
Sensors 2011, 11, 8836-8854; doi:10.3390/s110908836 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Detailed Study of Amplitude Nonlinearity in Piezoresistive 
Force Sensors 

Leonel Paredes-Madrid *, Luis Emmi, Elena Garcia and Pablo Gonzalez de Santos 

Centre for Automation and Robotics, UPM-CSIC, Ctra. Campo Real Km 0.2, Madrid 28500, Spain;  
E-Mails: luis.emmi@car.upm-csic.es (L.E.); elena.garcia@car.upm-csic.es (E.G.); 
pablo.gonzalez@car.upm-csic.es (P.G.S.) 

* Author to whom correspondence should be addressed; E-Mail: leonel.paredes@car.upm-csic.es; 
Tel.: +34-91-871-19-00; Fax: +34-91-871-70-50. 

Received: 28 July 2011; in revised form: 8 September 2011 / Accepted: 9 September 2011 /  
Published: 14 September 2011 
 

Abstract: This article upgrades the RC linear model presented for piezoresistive force 
sensors. Amplitude nonlinearity is found in sensor conductance, and a characteristic 
equation is formulated for modeling its response under DC-driving voltages below 1 V. 
The feasibility of such equation is tested on four FlexiForce model A201-100 
piezoresistive sensors by varying the sourcing voltage and the applied forces. Since the 
characteristic equation proves to be valid, a method is presented for obtaining a specific 
sensitivity in sensor response by calculating the appropriate sourcing voltage and feedback 
resistor in the driving circuit; this provides plug-and-play capabilities to the device and 
reduces the start-up time of new applications where piezoresistive devices are to be used. 
Finally, a method for bypassing the amplitude nonlinearity is presented with the aim of 
reading sensor capacitance. 
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1. Introduction  

Piezoresistive force sensors have demonstrated to be a good solution for applications demanding 
non-invasive force readings [1-6]. However, the relatively low repeatability and considerable 
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hysteresis of piezoresistive force sensors in comparison with load cells [7] limit the use of such sensors 
to applications where accuracy is not as important as the size of the sensor involved [8,9]. 

On the other hand, load cells have demonstrated to be reliable force-measurement devices in  
many different systems [10,11] demanding high reliability and accuracy [12], e.g., force-control 
applications [13] and impact measurements [14]. However, because of the relative bulk and weight of 
load cells as compared to piezoresistive sensors, when a new robot or force-control system is under 
design, load-cell bulk and weight must be taken into account from the early stages of design. 

In certain research fields, such as biomechanics, biomedical engineering and haptics, it is necessary 
to perform non-invasive force readings. Such readings cannot be carried out using bulky load cells. 
Whether it is necessary to measure contact force on a knee joint [15,16], measure the grasp force of a 
human hand [1,4] or accommodate any of many other applications [17-19], a low-profile, light-weight 
sensor must be used in order to meet the limited space requirements of the task.  

Previous work [20,21] has demonstrated that the repeatability of piezoresistive force sensors may be 
increased by performing capacitance readings under AC sourcing. The method detailed in [20,21] 
consists in reading sensor conductance and capacitance by applying DC and sine waveforms; thereby it 
is possible to perform a multivariable estimation of force that dramatically reduces force-estimation 
errors. 

In [20,21] an RC-parallel-electrical model was identified for the FlexiForce A201-100 piezoresistive 
force sensor (PFS); in addition, a frequency nonlinearity in sensor response when the frequency of the 
driving signal exceeded a certain value was found and appropriately named “the divergent frequency”. 
However, we have recently found that the PFS exhibits additional nonlinearities related with the 
amplitude of the driving signal, and thus the RC model and the corresponding equations must be 
modified to account for this newly found amplitude nonlinearity. 

The A201-100 piezoresistive sensor was chosen for this study because the manufacturer has 
developed many specific sensors for research [2,22], medical [23] and service applications, and thus 
the A201-100 is widely used in many different fields. This paper reviews the RC model for the  
A201-100 force sensor, which is referred to henceforth as “the PFS”. The PFS nonlinearities are 
studied and different methods for bypassing them are proposed. A generalized method for obtaining a 
specific sensitivity is also detailed. This involves choosing the proper DC amplitude and feedback 
resistor in the conditioning circuit, a procedure restricted to sourcing voltages below 1 V. Finally, a 
method is detailed for bypassing the amplitude nonlinearity under AC sourcing with the aim of 
performing capacitance readings on the sensor. 

