego, CA, USA, 14–19 March
2010; pp. 1–9.

17. Geer, D. Chip makers turn to multicore processors. Computer 2005, 38, 11–13.
18. Ohara, S.; Suzuki, M.; Saruwatari, S.; Morikawa, H. A prototype of a multi-core wireless sensor

node for reducing power consumption. In Proceedings of the 2008 International Symposium on
Applications and the Internet, Washington, DC, USA, 28 July–1 August 2008; pp. 369–372.

19. Spies, C.; Indrusiak, L.; Glesner, M. Comparative analysis of multitask scheduling algorithms for
reconfigurable computing regarding context switches and configuration cache usage. In Proceedings
of the 3rd Southern Conference on Programmable Logic, SPL ’07, Mar del Plata, Argentina,
26–28 Feburary 2007; pp. 239–242.

20. Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. Wireless multimedia sensor Networks: Applications
and testbeds. Proc. IEEE 2008, 96, 1588–1605.

21. Bharadwaj, V.; Robertazzi, T.G.; Ghose, D. Scheduling Divisible Loads in Parallel and Distributed
Systems; IEEE Computer Society Press: Los Alamitos, CA, USA, 1996.

22. Bharadwaj, V.; Ghose, D. Divisibleload theory: A new paradigm for load scheduling in distributed
systems. Clust. Comput. 2003, 6, 7–17.

23. Drozdowski, M. Selected Problems of Scheduling Tasks in Multiprocessor Computer Systems;
Technical Report 321; Politechnika Poznanńska: Pozńan, Poland, 1997.

24. Intel Microprocessor Export Compliance Metrics. Available online: http://www.intel.com/ support/
processors/sb/cs-023143.htm (accessed on 3 July 2011).

25. Kahle, J.A.; Day, M.N.; Hofstee, H.P.; Johns, C.R.; Maeurer, T.R.; Shippy, D. Introduction to the
cell multiprocessor. IBM J. Res. Dev. 2005, 49, 589–604.

26. Pham, D.; Aipperspach, T.; Boerstler, D.; Bolliger, M.; Chaudhry, R.; Cox, D.; Harvey, P.;
Harvey, P.; Hofstee, H.; Johns, C.; Kahle, J.; Kameyama, A.; Keaty, J.; Masubuchi, Y.; Pham, M.;
Pille, J.; Posluszny, S.; Riley, M.; Stasiak, D.; Suzuoki, M.; Takahashi, O.; Warnock, J.; Weitzel, S.;
Wendel, D.; Yazawa, K. Overview of the architecture, circuit design, and physical implementation
of a first-generation cell processor. IEEE J. Solid-State Circuits 2006, 41, 179–196.

27. Chou, P.A.; Wu, Y.; Jain, K. Practical network coding. In Proceedings of Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, 20 October 2003.

28. Shojania, H.; Li, B. Parallelized progressive network coding with hardware acceleration. In
Proceedings of 2007 the 15th IEEE International Workshop on Quality of Service, Evanston, IL,
USA, 21–22 June 2007; pp. 47–55.

Sensors 2011, 11 7932

29. Bisseling, R.H.; van de Vorst, J.G.G. Parallel LU decomposition on a transputer network. In
Proceedings of the Shell Conference on Parallel Computing, Amsterdam, The Netherlands,
1–2 June 1988; pp. 61–77.

30. Melab, N.; Talbi, E.G.; Petiton, S. A parallel adaptive Gauss-Jordan algorithm. J. Supercomput.
2000, 17, 167–185.

31. Park, K.; Park, J.S.; Ro, W.W. On improving parallelized network coding with dynamic
partitioning. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 1547–1560.

32. Arevalo, A.; Matinata, R.M.; Pandian, M.R.; Peri, E.; Ruby, K.; Thomas, F.; Almond, C.
Programming the Cell Broadband Engine Architecture: Examples and Best Practices; Vervante:
Springville, UT, USA, 2008.

33. PPU & SPU C/C++ Language Extension Specification. Available online: https://www-01.ibm.com/
chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E (accessed on 3 July
2011).

34. Shojania, H.; Li, B.; Wang, X. Nuclei: GPU-Accelerated many-core network coding. In
Proceedings of IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 459–467.

35. AltiVec Technology Programming Interface Manual. Available online: http://www.freescale.com/
files/32bit/doc/ref manual/ALTIVECPIM.pdf (accessed on 3 July 2011).

