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Abstract: A wireless sensor network is a large collection of sensor nodes with limited 

power supply and constrained computational capability. Due to the restricted 

communication range and high density of sensor nodes, packet forwarding in sensor 

networks is usually performed through multi-hop data transmission. Therefore, routing in 

wireless sensor networks has been considered an important field of research over the past 

decade. Nowadays, multipath routing approach is widely used in wireless sensor networks 

to improve network performance through efficient utilization of available network 

resources. Accordingly, the main aim of this survey is to present the concept of the 

multipath routing approach and its fundamental challenges, as well as the basic motivations 

for utilizing this technique in wireless sensor networks. In addition, we present a 

comprehensive taxonomy on the existing multipath routing protocols, which are especially 

designed for wireless sensor networks. We highlight the primary motivation behind the 

development of each protocol category and explain the operation of different protocols in 

detail, with emphasis on their advantages and disadvantages. Furthermore, this paper 

compares and summarizes the state-of-the-art multipath routing techniques from the 

network application point of view. Finally, we identify open issues for further research in 

the development of multipath routing protocols for wireless sensor networks.  
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1. Introduction  

Recent advances in wireless communication technologies and the manufacture of inexpensive 

wireless devices have led to the introduction of low-power wireless sensor networks. Due to their ease 

of deployment and the multi-functionality of the sensor nodes, wireless sensor networks have been 

utilized for a variety of applications such as healthcare, target tracking, and environment monitoring [1]. 

The main responsibility of the sensor nodes in each application is to sense the target area and transmit 

their collected information to the sink node for further operations. Resource limitations of the sensor 

nodes and unreliability of low-power wireless links [2], in combination with various performance 

demands of different applications impose many challenges in designing efficient communication 

protocols for wireless sensor networks [3]. Meanwhile, designing suitable routing protocols to fulfill 

different performance demands of various applications is considered as an important issue in wireless 

sensor networking. In this context, researchers have proposed numerous routing protocols to improve 

performance demands of different applications through the network layer of wireless sensor networks 

protocol stack [4,5]. Most of the existing routing protocols in wireless sensor networks are designed 

based on the single-path routing strategy without considering the effects of various traffic load 

intensities. In this approach, each source node selects a single path which can satisfy performance 

requirements of the intended application for transmitting its traffic towards the sink node. Although 

route discovery through single-path routing approach can be performed with minimum computational 

complexity and resource utilization, the limited capacity of a single path highly reduces the achievable 

network throughput [6,7]. Furthermore, the low flexibility of this approach against node or link failures 

may significantly reduce the network performance in critical situations. For instance, whenever the 

active path fails to transmit data packets (as a result of limited power supply of the sensor nodes, high 

dynamics of wireless links and physical damages), finding an alternative path to continue data 

transmission process may cause extra overhead and delay in data delivery. Therefore, due to the 

resource constraints of sensor nodes and the unreliability of wireless links, single-path routing 

approaches cannot be considered effective techniques to meet the performance demands of various 

applications. In order to cope with the limitations of single-path routing techniques, another type of 

routing strategy, which is called the multipath routing approach has become as a promising technique 

in wireless sensor and ad hoc networks. Dense deployment of the sensor nodes enables a multipath 

routing approach to construct several paths from individual sensor nodes towards the destination [8]. 

Discovered paths can be utilized concurrently to provide adequate network resources in intensive 

traffic conditions. Alternatively, each source node can use only one path for data transmission and 

switch to another path upon node or link failures. The latter one is mainly used for fault-tolerance 

purposes, and this is known as alternative path routing.  

In the past decade, multipath routing approach has been widely utilized for different network 

management purposes such as improving data transmission reliability, providing fault-tolerant routing, 
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congestion control and Quality of Service (QoS) support in traditional wired and wireless networks. 

However, the unique features of wireless sensor networks (e.g., constrained power supply, limited 

computational capability, and low-memory capacity) and the characteristics of short-range radio 

communications (e.g., fading and interference [9,10]) introduce new challenges that should be 

addressed in the design of multipath routing protocols. Accordingly, existing multipath routing 

protocols proposed for traditional wireless networks (such as ad hoc networks) cannot be used directly 

in low-power sensor networks. During the past years, this issue has motivated the research community of 

wireless sensor networks to develop multipath routing protocols which are suitable for sensor networks.  

There are several papers surveying proposed routing protocols for wireless sensor networks. These 

surveys describe and analyze the general routing strategies proposed for sensor networks [4,5]. 

However, none of these literatures has provided a comprehensive taxonomy on the existing multipath 

routing protocols for wireless sensor networks. Al-Karaki et al. [4] presented routing challenges and 

design issues in wireless sensor networks. They classified all the existing routing strategies based on 

the network structure and protocol operation. Alwan et al. [11] provided a brief overview on the 

existing fault-tolerant routing protocols in wireless sensor networks and categorized these protocols 

into retransmission-based and replication-based protocols. Tarique et al. [12] and Mueller et al. [13] 

classified the existing multipath routing protocols in ad hoc networks based on the primary criterion 

used in their design. Accordingly, the principal motivation of conducting this research was lack of a 

comprehensive survey on the proposed multipath routing protocols for wireless sensor networks. To 

the best of our knowledge, this paper is the first effort to classify and investigate the operation as well 

as benefits and drawbacks of the existing multipath routing protocols in sensor networks.  

The rest of this paper is organized as follows. Section 2 provides an overview on the main 

challenges in designing routing protocols for wireless sensor networks and presents a brief 

classification on the existing protocols in these networks. Primary motivations behind using multipath 

routing approach in wireless sensor networks and key issues in designing multipath routing protocols 

are discussed in Section 3. Section 4 introduces a comprehensive taxonomy of the existing multipath 

routing protocols in wireless sensor networks. This classification provides a deep analysis on the most 

recently proposed multipath routing protocols, highlighting their advantages and disadvantages. 

Section 5 examines the main features of different classes of multipath routing protocols and their 

suitability for various applications. Finally, Section 6 concludes and identifies some of the future 

directions for further research in this area.  

2. Routing in Wireless Sensor Networks 

Since, data transmission from the target area towards the sink node is the main task of wireless 

sensor networks, the utilized method to forward data packets between each pair of source-sink nodes is 

an important issue that should be addressed in developing these networks. 

Due to the intrinsic features of low-power wireless sensor networks, routing in these networks is 

much more challenging compared to the traditional wireless networks such as ad hoc networks [4,5]. 

First of all, according to the high density of sensor nodes, routing protocols should be able to support 

data transmission over long distances, regardless of the network size. In addition, some of the active 

nodes may fail during network operation due to energy depletion of the sensor nodes, hardware 
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breakdowns or environmental factors, but this issue should not interrupt the normal network operation. 