2. Previous Work on Modelling the Piezoresistive Sensor Model A201-100  

Most research articles regarding the A201-100 sensor present performance comparisons among 
different piezoresistive devices [7,8] or describe applications developed using the aforementioned 
sensor [2,3,15]. Only [20,21] present an electrical characterization of the device. In [20,21],  
a RC-parallel-electrical model [see Figure 1(b)] was identified for the PFS under study [see Figure 1(a)] 
with a typical driving circuit as shown in Figure 1(c) [24]. When the sine wave, Vs2, is selected as 
input, the following set of equations from [20] describes sensor response within its linear region of 
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operation. First, a differential equation can be deduced from the circuit depicted in Figure 1(c) with Vs2 
as input: 

2 2s s o
s

s g

V dV VC
R dt R

+ = −  (1) 

where Rs and Cs are sensor resistance and capacitance, respectively, from the model in Figure 1(b). 

Figure 1. Piezoresistive sensor under study. (a) Picture of the PFS. (b) Circuit model of the 
PFS. (c) Conditioning circuit for measuring forces in the PFS. 

 
(a) (b) (c) 

Parameter Rg is the feedback resistor in the driving circuit of Figure 1(c) with Vo as the output 
voltage. Given the input: 

( )2 sin 2s SV A ftπ=  (2) 
the output voltage Vo can be expressed as:  

( ) ( )sin 2
- 2 cos 2o s g s

s

ft
V A R fC ft

R
π

π π
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (3) 

Then Equation (3) may be rewritten in terms of the phase shift, θ, and output amplitude, Ao, as  
shown below: 

( )sin 2o oV A ftπ θ= +  (4) 

Finally, combining Equations (3) and (4) yields: 

cos( )
g s

s
o

R A
R

A θ
=  (5) 

and 
( )

2
o

s
g s

A sinC
R A f

θ
π

=  (6) 

Equation (6) was already used in [20,21] to demonstrate that the PFS exhibits a piezocapacitive 
response that is useful for reducing force-estimation errors. 

3. Amplitude Nonlinearity of the PFS under DC Sourcing 

Besides the already-identified frequency nonlinearity [21], the PFS exhibits amplitude nonlinearity. 
Initially, this study only looks at the nonlinearity for input voltages within the (−1 V, 1 V) range. 
An approach is then presented for higher input voltages. The analysis of amplitude nonlinearity is 
perforce split in two, because the sensor exhibits quasi-different responses, depending on the input 
voltage applied.  
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3.1. Modeling Amplitude Nonlinearity for Input Voltages below 1V 

If the DC source, Vs1, is chosen as the input of the driving circuit in Figure 1(c), a DC output voltage, 
Vo, is obtained that changes linearly as the applied force on the sensor increases (see Figure 2) [25]. 
This response corresponds to the piezoresistive property of the sensor and it has been thoroughly 
described by the sensor manufacturer [24] and many research articles [4,7,8,17,20,22,26]. However, to 
the best of our knowledge, no information is available about how the output voltage changes for a 
fixed force when the DC voltage is varied.  

Figure 2. Typical variation of resistance and conductance for an A201-100 FlexiForce 
sensor (image taken from [25]; the image axis and legend were modified by the authors for 
better comprehension). 

 

In order to study such behavior, the input voltage, Vs1, is swept from −1 V up to 1 V, and the output 
voltage, Vo, is plotted while the applied force remains constant. It is important to remark that these 
measurements are carried out by using a constant-puck area of 50.3 mm2, smaller than the sensor’s 
sensing area of 71.3 mm2, this ensures that every sensor is evenly loaded in each trial and avoids the 
pressure falling outside the sensing area of the sensor. Figure 3 shows the output voltage for randomly 
chosen forces of 12 N, 45 N, 82 N and 160 N. The best function for relating the input voltage, Vs1, to the 
corresponding sensor response, Vo, is found to be: 

11 atanh( )s
o

VV
q k

= −  (7) 

where k and q are constants. However, it is inadvisable to fit k and q in the form presented in 
Equation (7), because Vo may yield complex values since the atanh domain is restricted to (−1, 1). 
Thus, for fitting purposes it is better to rewrite Equation (7) in terms of the tanh function as follows: 

1 tanh( )s oV k qV= −  (8) 
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The minus sign in Equations (7) and (8) comes from the negative gain in the inverting amplifier 
[see Figure 1(c)] used to drive the sensor. The axes in Figure 3 are intentionally switched to represent 
Vo on the x-axis and Vs1 on the y-axis with the aim of fitting the data points with Equation (8) instead 
of Equation (7). The fitting process is highly fiable, with a coefficient of determination, R2, of at least 
R2 = 0.9992 for every applied force and an average R2 value of 0.9995. 