36. Intel(R) 64 and IA-32 Architectures Optimization Reference Manual; Intel Corporation: Santa Clara,
CA, USA, 2010.

37. Roth, R. Introduction to Coding Theory, 1st ed.; Cambridge University Press: Cambridge, UK,
2006.

38. Trenholme, S. AES’ Galois field. Available online: http://www.samiam.org/galois.html (accessed
on 3 July 2011).

39. Koetter, R.; Médard, M. An algebraic approach to network coding. IEEE/ACM Trans. Netw. 2003,
11, 782–795.

40. Ho, T.; Medard, M.; Koetter, R.; Karger, D.; Effros, M.; Shi, J.; Leong, B. A random linear network
coding approach to multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430.

41. Lun, D.; Ratnakar, N.; Medard, M.; Koetter, R.; Karger, D.; Ho, T.; Ahmed, E.; Zhao, F.
Minimum-cost multicast over coded packet networks. IEEE Trans. Inf. Theory 2006, 52,
2608–2623.

42. Katti, S.; Rahul, H.; Hu, W.; Katabi, D.; Medard, M.; Crowcroft, J. XORs in the air: Practical
wireless network coding. IEEE/ACM Trans. Netw. 2008, 16, 497–510.

43. Park, J.S.; Gerla, M.; Lun, D.; Yi, Y.; Medard, M. Codecast: A network-coding-based ad hoc
multicast protocol. IEEE Wirel. Commun. 2006, 13, 76–81.

44. Gkantsidis, C.; Rodriguez, P. Network coding for large scale content distribution. In
Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM 2005, Miami, FL, USA, 13–17 March 2005; Volume 4, pp. 2235–2245.

45. Wang, M.; Li, B. Lava: A reality check of network coding in peer-to-peer live streaming. In
Proceedings of the 26th IEEE International Conference on Computer Communications, INFOCOM
2007, Anchorage, AK, USA, 6–12 May 2007; pp. 1082–1090.

Sensors 2011, 11 7933

46. Kang, M.; Kang, D.I.; Crago, S.P.; Park, G.L.; Lee, J. Design and development of a run-time
monitor for multi-core architectures in cloud computing. Sensors 2011, 11, 3595–3610.

47. Lee, U.; Park, J.S.; Yeh, J.; Pau, G.; Gerla, M. Code torrent: Content distribution using network
coding in VANET. In Proceedings of the 1st International Workshop on Decentralized Resource
Sharing in Mobile Computing and Networking, MobiShare ’06, Los Angeles, CA, USA, September
2006; pp. 1–5.

48. Shojania, H.; Li, B. Random network coding on the iPhone: Fact or fiction? In Proceedings of
the 18th International Workshop on Network and Operating Systems Support for Digital Audio and
Video, NOSSDAV ’09, Braunschweig, Germany, May 2009; pp. 37–42.

49. Lee, U.; Park, J.S.; Yeh, J.; Pau, G.; Gerla, M. A content distribution system based on sparse
linear network coding. In Proceedings of the 3rd Workshop on Network Coding, Theory, and
Applications, NetCod ’07, San Diego, CA, USA, January 2007; pp. 1–6.

50. Maymounkov, P.; Harvey, N.J.A. Methods for efficient network coding. In Proceedings of the
44th Annual Allerton Conference on Communication, Control, and Computing, Urbana, IL, USA,
27 September–29 September 2006.

51. Park, K.; Park, J.S.; Ro, W.W. Efficient parallelized network coding for P2P file sharing applications.
In Proceedings of the 4th International Conference on Advances in Grid and Pervasive Computing,
GPC ’09, Geneva, Switzerland, 4–8 May 2009; pp. 353–363.

52. Csanky, L. Fast parallel matrix inversion algorithms. In Proceedings of the 16th Annual Symposium
on Foundations of Computer Science, SFCS ’75, Berkeley, CA, USA, 13–15 October 1975;
pp. 11–12.

53. Drozdowski, M.; Lawenda, M. Multi-installment divisible load processing in heterogeneous
distributed systems: Research articles. Concurr. Comput. Pract. Exp. 2007, 19, 2237–2253.

54. Cariño, R.L.; Banicescu, I. Dynamic load balancing with adaptive factoring methods in scientific
applications. J. Supercomput. 2008, 44, 41–63.

55. Chu, X.; Zhao, K.; Wang, M. Accelerating network coding on many-core GPUs and multi-core
CPUs. J. Commun. 2009, 4, 902–909.

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

	Introduction
	Background
	Overview of the Cell BE
	Benefit of Using Network Coding
	Random Linear Network Coding
	Overview of Progressive Network Coding

	Load Distribution and Progressive Decoding on Cell BE
	Synchronization on the Cell BE
	Considering Load Balancing Effects on Cell BE
	Galois Field Operation for SIMD

	Experimental Results and Analysis
	Implementation of Previous Work
	Computation Time on Galois Field
	Synchronization with Mailbox System
	Partitioning on PPE
	Overall Decoding Performance

	Related Work
	Conclusions