Moreover, as sensor nodes are tightly limited in terms of power supply, processing capability, memory 

capacity and available bandwidth, routing and data dissemination should be performed with efficient 

network resource utilization. Furthermore, since the performance demands of the wireless sensor 

networks are application specific, routing protocols should be able to satisfy the QoS demands of the 

application for which the network is being deployed. For example, challenges in designing routing 

protocols for time critical applications (e.g., target tracking and disaster management) are different 

from issues that should be considered in developing routing protocols for other applications such as 

habitat monitoring.  

According to the aforementioned differences between wireless sensor networks and traditional 

wireless networks, numerous routing protocols were proposed over the past decade to address the 

routing challenges imposed by the new features of sensor networks. Al-Karaki et al. [4] classified the 

existing routing protocols in wireless sensor networks from two different perspectives: (1) network 

structure and (2) protocol operation. From the network structure point of view, routing algorithms are 

classified as flat, hierarchical and location-based routing protocols. Flat routing protocols are designed 

for networks with homogenous nodes, i.e., all the network nodes have the same processing and data 

transmission capabilities while their packet forwarding role is also similar. Directed Diffusion [14], 

Sensor Protocols for Information via Negotiation (SPIN) [15], Rumor Routing [16], Minimum Cost 

Forwarding Algorithm (MCFA) [17], and Energy-Aware Routing (EAR) [18] can be included in this 

category. According to the simple structure of the flat network architecture, this group of routing 

protocols demonstrates several advantages such as the low overhead of topology maintenance and the 

ability of multipath discovery. Hierarchical routing protocols were originally proposed to improve 

network scalability and energy efficiency through node clustering. In this group of routing protocols, 

all the sensor nodes are grouped into clusters and one node with more resources in each cluster is 

assigned as the cluster head. Each cluster head is responsible for processing the received data packets 

from its cluster nodes, communicating with other cluster heads or the sink node, and coordinating the 

cluster nodes. In contrast, all the cluster members should sense the environment and forward their 

collected data towards the respective cluster head for further operations. Although this approach can 

provide higher network scalability, clustering operation and cluster head replacement (which is 

required to prevent fast energy depletion of the cluster heads) impose high signaling overhead to the 

network. Several routing protocols such as Threshold-Sensitive Energy-Efficient Sensor Network 

Protocol (TEEN) [19], Adaptive Periodic Threshold-Sensitive Energy-Efficient Sensor Network Protocol 

(APTEEN) [20], Low-Energy Adaptive Clustering Hierarchy (LEACH) [21], Power-Efficient Gathering 

in Sensor Information Systems (PEGASIS) [22] and Two Tire Data Dissemination (TTDD) [23] fall in 

this category. Routing protocols in the last group utilize the exact location of the sensor nodes to make 

routing decisions [24,25]. The geographic locations of sensor nodes can be obtained directly using 

Global Positioning System (GPS) devices or indirectly by exchanging some information regarding to 

the signal strengths received at each node. However, since localization support requires specific 

hardware components and imposes significant computational overhead to the sensor nodes, this 

approach cannot be easily used in resource-constrained wireless sensor networks. Geographic and 

Energy-Aware Routing (GEAR) [24] and Geographic Adaptive Fidelity (GAF) [26] can be referred as 

the geographic routing protocols. 
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From the protocol operation perspective, all the existing routing protocols in the aforementioned 

categories can be further classified into negotiation-based, query-based, QoS-based, multipath-based 

and coherent-based protocols. The key idea in the design of negotiation-based routing protocols is to 

provide energy-efficient communication by reducing data redundancy during data transmission. In 

these protocols (e.g., SPIN family of protocols [15]), each sensor node adds a high-level data 

description to its collected data and performs some negotiations with its neighboring nodes to 

eliminate duplicated data packets. In the query-based routing protocols, a sink node propagates a query 

message throughout the network regarding the desired sensing task. If a node senses any related 

information, it sends back its collected data towards the sink node through the reverse path. Directed 

Diffusion [14] and Rumor Routing [16] are two examples of the primary query-based routing 

protocols. The third group of routing protocols (i.e., QoS-based routing protocols) is mainly designed 

to satisfy QoS demands of different applications (e.g., delay, reliability, and bandwidth). The main aim 

of these approaches is to establish a trade-off between energy consumption and data quality. Sequence 

Assignment Routing (SAR) protocol [27], SPEED [28], Multipath Multi-SPEED (MMSPEED) [29], 

Energy-aware QoS Routing Protocol [30] and Delay-minimum Energy-aware Routing Protocol 

(DERP) [31] can be considered as the QoS-aware routing protocols. In contrast with single-path 

routing techniques, multipath routing protocols allow each source node to find multiple paths towards 

the sink node to improve network performance. There are several protocols in this category such as 

Braided Multipath Routing [32] and N-to-1 Multipath Routing Protocol [33]. Since, in wireless sensor 

networks, all the network nodes cooperatively process the flooded data in the network, the last group 

of routing algorithms is dedicated to the coherent data processing-based routing protocols. In this group, 

data packets are sent to the aggregators in order to reduce data redundancy. Therefore, energy efficiency 

is the main purpose of these routing protocols. Routing protocols such as Directed Diffusion [14], 

SPIN [15] and SAR [27] utilize data aggregation and can be categorized as the coherent data 

processing-based routing protocols. From this point onward, we focus on the multipath routing 

approach and the related issues that should be considered in the design of these protocols for wireless 

sensor networks.  

3. Multipath Routing in Wireless Sensor Networks 

Due to the limited capacity of a multi-hop path [6] and the high dynamics of wireless links [2,9], 

single-path routing approach is unable to provide efficient high data rate transmission in wireless 

sensor networks. Nowadays, the multipath routing approach is broadly utilized as one of the possible 

solutions to cope with this limitation. This section presents the primary motivations behind using 

multipath routing approach in wireless sensor networks. We also discuss the main design issues in the 

development of the existing multipath routing protocols. 

3.1. Motivations for Using Multipath Routing Approach in Wireless Sensor Networks 

As stated before, multipath routing technique has demonstrated its efficiency to improve wireless 

sensor and ad hoc networks’ performance. In the following, we review the performance gains that can 

be achieved through using multipath routing approaches. 
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Reliability and Fault-Tolerance: Due to the time-varying characteristics of low-power wireless 

links, dynamic network topology, and wireless interference, reliable data transmission in wireless 

networks is a challenging task [34,35]. The original idea behind using multipath routing approach in 

wireless sensor networks was to provide path resilience (against node or link failures) and reliable data 

transmission. In the fault tolerance domain, whenever a sensor node cannot forward its data packets 

towards the sink, it can benefit from the availability of alternative paths to salvage its data packets 

from node or link failures. Through this mechanism, as long as an alternative path is available from a 

target area towards the sink node, data forwarding can be continued without any interruption even in 

the case of path failure.  

Multiple paths also can be used simultaneously to elevate data transmission reliability. There are 

two different approaches to provide reliable data transmission through concurrent multipath routing. 