Figure 3. Vs1 vs. Vo for the PFS for driving voltages below 1 V and four different exerted 
forces of 12 N, 45 N, 82 N and 160 N. The trendline used for each individual fit was a 
hyperbolic tangent function [Equation (8)]. 

 

Parameters k and q were set to adjust independently for every applied force, however, the 
independent fitting processes returned values of k that remained almost constant, regardless of the 
exerted force, F, whereas q was shown to be hyperbolically dependent on the exerted force. In other 
words, 1/q is a linear function of F. Figure 4 shows the variation of k and 1/q for different applied 
forces within the 0 N–250 N range resulting from independent fitting processes.  

In order to get a comprehensive view of sensor behavior, a relationship between Equation (8) and F 
must be found. For that purpose, the fact that the sensor exhibits piezoresistive behavior is useful, as 
thus its conductance, 1/Rs, may be modeled in terms of the applied force, F, as: 

1/ sR m F b= +  (9) 

Equation (9) is not explicitly stated in the PFS user manual [24], however, the sensor manufacturer 
does declare that a linear interpolation between the conductance values and the applied forces can be 
done. Also, it can be easily deduced from a look at the conductance curve in Figure 2 that Equation (9) 
is a valid fit for 1/Rs. Considering the inverting amplifier with feedback resistor Rg, which is used to 
drive the PFS, it is possible to link Equation (9) with the amplifier characteristic equation: 

1

go

s s

RV
V R

= −  (10) 
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to obtain: 

( )
1

o
g

s

V R mF b
V

= − +  (11) 

We should clarify that Equation (11) is not explicitly stated in the PFS user manual [24], and only 
Equation (10) is given in [24], but the manufacturer suggests that the sensor sensitivity, m, can be 
changed by either replacing the feedback resistor, Rg, or changing the driving voltage, Vs1.  

Figure 4. Graph representing the variation of sensor parameters k and q for different 
exerted forces within the range from 0 N to 250 N.  

 

With the aim of demonstrating that Equation (11) is an approximate expression for fitting the data 
points from Figure 3, the 1/q curve from Figure 4 is taken and represented as linearly dependent on the 
applied force:  

1/ q m F b′ ′= +  (12) 

Note that the 1/q curve in Figure 4 is analogous to the conductance curve of Figure 2. Equation (12) 
can be substituted into Equation (7), yielding: 

( ) 1atanh s
o

VV m F b
k

⎛ ⎞′ ′= − + ⎜ ⎟
⎝ ⎠

 (13) 

Nevertheless, Equation (13) cannot be stated the same way as Equation (11), because the input 
voltage, Vs1, is part of the atanh argument, but if only the first term of the atanh-Taylor series is taken, 
the following approximate expression is obtained: 

( )
1

1o

s

V m F b
V k

− ′ ′= +  (14) 

Equation (14) is an approximate expression for modeling sensor response, and so is Equation (11). 
The 1/k factor in Equation (14) is analogous to Rg in Equation (11), in the same way that m is 
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analogous to m′, b to b′ and 1/Rs to 1/q. Equations (11) and (14) are valid if and only if the input 
voltage remains constant during the measurement process; this condition matches the driving 
conditions recommended by the manufacturer [24].  

3.2. Effect of the Feedback Resistor in Sensor Response 

The effect of the feedback resistor can be deduced from the fact that Rg only changes the feedback 
gain of the amplifier, without affecting sensor current. Thus, changing Rg will produce directly 
proportional changes in the output voltage, and Equation (13) can be rewritten as: 

( ) 1atanhg s
o

ref

R VV m F b
R k

⎛ ⎞ ⎛ ⎞′ ′= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (15) 

Henceforth Equation (15) is referred to as “the general-sensor model” under DC sourcing, with the 
restriction |Vs1| < 1 V, where Rref is the feedback resistor used during the characterization to obtain the 
values of m′, b′ and k. In case the feedback resistor is changed after the characterization process, the 
output voltage is multiplied by the ratio Rg/Rref where Rg is the new feedback resistor. Replacing the 
feedback resistor produces a directly proportional change in the output voltage, because the amplifier 
is inherently linear, whereas sensor resistance is not. In fact, linking Equations (7), (10) and (12) 
produces an expression that shows the nonlinear behavior of sensor conductance in response to 
changes in the input voltage:  

( ) ( )1

1

atanh /1 s

s s g

V k
m F b

R V R
′ ′= +  (16) 

However, it must be noted from Equation (16) that sensor conductance is always linear to force 
changes.  

3.3. Generalized Method for Obtaining a Specific Sensitivity in Sensor Response 

Since a general-sensor model was deduced in Equation (15), a generalized method can be presented 
for obtaining a specific sensitivity in the sensor. The tests discussed in this section were done using 
four A201-100 sensors to provide more representative results. Each PFS exhibits a considerably 
different sensitivity. This condition prevents the sensors from having plug-and-play capability, because 
a characterization must be run before using a sensor. Moreover, for characterizations run at a given 
input voltage, it has been impossible until now to determine the new values of m and b under the new 
input voltage condition, because the amplitude nonlinearity was not accounted for. Nevertheless, 
Equation (15) accounts for changes in both the input voltage, Vs1, and the feedback resistor, Rg. This 
implies that if m′, b′, k, and Rref are given, it is possible to either determine sensor sensitivity for any 
input voltage and feedback resistor or design a specific driving circuit ,Vs1 and Rg, with the aim of 
matching a target sensitivity. 

Note that the k factor in Equation (15) contains information about sensor sensitivity for any input 
voltage. Unfortunately, the k factor is different for each sensor, just as sensitivity is too. The range of 
variation of the k factor for the four sensors under study was from 1.2 V to 1.5 V, with an average 
value of 1.41 V. If k is not given, the only way to change sensor sensitivity is to replace the feedback 
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resistor, Rg; but, in certain applications where several sensors are being used [1,16,21,23], it is more 
convenient to change the driving voltage instead of changing individual feedback resistors. In addition, 
the feedback resistor is increased despite an increase in the noise level, so it is better to match a desired 
sensitivity by making a trade-off between Vs1 and Rg. 

With the aim of proposing a method for obtaining a specific PFS sensitivity, it is necessary to fit the 
general-sensor model in Equation (15) to the experimental data. However, the feedback resistor must 
not play any role in the fitting process, because Rg only affects the closed loop gain of the amplifier, 
not the sensor response itself. Thus, it is better to use Equation (13) for the fit instead of Equation (15). 
In order to avoid complex numbers resulting from Equation (13) during the fit, Equation (13) is 
rewritten in terms of the tanh function as shown below: 

1 tanh o
s

VV k
m F b

⎛ ⎞= − ⎜ ⎟′ ′+⎝ ⎠
 (17) 

Note that Equation (17) implies a three-dimensional fit in terms of the variables F, Vo and Vs1, with 
coefficients m′, b′ and k to be determined.  

In practice, the experimental data were gathered in the same way as described in Section 3.1. 
Nevertheless, the fit here described embraces all variables and coefficients at once (F, Vo, Vs1, m′, b′ 
and k), whereas the fitting process in Section 3.1 was split into two independent threads. This is an 
important difference, because the fit here tries to minimize the overall error, while the process in 
Section 3.1 independently minimizes the error for every exerted force.  

Figure 5 shows the experimental data points and the surface produced by the three-dimensional fit 
in Equation (17). For this case, the values of R2 were in general lower than for the fits given in 
Section 3.1. The minimum value of R2 for the four sensors under study was R2 = 0.989, with an 
average value of R2 = 0.991; this is comprehensible, because all forces and voltages were embraced in 
a single fit, and thus a single k value was returned. 

Figure 5. Surface resulting from the three dimensional fit of the PFS-general model to the 
experimental data points shown as empty circles in the plot. 
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Once the fit is done, it is possible to assemble the general-sensor equation by substituting into 
Equation (15) the coefficient values returned from the fit (m′, b′ and k) and the value of the feedback 
resistor used during the characterization process, which matches Rref in Equation (15). If Rg or Vs1 are 
changed at any time, it is possible to recalculate m and b from Equation (15); or, if the feedback 
resistor, Rg, is fixed by the application circuit, the target sensitivity, mt, can be obtained by choosing 
the appropriate Vs1 from Equation (15) as shown below:  

1 tanh reft
s

g

RmV k
m R

⎛ ⎞
= ⎜ ⎟⎜ ⎟′⎝ ⎠

 (18) 

However, Equation (18) is valid if and only if the predicted input voltage is lower than 1 V, because 
only the amplitude nonlinearity for |Vs1| < 1 V has been studied. Note that the k factor may be taken as 
a mean of amplitude nonlinearity. To confirm this, Figure 6 plots the following function, which is 
drawn from the sensor-conductance expression, Equation (16): 

( )1
1

1

atanh /
( ) s

s
s g

V k
G V

V R
=  (19) 

Figure 6. Graph of the Equation (19) for different k values. Note that as k increases the 
lines flatten. 