The first approach is based on transmitting multiple copies of an original data packet over different 

paths to ensure packet recovery from several path failures. Through this technique, data transmission 

reliability can be guaranteed, if data forwarding over at last one path is done successfully. Erasure coding 

is another technique used by some of the existing protocols to provide desired reliability demand of 

different applications. Based on the utilized coding technique, each source node adds some additional 

information to the original data packets and then distributes the generated data packets over different 

paths. To reconstruct original packets, at last a certain number of transmitted data packets from each 

source node should be received by the sink node. Accordingly, if a few numbers of paths failed to 

deliver some data packets to the sink node, still the reliability of data transmission can be guaranteed 

through reconstructing data packets from successfully received data packets by the sink node.  

Load Balancing and Bandwidth Aggregation: According to the resource limitations of wireless 

sensor nodes, intensive traffic loads in high-data rate applications are prone to congestion, which 

highly influences the network performance [36,37]. To handle this problem, data dissemination 

algorithms can profit from the high density of wireless sensor networks to increase network capacity 

by employing more network resources. For this purpose, multipath routing approaches can provide the 

best solution to support the bandwidth requirements of different applications and reduce the probability 

of network congestion through splitting network traffic over several paths [38–40]. Furthermore, 

distributing network traffic over more sensor nodes can result in even energy consumption among the 

sensor nodes and prolong the network lifetime. However, the broadcast nature of radio communications 

impedes achieving these goals. In fact, since in a single-channel wireless network, sensor nodes use a 

shared wireless channel to communicate with each other, concurrent utilization of adjacent paths results 

in intensive inter-path interference, which increases the probability of packet collision at the nodes 

along the active paths [41,42]. In the literature, this problem is called the route coupling effect [43]  

and specifically limits the performance of multipath routing protocols [44,45]. This issue imposes a  

big challenge in designing efficient multipath routing protocols. In order to reduce the effects of  

route coupling problem, location-aware routing is one of the most evident techniques to construct  

non-interfering paths [25,46]. Alternatively, other techniques such as directed antenna [47] and  

multi-channel data transmission [48–51] have been proposed to reduce inter-path interference. 

However, as location-aware routing protocols demand localization support, they impose significant 

overhead in terms of communication and computational complexity. Utilizing directed antennas for 

interference reduction also requires specific hardware equipment that may not be cost-effective in  
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low-cost wireless sensor nodes. In addition, while multi-channel communication can increase network 

throughput and reduce inter-node interference, it requires a specific MAC layer mechanism that 

supports channel switching. More importantly, multichannel communication in the frequency band  

2.4 GHz is highly affected by the external interference caused by 802.11 networks and Bluetooth 

devices. Accordingly, these approaches may not be efficient solutions to reduce the negative effects of 

interference in many applications. Wu et al. [52] introduced an indicator metric, which is called 

correlation factor, to measure the relative degree of inter-path independency. The correlation factor of 

two paths is defined as the number of links connecting two paths to each other. Since this approach 

requires the network connectivity graph to select the minimum interfering paths, using this technique 

in dense wireless sensor networks imposes high computational overhead. 

QoS Improvement: QoS support in terms of network throughput, end-to-end latency and data 

delivery ratio is an important objective in designing multipath routing protocols for different types of 

networks [8,13]. Discovered paths with various characteristics can be utilized to distribute network 

traffic based on the QoS demands of the application for which the multipath routing protocol has been 

designed. For instance, time critical data packets can be transmitted through higher capacity paths with 

minimum delay while delay insensitive non-critical data packets can be forwarded through non-optimal 

paths with higher end-to-end delay. Furthermore, in contrast with the single-path routing techniques 

multipath routing approaches can preserve QoS demands of the intended application in the case of path 

failures through directing network traffic to the another active path. Still, due to the link layer issues in 

single-channel wireless networks, improving network throughput and data delivery ratio through 

concurrent multipath routing in sensor networks may not be as easy as wired networks.  

3.2. Basic Principals in Designing Multipath Routing Protocols 

Although the multipath routing approach has been employed for different purposes, the achieved 

performance gain is highly affected by the ability of the proposed protocol to construct an adequate 

number of high-quality paths. Each multipath routing protocol includes several components to 

construct multiple paths and distribute network traffic over the discovered paths. In the following, we 

describe these components in detail. 

Path Discovery: Since data transmission in wireless sensor networks is commonly performed 

through multi-hop data forwarding techniques, the main task of the route discovery process is to 

determine a set of intermediate nodes that should be selected to construct several paths from the source 

nodes towards the sink node. Different parameters are used in the existing multipath routing protocols 

to make routing decisions. Among these parameters, the amount of path disjointedness is the main 

criterion which is utilized by all the existing multipath routing protocols to discover several paths from 

each sensor node towards the sink node [8,12]. As depicted in Figure 1, discovered paths can be 

generally categorized as node-disjoint, link-disjoint, or partially disjoint paths. For node-disjoint paths, 

there is no common node or link among the discovered paths. Therefore, any node or link failure in a 

set of node-disjoint paths only affects the path, which contains the failed node or link. Since this kind 

of path disjointedness provides higher aggregated network resources, node-disjoint paths are preferred 

over link-disjoint and partially disjoint paths. Still due to the random deployment of the sensor nodes, 

it is difficult to discover a large set of node-disjoint paths between sensor nodes and sink node. In 
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contrast, link-disjoint paths may contain several common nodes while there is no shared link between 

the paths. Accordingly, any node failure in a set of link-disjoint paths may deactivate several paths that 

share the failed node. Finally, partially disjoint paths can include multiple paths, which may share 

several links or nodes between different paths. In comparison with the aforementioned types of path 

disjointedness, any link or node failure in a set of partially disjoint paths may affect several paths. 

However, constructing multiple partially disjoint paths can be easily performed. Regarding to the 

advantages and disadvantages of different types of path disjointedness, network density and performance 

requirements of underlying application play an important role to make the best decision between using 

node-disjoint, link-disjoint or partially disjoint paths. 

Figure 1. Various types of path disjointedness. (a) Node-Disjoint Paths; (b) Link-Disjoint 

Paths; (c) Partially Disjoint Paths. 

 
     (a)            (b)           (c) 

 

The amount of path disjointedness is the basic criteria that should be considered for discovering a 

set of paths, but due to the time-varying properties of radio communications and resource limitations 

of the sensor nodes, only considering this criterion may not result in the construction of high-capacity 

paths [2,53,54]. In some situations, merely assuming the amount of path-disjointedness for route 

discovery may lead to the construction of several low-quality paths. To address this problem, in 

addition to the amount of path disjointedness, different routing algorithms utilize various routing cost 

functions to make the best routing decision based on the application related performance demands. The 

main purpose of a routing cost function is to capture various properties of wireless links and sensor 

nodes to calculate cost of data transmission over different paths. To this aim, the employed routing 

cost functions in the existing multipath routing protocols are composed from several components to 

measure the capability of different nodes or links to provide performance demands of various 

applications (e.g., maximizing path throughput, minimizing end-to-end delay, improving network 

lifetime, and even traffic distribution). Path length, packet loss rate, delay and residual battery level of 

the sensor nodes are among the basic components of the routing cost functions utilized by the existing 

multipath routing protocols.  

Path Selection and Traffic Distribution: After construction of multiple paths, another important 

issue that should be addressed is the selection of an adequate number of paths for data transmission 

purposes. According to the main intention of designing each multipath routing protocol, a certain 

number of paths should be selected to meet the performance demands of the intended application. 

Therefore, proposing a perfect path selection mechanism to choose a sufficient number of paths is the 

most important part of designing a high-performance multipath routing protocol. One protocol may 

decide to use only the best path for data transmission and keep additional paths as the backup paths for 

fault-tolerance purposes [12,32,55]. In contrast, another multipath routing protocol may utilize several 
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paths concurrently to provide reliable data transmission or even traffic distribution [56–60]. Still, the 

number of selected paths plays an important role to improve different performance parameters. In fact, 

due to the wireless interference between nearby nodes, using all the constructed paths in single-channel 

wireless networks does not necessarily provide higher data transmission capacity. Nevertheless, data 

transmission through a few numbers of paths may not efficiently utilize the underlying resources of 

dense wireless sensor networks. 

Once a set of paths are selected among the discovered paths, the multipath routing protocol should 

determine how to distribute network traffic over the selected paths. Based on the primary motivation 

behind the design of different multipath routing protocols they may utilize various traffic allocation 

mechanisms. For instance, transmission reliability can be guaranteed by introducing a certain degree of 

data redundancy in the data delivery process based on the reliability requirement of the underlying 

application. After that, the source node will utilize several paths to forward generated network traffic 

towards the sink node [57]. If the key idea is to improve performance demands such as throughput, 

data delivery ratio, delay, and lifetime, an efficient load distribution mechanism can be employed to 

distribute the overall network traffic over the constructed paths [41,45]. Furthermore, to improve 

resource utilization over individual paths, the injected traffic rate over each path should be calculated 

according to the path capacity. 

Path Maintenance: Due to the resource constrains of sensor nodes and high dynamics of low-power 

wireless links, paths are highly error prone. Therefore, path reconstruction should be provided to 

reduce performance degradation. This is the main task of the path maintenance phase in multipath 

routing protocols. Path rediscovery process can be initiated in three different situations: (1) when an 

active path has failed, (2) when all the active paths have failed or, (3) when a certain number of active 

paths has failed. Since, the frequency of initiating route rediscovery process in the first approach is 

higher than for the two other approaches, using this strategy imposes a high overhead. Nevertheless, 

performing a route rediscovery process after the failure of all the active paths may significantly reduce 

network performance. Therefore, it seems that the third approach may represent a trade-off between 

the advantages and disadvantages of the first two approaches.   

4. Taxonomy of the Existing Multipath Routing Protocols 

Based on the discussed issues in Section 3.2, different applications demand for specific path 

selection and traffic distribution mechanisms.  

Figure 2 introduces a comprehensive classification of the multipath routing protocols proposed  

for wireless sensor networks. The suggested taxonomy classifies the existing multipath routing 

protocols into three main categories (i.e., alternative path routing, multipath routing for reliable data 

transmission, and multipath routing for efficient resource utilization), based on the employed path 

selection and traffic distribution mechanisms. 

Figure 3 shows the three main classes of multipath routing approaches and their improvements over 

time. 
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Figure 2. Taxonomy of the existing multipath routing protocols in wireless sensor networks. 

 

Figure 3. Taxonomy of the existing multipath routing protocols based on their historic design. 

 

4.1. Alternative Path Routing 

Most of the existing multipath routing protocols in this class were mainly developed to provide fault 

tolerance at the network layer of protocol stack. Since providing fault tolerance was the primary 

motivation of utilizing multipath routing approaches for reliable data transmission over unreliable 

links, most of the early works on multipath routing technique fall in this category. As link and node 

failures are the main causes of path failures, the primary objective of these protocols is to guarantee 

certain performance parameters through preserving multiple alternative paths as the backup routes. 

This section introduces the ongoing research on the fault-tolerant routing using multipath routing 

approach. Table 1 summarizes few of the protocols from this category. 

Directed Diffusion [14] is a query-based routing protocol that uses the concept of multipath routing 

to provide path failure protection. Figure 4 shows the main operations of this protocol. According to 

Figure 4(a), routing operation is initialized by the sink node through flooding interest messages 

throughout the network. These interest messages contain some information regarding to the task that 

should be performed by the sensor nodes. During this stage, all the intermediate nodes cache the 
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interest messages received from their neighbors for later use. Moreover, upon reception of an interest 

message, the receiver node creates a gradient towards the node from which this message has been 

received. As it can be seen from Figure 4(b), in this stage several paths can be discovered between 

each pair of source-sink nodes. After that, whenever a source node detects an event matched with the 

existing information in its interest table, it forwards its data packets towards the sink node through all 

the constructed gradients. The sink node receives its requested data through several paths with a  

low-data rate. Based on the packet reception performance over each path, the sink node can select the 

best path, i.e., the path with minimum latency, for data transmission. For this, the sink node reinforces 

the selected path by sending low-rate reinforcement messages towards the source node. Then, the 

source node merely transmits its data towards the sink node through the selected path. This process is 

demonstrated in Figure 4(c). Furthermore, sink node continues to send low-rate interest messages over 

the remaining paths. This is to preserve the freshness of the established interest tables at the 

intermediate nodes, while it also maintains the discovered paths. When the active path fails to forward 

data packets, another available path can be used to provide fault-tolerant routing. Accordingly, 

whenever the data reception rate from the active path is reduced, the sink node reinforces the second 

available best path. 

Table 1. Summary of the multipath routing protocols with alternative path routing approach. 

Features 

Protocols 

Path 

Disjointedness

Route 

Maintenance 

Traffic 

Distribution

Number of 

Paths 

Path 

Chooser 

Improved Performance 

Parameters 

Directed  

Diffusion 

Partially 

disjoint 

New route 

discovery when 

all the active 

paths have failed

Not  

applicable 
Not limited Sink node 

 Data transmission delay 

caused by path failure 

 Packet loss rate caused 

by path failure 

Braided 

Multipath 

Routing  

Partially 

disjoint 

New route 

discovery when 

all the active 

paths have failed

Not  

applicable 
Not limited Sink node 

 Data transmission delay 

caused by path failure 

 Packet loss rate caused 

by path failure 

 Route discovery and 

path maintenance 

overhead 

Reliable and 

Energy-

Aware 

Routing 

Node-disjoint 

New route 

discovery when 

the primary path 

has failed 

Not  

applicable 
Two paths 

 Source node 

 intermediate 

nodes 

 Packet loss rate caused 

by path failure 

 Network lifetime 

Figure 4. A sample scenario for path creation in Directed Diffusion. (a) Interest 

propagation; (b) Gradient setup; (c) Path reinforcement and data transmission  

 
     (a)              (b)         (c) 
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Simulation results [14] show that Directed Diffusion can preserve event delivery ratio in the case of 

any node or link failure along the active path. Moreover, this protocol reduces data transmission delays 

caused by path failure by decreasing the frequency of route rediscovery. As Directed Diffusion 

depends on low-rate flooding for route discovery and path maintenance, this protocol does not provide 

an efficient route discovery mechanism. Furthermore, according to the main operation of this protocol, 

it can only be used in query-driven applications.  