 

Equation (19) is a measure of how the sensor conductance is affected by changes in the input 
voltage. The higher k is for a given sensor, the flatter the lines in Figure 6. This can be understood as  
a less-noticeable amplitude nonlinearity in the sensor.  

3.4. An Approach to Modeling the Amplitude Nonlinearity for Input Voltages above 1 V 

If the PFS is sourced with voltages above 1V, the fitting curve in Equation (8) and the general-sensor 
model in Equation (15) provide an unsatisfactory fit according to our criteria. Figure 7 shows the 
output and input voltage from data taken experimentally under three different forces (47 N, 97 N and 
240 N) for driving voltages within the range (−6 V, 6 V) with Equation (8) as the trendline. Note that 
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the experimental data points move away from the trendline, especially in the middle-range voltages, 
|Vs1| < 3 V. 

Figure 7. Graph representing the relation of Vs1 vs. Vo for input amplitudes within the 
range (−6 V, 6 V) and forces of 47 N, 97 N and 240 N. 

 

Despite the fact that the coefficient of determination remained high for all sensors under study 
(exhibiting an average value of R2 = 0.991), it is clear that Equations (8) and (15) require some 
changes in order to provide a better fit. So far we have not found a suitable and simple curve for 
modeling sensor behavior under such driving conditions. 

4. Effect of Amplitude Nonlinearity under AC Sourcing for the Sensor 

It has been demonstrated that sensor conductance is not constant if there are changes in the input 
voltage. By relating Equation (1) with the conductance model, Equation (16), the following expression 
is obtained, which is useful for studying the effect of amplitude nonlinearity under AC sourcing: 

( )2
2( )atanh s

o g s s
V dV m F b R C V
k dt

⎛ ⎞′ ′− = + +⎜ ⎟
⎝ ⎠

 (20) 

where 2 1 ,sV V t< ∀  in order to meet the general-sensor model, Equation (15).  

Under AC sourcing, the nonlinear term, Equation (19), extracted from Equation (16) causes a 
modulation effect in sensor conductance which was not accounted for in our previous work (summarized 
in Section 2). It is evident that solving Equation (20) for a sine-wave input yields a set of equations 
different from Equations (3–6). But, if the input amplitude of the AC signal is low enough, sensor 
conductance can be taken as approximately constant and consequently, the expressions in Section 2 
may be taken as valid.  

Specifically, the frequency analyses carried out in [20,21] were done under a sine-wave input with 
As = 0.5 V, and therefore the results reported by those sources can be trusted. Note from Figure 3 that 
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for |Vs1| < 0.5 V, sensor conductance can be taken approximately as constant regardless of changes 
in Vs1. 

In contrast, the tests carried out in [20,21] for estimating the effect of capacitance readings in  
force-estimation errors are in principle questionable, because the input signal used for those tests was a 
sine wave with As = 3 V. Nevertheless, considering that [20,21] reported an effective reduction in  
force-estimation errors, we hypothesize that amplitude nonlinearity does not significantly affect 
capacitance readings. Unfortunately, we are unable to estimate the underlying error stemming from the 
capacitance readings reported in [20,21], whether the input sine wave has an amplitude of 0.5 V or 3 V. 
Where the input sine wave has an amplitude of 0.5 V, Equation (20) must be solved analytically in 
terms of θ and Ao, which is a challenging task beyond the scope of this article; and where the input sine 
wave is 3 V, a comprehensive model of the amplitude nonlinearity must be developed for input 
voltages above 1V, and then such model must be included in the differential Equation (1).  

Neither procedure is addressed in this paper, because a method is proposed in Section 5 for 
bypassing the amplitude nonlinearity under AC operation, regardless of whether the input voltage is 
lower or higher than 1 V.  