Braided Multipath Routing Protocol [32] is a seminal multipath routing protocol proposed to 

provide fault-tolerant routing in wireless sensor networks. This protocol uses a similar approach as 

Directed Diffusion to construct several partially disjoint paths. A general form of the established paths 

is presented in Figure 5.  

Figure 5. Braided multiple paths. 

 
 

This protocol utilizes two types of path reinforcement messages to construct partially disjoint paths. 

Path construction is initiated through the sending of a primary path reinforcement message by the sink 

node to its best neighboring node towards the source node. For example, in Figure 5, the sink node 

sends the primary path reinforcement message to node D. When an intermediate node receives a 

primary path reinforcement message, it forwards this message to its best next-hop neighboring node 

towards the source node. This process is repeated until the primary path reinforcement message 

reaches the source node. In addition to the primary path construction process, source node and all the 

intermediate nodes along the primary path construct an alternative path around their next-hop 

neighboring nodes. This alternative path passes through the neighboring node, which is not included in 

the primary path. To this aim, whenever the sink and intermediate nodes send out the primary path 

reinforcement message, they also generate an alternative path reinforcement message and send this 

message to their next preferred neighboring node towards the source node. For instance, in Figure 5, 

the sink node sends an alternative path reinforcement message to node G in order to establish a backup 

path around node D. During this process, whenever an intermediate node, which is not a member of 

the primary path, receives an alternative path reinforcement message, it should forward this message 

to its best next-hop neighboring node. This process terminates upon reception of this message by one 

of the nodes along the primary path. As a result, each intermediate node along the primary path 

constructs a backup path around its next-hop neighboring node on the primary path via transmitting an 

alternative path reinforcement message. Through establishing a set of partially disjoint paths between 

the source and sink nodes, whenever the primary path fails to forward data packets towards the sink 

node, one of the constructed alternative paths can be utilized to avoid data transmission failure.  

Simulation results [32] show the lower overhead of braided multipath routing approach compared to 

the idealized node-disjoint multipath protocol. Furthermore, through performance evaluation of the 

proposed protocol under a wide range of failure probabilities, it is demonstrated that the proposed 
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approach provides about 50% higher resilience against path failures, compared to the idealized node-

disjoint multipath protocol. However, since this protocol utilizes only one path for data transmission, 

the end-to-end throughput is limited to the capacity of a single path. Besides, since this approach is 

designed based on the principles of Directed Diffusion, the drawbacks of Directed Diffusion can be 

also applied to this protocol. 

Reliable and Energy-Aware Multipath Routing [55] is designed to mitigate the energy efficiency 

requirement of wireless sensor networks, while provides reliable data transmission through 

maintaining a backup path from each source node towards the sink node. Similar to the above 

presented protocols, the routing operation in this protocol is also initialized by the sink node. In this 

way, whenever the sink node receives an interest message from a source node and there is no  

active path towards the source node, it initiates a service-path discovery process through flooding a  

service-path request message. Upon reception of the service-path request message at the 

corresponding source node, the receiver node transmits a service-path reservation message towards the 

sink node (through the reverse path) to confirm the discovered path. While the service-path reservation 

message moves from the source node towards the sink node, whenever a node along the reverse path 

receives this message, it reserves a part of its residual battery level for data transmission over this path. 

The service-path construction process finishes by receiving the service-path reservation message at the 

sink node. Afterwards, the source node can transmit its data packets towards the sink node through the 

constructed path. After constructing the service-path, sink node initiates another path discovery 

process to establish a backup path towards the same source node by flooding a backup path discovery 

message. During this process, the intermediate nodes, which are not a member of the discovered 

service-path, broadcast the received backup path discovery message to their neighbors. Therefore, a 

node-disjoint path is created to provide fault tolerance in the case of service-path failure. 

Although this protocol provides energy-efficient and reliable data transmission, however it suffers 

from the main disadvantage of the alternative path routing strategy: the end-to-end capacity is limited 

to the capacity of a single path. More importantly, this protocol neglects the effects of wireless 

interference and link unreliability on the required energy for successful data transmission.  

4.2. Concurrent Multipath Routing 

Thus far, the first group of multipath routing protocols, which are designed to fulfill the primary 

motivation of utilizing multipath routing, i.e., fault-tolerant routing, were discussed. Ongoing research 

on multipath routing approach tries to cope with the resource limitations of low-cost sensor nodes 

through concurrent data forwarding over multiple paths. This section introduces some of the recent 

research in this area.  

4.2.1. Multipath Routing Protocols for Reliable Data Transmission 

As it was pointed out in Section 3.1, in addition to the alternative routing techniques, concurrent 

multipath routing can be used to support reliable communication over unreliable low-power wireless 

links through introducing data redundancy during the data transmission process.  
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Table 2. Summary of the selected multipath routing protocols which are designed to 

provide reliable data transmission. 

Features 

 

Protocols 

Path 

Disjointedness 

Route 

Maintenance 

Traffic 

Distribution

Employed 

Reliability 

Mechanism

Number of 

Paths 

Path 

Chooser 

Improved 

Performance 

Parameters 

ReInForm Link-disjoint 
Not 

mentioned 

Multiple 

copies of 

each packet 

Copying the 

original 

packets 

Based on the desired 

reliability 
 Source node  Reliability 

N-to-1 

Multipath 

Routing 

Node-disjoint 
Not 

mentioned 

Per-packet 

splitting 

Packet 

salvaging 
Not limited 

 Source node 

 Intermediate 

nodes 

 Reliability 

H-SPREAD Node-disjoint 
Not 

mentioned 

Per-packet 

splitting 

Erasure 

coding 
Not limited 

 Source node 

 Intermediate 

nodes 

 Reliability  

 Security 

MMSPEED 
Partially 

disjoint 

Not 

mentioned 

Multiple 

copies of 

each packet 

Copying the 

original 

packets 

Based on the desired 

reliability 

 Source node 

 Intermediate 

nodes 

 Reliability 

 Delay 

MCMP 

 