Hyperbolic-tangent nonlinearity was hard to detect in our previous work [20,21], because it produces 
neither saturation nor exponential growth in the output voltage. An additional circumstance prevents 
the detection of amplitude nonlinearity; to show this, Vs2 was replaced in Equation (20) with a sine 
function, and Equation (12) was used to state Equation (20) in terms of q as shown below: 

( )1 atanh sin 2 2 cos(2 )s
o s g s

AV ft fC R A ft
q k

π π π⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 (21) 

A close look at Equation (21) reveals that the output voltage, Vo, is the sum of the nonlinear term 
stemming from sensor conductance and the term stemming from sensor capacitance. It is demonstrated 
in Section 6 that sensor capacitance is constant, regardless of changes in the input voltage, and therefore 
the resulting Vo in Equation (21) is the sum of a linear and a nonlinear term. From the time-domain 
viewpoint, given an input sine wave, the resulting output, Equation (21), looks rather sinusoidal, 
because the nonlinear response is diminished by the linear response. From the frequency-domain 
viewpoint, the output voltage, Equation (21), is slightly distorted because of the odd harmonics coming 
from the high-order terms of the atanh-Taylor series. 

5. Bypassing Amplitude Nonlinearity for Estimating Sensor Capacitance 

Factors q and k can be easily determined if the sensor is sourced with a DC signal; there is therefore 
no interest in estimating q and k using AC sourcing. Note in Equation (21) that sensor capacitance,  
Cs, is multiplied only by the term with the cosine function, so if that term can somehow be isolated, it 
may become possible to read sensor capacitance. 

Multiplying Vo from Equation (21) by: 

( )cos 2x xV A ftπ=  (22)

and low-pass filtering (LPF) yields this product: 
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[ ] ( ) ( )1cos 2 atanh sin 2 cos(2 )2 cos(2 )s
o x x x s g s

ALPF V V LPF A ft ft A ft fC R A ft
q k

π π π π π⎛ ⎞ ⎤⎡= − +⎜ ⎟⎣ ⎦⎝ ⎠
(23)

Considering that the composition of two odd functions is an odd function, the first term of  
Equation (21) is consequently odd (as the atanh and sin functions are both odd). Multiplying such a 
term by an even function, Equation (22), results in an odd function with frequency components at 
4 , 1nf n Nπ ∀ ≥ ∈  

The harmonics come from the decomposition of the atanh function in its Taylor series. Thus, the 
first term of Equation (23) can be expressed as: 

3 5

cos(2 )1 atanh sin(2 ) cos(2 ) sin(2 )

1 2sin(2 ) sin(2 ) ...
3 15

s x s
x

s s

A A ft Aft A ft ft
q k q k

A Aft ft
k k

ππ π π

π π

⎛ ⎞ ⎡= +⎜ ⎟ ⎢⎝ ⎠ ⎣
⎤⎛ ⎞ ⎛ ⎞− + + ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎥⎦

 (24)

Note that Equation (24) does not have a DC component, and thus the low-pass filter removes the 
entire signal. On the other hand, the second term of Equation (23) is an even function and may be 
rewritten as: 

( )2 cos(2 ) cos(2 ) 1 cos(4 )s g s x s x g sfC R A ft A ft fA A R C ftπ π π π π= +  (25)

Equation (25) has a nonzero mean value and a term with a frequency component at 4πf, which is 
removed by the LPF, and thus it can be simplified to:  

[ ]o x s x g sLPF V V fA A R Cπ= −  (26)

The above expression is useful for reading sensor capacitance, because the other factors in  
Equation (26) are all constants. The mathematical function LPF[VoVx] can be obtained by using a  
four-quadrant multiplier, such as the AD534, and an RC-series circuit in the low-pass configuration. 
Figure 8 summarizes the described process for measuring Cs. 

Figure 8. General diagram for measuring Cs by means of removing the conductance term 
from the output voltage by performing the operation LPF[VoVx]. 

 

Equation (26) is inherently different from Equation (6), because sensor conductance is not present 
in the former, while in the latter it is, albeit implicitly, due to the ratio Ao/As in Equation (6). This is an 
important difference, because the process depicted here removes the contribution of sensor 
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conductance from the output signal. So, regardless of what the conductance model is, Equation (26) 
remains unchangeable. We are unable to provide a theoretical demonstration of this statement until a 
model for 1/Rs is developed for sourcing voltages above 1 V; however, in the next section we present 
experimental results that support this hypothesis. 