Partially 

disjoint 

Not 

mentioned 

Multiple 

copies of 

each packet 

Copying the 

original 

packets 

Based on the desired 

reliability 

 Intermediate 

nodes 

 Data 

delivery ratio 

 Delay 

ECMP 
Partially 

disjoint 

Not 

mentioned 

Multiple 

copies of 

each packet 

Copying the 

original 

packets 

Based on the desired 

reliability and energy 

consumption for data 

transmission over 

individual links 

 Intermediate 

nodes 

 Network 

lifetime 

 Data 

delivery ratio

 Delay 

DCHT Node-disjoint 
Not 

mentioned 

Two copies 

of each 

packet over 

two paths 

Erasure 

coding 
Not limited 

 Source node 

 Intermediate 

nodes 

 Data 

delivery ratio 

 Delay 

EQSR Node-disjoint 
Not 

mentioned 

Per-packet 

splitting 

Erasure 

coding 

Based on the 

probability of 

successful data delivery 

over the active paths 

 Source node 

 Data 

delivery ratio

 Delay 

 

According to the operation of the protocols presented in the previous section, those protocols are 

designed to reduce the frequency of path rediscovery while they provide high path resilience against 

route failure. However, introduced protocols in this section utilize the packet replication technique or 

erasure coding in conjunction with the concurrent multipath routing technique to satisfy the reliability 

requirements of various applications. The rest of this section provides an in-detail explanation of the 

employed route discovery mechanisms in a few of the existing reliable-based multipath routing 

protocols and investigates about their advantages and disadvantages. Table 2 summarizes the main 

operation of the selected reliable-based multipath routing protocols to provide a fast overview over the 

main features of these protocols. 
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Reliable Information Forwarding (ReInForm) Using Multiple Paths in Sensor Networks [57] 

uses the packet duplication technique to provide desired data transmission reliability for each 

application. In this approach, whenever a source node wants to forward its traffic towards the sink 

node, it first determines the required data transmission reliability based on the importance of the 

collected data. After that, the source node adds some information (e.g., local channel error rate, its hop 

count towards the sink node, and desired reliability) as Dynamic Packet State (DPS) fields to the data 

packets and sends multiple copies of the generated data packets over several paths. The source node 

determines the required number of paths to fulfill the reliability demands of the collected information 

according to the DPS fields of the data packets. During data transmission, all the intermediate nodes 

use the provided information by the DPS fields in the received data packets to determine the number of 

copies that should be transmitted to their next-hop neighboring nodes. This process continues until all 

the transmitted data packets reach to the sink node.  

According to the main operation of this protocol, ReInForm tries to improve data transmission 

reliability through utilizing the packet duplication technique at all the involved sensor nodes in the data 

transmission process. Accordingly, the elevated reliability of this protocol is achieved at the high cost 

of energy consumption and bandwidth utilization, which is in contrast with the primary demands of 

resource-constrained sensor nodes. 

N-to-1 Multipath Routing Protocol [33] is proposed according to the convergecast traffic pattern of 

wireless sensor networks. The main aim is to simultaneously discover multiple node-disjoint paths 

from all the sensor nodes towards a single sink node. Furthermore, during data transmission phase, all 

the intermediate nodes utilize a packet salvaging technique at each hop to improve data transmission 

reliability. The entire routing operation in N-to-1 multipath routing protocol is performed through a 

simple flooding strategy in two stages. The sink node starts the first stage of the route discovery 

process through broadcasting a route update message. This stage, which is called branch-aware 

flooding, utilizes the main benefit of a simple flooding technique to construct a spanning tree and 

discover several paths from sensor nodes towards a single sink node. During this phase, each sensor 

node that receives a route update message for the first time, selects the sender of this message as its 

parent towards the sink node. In addition, if an intermediate node overhears a route update message 

from another neighboring node that introduces an alternative node-disjoint path through a different 

branch of the spanning tree, it adds this path to its routing table. This process continues until all the 

sensor nodes discover their primary path towards the sink node and a spanning tree same as Figure 6(a) 

is constructed through all the nodes. After that, the second stage of this protocol is initialized in order 

to discover more paths from each sensor node towards the sink node with the use of multipath 

extension flooding technique. As it can be seen from Figure 6(b), each link between two individual 

nodes that belong to different branches of the constructed spanning tree can help to establish an 

additional path from these nodes towards the sink node. Accordingly, the main purpose of employing 

multipath extension flooding technique in the second stage is to exchange some information regarding 

to the discovered node-disjoint paths in the first stage between the nodes belong to different branches 

of the constructed spanning tree. At the end of this stage, a routing tree similar to the Figure 6(b) is 

constructed by all the sensor nodes. Finally, source nodes split their traffic into several segments and 

distribute these data segments over the discovered paths. In fact, this protocol utilizes the single-path 

forwarding strategy for transmitting each data segment, while all the intermediate nodes use an 
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adaptive per-hop packet salvaging technique to provide fast data recovery from node or link failures 

along the active paths.  

Figure 6. (a) Spanning tree constructed by initial flooding in N-to-1 Multipath Routing 

Protocol. (b) Multipath discovery using multipath extension flooding mechanism. 

 
            (a)          (b) 

 

N-to-1 multipath routing protocol uses the broadcast nature of radio communications to construct 

several node-disjoint paths from sensor nodes towards the sink node without using additional control 

packets. This protocol also profits from the availability of several paths at the intermediate nodes to 

improve reliability of packet delivery by employing a per-hop packet salvaging strategy. Nevertheless, 

using such a simple flooding strategy cannot result in constructing high-quality paths with minimum 

interference. According to the operation of this protocol, all the constructed paths are located in 

physical proximity of each other and concurrent data transmission over these paths may reduce the 

network performance. 

H-SPREAD [61] combines the introduced path construction process in N-to-1 Multipath Routing 

Protocol with a hybrid data transmission technique to improve reliability and security of data 

transmission in wireless sensor networks. H-SPEAD takes advantages of a threshold secret sharing 

scheme and path diversity of multipath data forwarding to increase path resilient against node failure 

or compromised paths. According to the security property of the threshold secret sharing scheme, data 

packets can be safely forwarded towards the sink node even when a small number of nodes or paths 

have failed or are compromised during the data transmission process. In this algorithm, the source 

node divides each data packet to the multiple shares, M1, M2, M3,…, Mn, through using the secret 

sharing strategy and then transmits them towards the sink node through different paths. Based on the 

special characteristics of the threshold secret sharing mechanism, even when a certain number of paths 

have failed due to link or node failures, the original message can still be retrieved via other received 

shares at the destination node. However, since this approach utilizes the N-to-1 multipath routing 

algorithm to construct multiple paths, this protocol may suffer from the effects of wireless interference. 

Therefore, high packet loss ratio caused by interference can reduce the probability of successful packet 

retrieval at the sink node. Moreover, H-SPREAD only improves reliability and security of data 

delivery in the network, but it cannot enhance security of individual nodes.  