We would like to stress that different methods for measuring capacitance were evaluated [27-30], 
but the fact that a variable resistor, Rs, is placed across the capacitance, Cs, makes reading difficult. 
The method described above was inspired by the synchronous demodulation of RF signals [31]. Note 
that Cs can be considered as the message in Equation (25), the term 2πfRgAscos(2πft) acts like the carrier 
signal and Axcos(2πft) as the demodulating signal. 

6. Experimental Results of Conductance and Capacitance Readings for Different Input Voltages 

With the aim of demonstrating the statements presented herein, we carried out a series of capacitance 
and conductance measurements on four PFSs under different sourcing and force conditions. The tests 
are classified below according to sourcing type. 

6.1. DC Sourcing 

Forces were applied within the range of 0 N to 250 N under seven sourcing conditions, starting at 
0.4 V, with increments of 0.1 V, up to 1 V. For every supply voltage, the sensor sensitivity, m, and the 
y-intercept, b, were found according to the classical method proposed by the manufacturer [24]. These 
values of m, b are used as references for calculating subsequent errors in m, b for the different methods 
presented in this article. 

Sensors were then characterized in terms of m′, b′ and k as described in Section 3.3. Doing so 
enabled Equation (15) to be assembled and m, b to be estimated for the aforementioned discrete DC 
voltages. 

With the aim of demonstrating the typical error resulting from the assumption of linear-sensor 
response, the values of m, b measured at 1 V and Equation (11) were used to estimate m, b for the 
remaining six voltages (0.4 V to 0.9 V). That is, if the m value measured at 1 V is 20 mV/N, use of 
Equation (11) shows that the estimated value of m at 0.4 V is equal to 8 mV/N; the same calculation 
applies to the y-intercept coefficient, b. Table 1 compares the errors of m and b predicted from the 
linear, Equation (11), and the nonlinear model, Equation (15).  

Table 1. Comparison table of the average errors resulting from the estimation of m, b by 
means of a linear Equation (11) and a nonlinear Equation (15) under input voltages within 
the range (0.4 V, 0.9 V). 

Sensor number 1 2 3 4 
Average error  
for all sensors 

Average error (%) in m resulting from (15) 2.79 1.07 2.67 1.62 2.04 
Average error (%) in m resulting from (11) 10.3 10.3 10.8 14 11.35 
Average error (%) in b resulting from (15) 9.46 12.5 10.9 8.2 10.27 
Average error (%) in b resulting from (11) 13.5 20.3 13.3 10.9 14.5 
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Two facts may be drawn from Table 1. First, the errors in the m values predicted by Equation (15) 
are rather small for all sensors. This means that the nonlinear model presented in this paper produces 
matches in predicting the sensor sensitivity for any input voltage under 1 V. In fact, the average error 
in m for all sensors and all voltages is only 2.04%. Second, the assumption of linear response in sensor 
conductance produces a reasonably greater error when predicting m via Equation (11); an average error 
of 11.35% was obtained, which is almost six times the error resulting from Equation (15). Figure 9 
shows the values of m for sensor number four, under all the discrete applied voltages. Also shown are 
the trendlines arising from the linear Equation (11) and the nonlinear model, Equation (15). 

Figure 9. Sensor Sensitivity, m, for different input voltages. The prediction from the linear 
Equation (11) and the nonlinear Equation (15) models are compared to the reference 
sensitivity measured at different input voltages. 

 

Second, the average error for all sensors resulting from the estimation of the y-intercept coefficient, 
b, was quite high, 10.27% and 14.5%, for the two models. Despite this fact, we declare that Equation 
(15) can effectively model sensor behavior, because through our various optimization processes we 
have effectively reduced the estimation error of b by discarding the highly noisy data obtained under 
forces lower than 40 N. Such data are noisy because of the low amplitude of Vo, resulting from the 
low-force condition. If the data taken under forces lower than 40 N are discarded, the average error for 
the y-intercept estimation is reduced to 6.35%. 

6.2. AC Sourcing 

Input amplitudes are not restricted to be under 1 V for the AC sourcing experiments, because the 
intention is to subject the feasibility of the measuring scheme in Figure 8 to a thorough test. Figure 10 
shows two different sets of capacitance values, Cs, for the same sensor, taken under sinusoidal 
excitation at a fixed frequency of 4 KHz. The black values were taken according to the measuring 
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scheme in Figure 8, whereas the red data points were taken from our previous work [20,21], when the 
amplitude nonlinearity was unknown and the equations in Section 2 were used to estimate Cs. This set of 
data was taken at a fixed input amplitude of 3 V.  