Multipath Multispeed Protocol (MMSPEED) [29] is designed based on the cross-layer design 

approach between network and MAC layer to provide QoS differentiation in terms of reliability and 

timeliness. From a timeliness perspective, MMSPEED extends the SPEED protocol [28] through 

introducing multiple speed levels to guarantee timeliness packet delivery. The utilized speed notion in 
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this protocol can be realized through Figure 7. Suppose node A forwards a data packet to its immediate 

neighboring node B, which can reduce the remaining geographic distance to the destination (i.e., node 

C) about d meters. According to the estimated delay of data transmission over link A–B (i.e., delayA-B), 

the achievable progress speed towards the destination through forwarding this data packet to the node 

B can be calculated as SpeedA–B = (distanceA–C − distanceB–C)/delayA–B. In the reliability domain, 

reliability demands of different applications are satisfied through using a probabilistic multipath 

forwarding strategy.  

Figure 7. Progress speed from node A to node B towards the destination node. 

 
 

In order to satisfy the delay requirements of various applications, MMSPEED extends the SPEED 

protocol to provide different speed layers over a single network. Accordingly, for M virtual speed 

layers there exists M different SetSpeeds. In this protocol, data packets are assigned to the appropriate 

speed layer to be placed in the suitable queue according to their speed category. After that, data 

packets are serviced in the FCFS policy. This mechanism ensures that high-priority packets are 

serviced before low-priority packets. However, as contention-based MAC protocols utilize CSMA/CA 

mechanism to perform channel access [62,63], employing a local priority data transmission scheme at 

the network layer does not necessarily prioritize data transmission at the link layer. Therefore, 

MMSPEEAD benefits from a prioritized medium access mechanism through cross-layer interactions.  

According to the above descriptions, whenever a source node wants to forward a data packet 

towards the destination, it determines the speed requirement of the data packet based on its distance to 

the destination and its specified end-to-end deadline. Then, the classifier of the source node selects the 

corresponding speed layer that can meet the speed requirements of the data packet. The selected speed 

layer module performs all the subsequent routing decisions for data packet forwarding during the data 

transmission process. These routing decisions are made based on the amount of speed progress that can 

be achieved by each intermediate node. Furthermore, if an intermediate node receives a data packet 

and it perceives that this packet cannot meet its specified deadline through the selected speed layer, the 

receiver node can set another speed layer to satisfy the deadline requirement of the packet. From 

reliability perspective, MMSPEED benefits from path diversity property of multipath routing approach 

to guarantee reliability requirements of each data packet. This protocol provides reliability differentiation 

through controlling number of active paths and sending multiple copies of the original data packets 

over several paths. Accordingly, each intermediate node selects a set of next-hop neighboring nodes 

towards the destination node based on the estimated packet loss rate over each link and their 

geographic distance from itself. 
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As mentioned above, MMSPEED provides a probabilistic QoS guarantee in two different domains 

through combining geographic forwarding technique with a multipath routing approach. To satisfy 

different delay requirements, each intermediate node tries to forward its received data packet to the 

neighboring node, which is closer to the destination node in order to provide a good speed progress. 

However, according to the experimental results provided in [9], probability of successful data 

transmission over low-power wireless links highly depends on the sender-receiver distance and 

interference power of the receiver. Therefore, using geographic routing with greedy forwarding does 

not necessarily improve network performance metrics. Moreover, since data transmission over long 

links exacerbate the required energy for data transmission, this protocol cannot support long-life 

applications. 

Multi-Constrained QoS Multipath Routing (MCMP) [60] is mainly designed to provide soft-QoS 

guarantee in terms of reliability and delay. The end-to-end soft-QoS problem is formulated as a 

probabilistic programming problem and then it is converted into a deterministic linear programming 

using an approximation technique. Therefore, MCMP is developed according to the linear 

programming approach which is a deterministic approximate of the defined end-to-end soft-QoS 

problem. Using Equations (1) and (2), MCMP maps the delay and reliability of the links along 

different paths towards the sink node to the end-to-end delay and reliability demands of various 

applications: ܮ௜ௗ ൌ ஽ି஽೔௛೔ ௜௥ܮ (1)        ൌ ඥܴ௜೓೔        (2) 

where ܮ௜ௗ and ܮ௜௥ represent the delay and reliability requirements at node i. Di is the delay experienced 

by a packet at node i. Ri is the fraction of the reliability requirement assigned to the path passing 

through node i, and hi is the hop count from node i to the sink node. 

MCMP utilizes two different strategies to satisfy delay and reliability demands of wireless  

sensor network applications.  During the route discovery process, all the intermediate nodes utilize  

Equation (1) to choose the neighboring node that fulfills the delay requirement of the intended 

application. To satisfy reliability, each node selects one or a set of its neighboring nodes, which 

additively provides the desired reliability towards the sink node. Therefore, at the end of the route 

discovery process, each source node has discovered a set of partially disjoint paths that can additively 

satisfy delay and reliability demands of the target application. Figure 8 demonstrates a set of 

discovered paths using MCMP protocol. According to the structure of the constructed paths, source 

and intermediate nodes, which have discovered multiple sub-paths towards the sink node, should send 

several copies of the original data packets to the sink node through different sub-paths to provide 

reliability. For instance, in Figure 8, node G should forward two copies of its received data packets 

towards the sink node through node H and node I.  

The introduced data redundancy of MCMP is the main disadvantage of this protocol. Furthermore, 

since partially disjoint paths are usually located nearby, high data rate transmission causes significant 

interference. This highly affects the maximum achievable data transmission rate using this protocol.  
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Figure 8. Partially disjoint paths established by MCMP. 

 
 

Energy Constrained Multipath Routing (ECMP) [64] is the extended version of MCMP to provide 

energy-efficient communication, while it also satisfies the delay and reliability requirements of each 

application. In the MCMP protocol described earlier, intermediate nodes select the set of their 

neighboring nodes that satisfies the delay and reliability requirements of the data source, regardless of 

the energy consumed for data transmission over individual links. In contrast, ECMP introduces an 

energy optimization problem. This problem is constrained by delay, reliability and geo-spatial energy 

consumption to provide multi-constrained QoS routing in sensor networks. Accordingly, the main 

motivation in designing ECMP is to support multi-constrained QoS routing with minimum energy 

consumption. To demonstrate this issue, consider Figure 9, where node A has two neighboring nodes 

that can equivalently satisfy the delay and reliability requirements of the intended application. As it can 

be seen from this figure, the distance between node A and node B is shorter than the distance between 

node A and node C. Since the required energy for data transmission can be related to the distance between 

sender and receiver [65], energy consumption for data transmission over link A-B is lower than the 

energy consumption for data transmission over link A-C. Therefore, selecting node B as the next-hop 

neighboring node A can result in lower energy consumption. However, in MCMP, nodes randomly 

select their next-hop neighboring nodes without considering the amount of energy consumption over 

the chosen link. Therefore, compared to MCMP, ECMP refines the set of next-hop nodes to a smaller 

set through considering the energy efficiency of the links towards the neighboring nodes. 

Figure 9. Link selection according to the geo-spatial energy consumption constraint. 