Figure 10. Sensor capacitance, Cs, measured using two different methods under different 
sourcing voltages. 

 

Considering:  
(1) That the black data points in Figure 10 are rather close to each other for the different driving 

voltages, and  
(2) That the feasibility of the measuring scheme in Figure 8 was theoretically demonstrated in 

Section 5  
it may be concluded that sensor capacitance is constant, regardless of changes in the driving voltage, 
with the restriction of |Vs1| < 1 V. A look at the capacitance values for input voltages of 1.5 V and 
2.5 V (see Figure 10) shows that it is reasonable to suggest that Cs remains constant for Vs1 above 1 V, 
but this cannot be definitely stated until a model for sensor conductance is developed for Vs1 above 
1 V, because the compatibility of such model with the measuring scheme in Figure 8 must be 
ascertained first. 

An attempt was made to fit a linear trendline to the black data points in Figure 10. This is a logical 
approach, considering that our previous work reported a linear variation of Cs in response to force 
changes [20,21]. However, the residuals resulting from the fitting process suggested that a linear fit 
was unsuitable. Thus, different trendline forms were tried. The best, but also simplest, trendline that 
could model the variation of Cs was a square-root model dependant on the applied force, F:  

s oC C a F b= + +  (27)

where a, b and Co are constants estimated from the fit.  
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On the other hand, the red data points in Figure 10, taken from our previous work [20,21], were 
fitted with a line, and an acceptable coefficient of determination was obtained, R2 = 0.9942. The same 
data points were fitted with Equation (27), and the value of R2 was even better, R2 = 0.9987; this 
means that in principle either trendline is valid for fitting the data. 

From Figure 10, it is clear that one set of data points is incorrect, because it is impossible that 
different values of capacitance are measured for the same sensor, under the same applied forces and 
the same mechanical layout. Considering that the red data points were taken under the erroneous 
supposition of linear conductance, it is logical to suggest that it was the assumption that yielded the 
incorrect values of capacitance; but, as stated in Sections 4 and 5, there are a few steps remaining to be 
accomplished before this hypothesis can be demonstrated. 

In other words, we have theoretically and experimentally demonstrated that the black data points 
from Figure 10 are correct at least for |Vs1| < 1 V, but we are unable to theoretically demonstrate that 
the error basis from the red data points is due to the assumption of linear sensor conductance, despite 
some experimental results supporting this hypothesis. For instance, a look at the measured capacitance 
under low applied forces in Figure 10 shows that both methods estimate the same Cs. This may be 
understood if one recalls the piezoresistive behavior of the sensor; so, under low applied forces and AC 
excitation, sensor resistance can be taken as virtually infinite (See Figure 2), and its response is 
dominated only by capacitive factors. Under these circumstances, the resistive term in Equation (1) 
may be discarded, and the measured capacitance will be the same, regardless of the conductance model 
or the method employed for measuring Cs. It is only when the exerted force is increased that the 
aforementioned conditions start to play an important role in the estimation of sensor capacitance, and 
consequently, as F increases, the two sets of data points gradually diverge. 

7. Conclusions and Future Work 

For sourcing voltages below 1 V, a comprehensive model for the FlexiForce model A201-100 
piezoresistive device has been developed and tested. A nonlinear response has been identified in sensor 
conductance corresponding to a hyperbolic tangent function.  

A general method for obtaining a specific sensitivity, m, in sensor response has been presented and 
experimentally tested on four FlexiForce sensors; such method produced an average error of 2.04% 
when estimating m. Whereas the y-intercept, b, estimation yielded a considerable greater error of 
10.27%; however such error can be diminished by discarding the noisy data resulting from the highly 
noisy data obtained under forces lower than 40 N. The method presented in this article has considerably 
improved the plug-and-play capability of the piezoresistive device. 

The authors have theoretically and experimentally demonstrated that sensor capacitance is constant 
regardless of changes in the input voltage whenever the driving voltage is held below 1 V. The feasibility 
of a measuring scheme for bypassing conductance nonlinearity has also been presented and tested.  

Conversely, the experimental results support the hypothesis of constant capacitance for input 
voltages above 1 V. Nonetheless, it is necessary to develop a theoretical model for sensor conductance 
for sourcing voltages above 1V before declaring that sensor capacitance remains unchangeable at such 
sourcing voltages. Future work will mainly focus on adding the puck area as a variable in the general-
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sensor model. This would allow the final user to assess how the sensor sensitivity is affected when the 
puck area is changed. 
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