 
 

According to the experimental results [64], both MCMP and ECMP provide an equivalent delivery 

ratio and transmission delay. However, ECMP results in lower energy consumption, compared with 

MCMP. 

Delay-Constrained High-Throughput Protocol for Multipath Transmission (DCHT) [56] is the 

modified version of Directed Diffusion [14] that propounds the idea of using multipath routing 

approach to support high-quality video streaming in low-power wireless sensor networks. DCHT 

introduces a novel path reinforcement method and uses a new routing cost function, which considers 
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the expected transmission count (ETX) [2] and delay metrics to discover high-quality paths with 

minimum end-to-end latency. Similar to the Directed Diffusion, routing operation in this protocol is 

initialized by flooding an interest message throughout the network. Moreover, in order to calculate 

data transmission latency over each path, sink node adds a timestamp (t0) to the interest message. 

When a source node can provide the data requested by the sink node, it broadcasts explore data 

packets towards the sink node through the established gradients in the first stage. Upon reception of an 

explore data packet at an intermediate node, it uses Equations (3) and (4) to calculate the cost of data 

transmission over the sub-path from which this packet is received: ܲܽݐݏ݋ܥ_݄ݐ ൌ ఈܺܶܧ_݄ݐܽܲ ൈ ܺܶܧ_݄ݐܽܲ ఉ    (3)ݕ݈ܽ݁ܦ_݄ݐܽܲ ൌ Max௜ୀ଴ேିଷሺ∑ ܶܧ ௝ܺ௜ାଶ௝ୀ௜ ሻ     (4) 

After that, the receiver node only broadcasts the lowest calculated cost to its next-hop neighboring 

nodes. In Equation (4), N indicates the number of traversed hops and ETXj identifies the ETX value of 

jth hop. In order to address the route coupling effect, ETX value of each link is estimated according to 

the experienced Signal-to-Noise Ratio (SNR) over that link. 

When the sink node receives an explore data packet that cannot meet the delay requirement of the 

intended application, or whenever the path discovery timer expires, the sink node starts to reinforce 

multiple node-disjoint paths for data transmission. To satisfy the delay constraint of the intended 

application, the sink node investigates the end-to-end delay of the explore data packets received 

through different paths and only reinforces the paths with acceptable end-to-end delays. The path 

reinforcement is performed through sending reinforcement messages over the selected paths towards 

the source node. Whenever a reinforcement message is received by an intermediate node, it searches 

its local candidate table and selects one of its best next-hop neighboring nodes that does not belong to 

any other path between the source and sink node. When the source node receives the transmitted 

reinforcement messages by the sink node, it divides its traffic to several streams using the Multiple 

Description Coding (MDC) algorithm. This algorithm tries to improve data transmission reliability 

through forwarding each generated stream over two different paths. 

The utilized path reinforcement strategy and routing metric in this protocol greatly improves the 

performance of the original Directed Diffusion by constructing multiple high-quality low-delay paths. 

When the target source node floods an explore data packet to the network, each node estimates the 

ETX value of its neighboring nodes based on its experienced SNR. Then, in the path reinforcement 

process, the sink node uses the ETX value of the discovered paths to select minimum interfering paths. 

However, this technique cannot accurately calculate the exact value of the experienced interference 

during the data transmission process. The actual interference strength during the data transmission 

process highly depends on the traffic load of the interfering nodes. If the interfering nodes, which are 

located near an active path, do not involve in any data forwarding process, these nodes cannot impose 

any interference on the active path. Furthermore, each generated data stream should be transmitted 

through two different paths to provide a certain level of data transmission reliability. However, due to 

the random topology of the wireless sensor networks, constructing a sufficient number of node-disjoint 

paths to support high-rate multimedia streaming may not be feasible.  

Energy-Efficient and QoS-based Multipath Routing Protocol (EQSR) [66] is one of the recently 

proposed protocols designed to satisfy the reliability and delay requirements of real-time applications. 
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EQSR improves reliability through using a lightweight XOR-based Forward Error Correction (FEC) 

mechanism, which introduces data redundancy in the data transmission process. Furthermore, in order 

to fulfill the delay requirements of various applications, this protocol utilizes a service differentiation 

technique through employing a queuing model to manage real-time and non-real-time traffic. EQSR 

initializes through broadcasting a HELLO message by all the sensor nodes. During this phase, sensor 

nodes collect information regarding to the cost of data transmission though their neighboring nodes.  

In the second phase of this protocol, the sink node starts the route discovery process by sending a 

Route-request message to its preferred neighbor selected by Equation (5). Intermediate nodes use 

Equation (5) to select the most preferred next-hop neighboring node towards the source node from 

their neighboring set N. This process continues among the intermediate nodes until the source node 

receives a Route-request message transmitted by the sink node: ܰ݁݌݋݄_ݐݔ ൌ ௥௘௦ௗ,௬ܧߙேೣ൛א௬ݔܽܯ ൅ ௕௨௙௙௘௥,௬ܤߚ ൅  ௜௡௧௘௥௙௘௥௘௡௖௘,௫௬ൟ (5)ܫߛ

where Nx is the neighbor set of node x. Eresd,y and Bbuffer,y indicate the residual battery level and available 

buffer size at neighbor y, respectively. Iinterference,xy is the experienced SNR over the link between node x 

and node y. All the sensor nodes calculate the values of these parameters for their neighboring nodes 

during the first stage of this protocol.  

Besides the primary-path establishment process, the sink node also starts to construct additional 

paths by sending subsequent Route-request messages to its next-preferred neighboring nodes. Whenever 

all the possible paths between a pair of source-sink nodes are discovered, a set of paths will be selected 

based on the probability of successful data transmission over each path. Furthermore, according to the 

propagation delay of the Route-request messages, EQSR estimates the data transmission delay of the 

paths and dedicates the best L paths for real-time traffic and the remaining paths for non-real-time 

traffic. At the last stage of this protocol, EQSR uses a lightweight XOR-based FEC algorithm to 

calculate Error Correction Codes (ECC) for data packets. Finally, the source node distributes its traffic 

over the selected paths according to their end-to-end delay. 

While EQSR reduces transmission delay and improves reliability, nevertheless, the FEC mechanism 

which is used to compute ECCs and retrieval of the original messages, imposes high control overhead. 

Furthermore, like DCHT, this protocol uses a flooding strategy to estimate the experienced SNR over 

wireless links at the initialization phase and uses these values to discover the minimum interfering 

paths. However, the employed routing cost function cannot lead to the construction of interference-

minimized paths. In fact, using a simple flooding strategy during the neighbor discovery phase may 

exaggerate the exact value of mutual interference between different paths.  

4.2.2. Multipath Routing Protocols for Efficient Network Resource Utilization 

With respect to the limitations of tiny sensor nodes, the key idea behind the development of this 

protocol category is to balance network traffic and resource utilization throughout the network. This 

section is dedicated to describe some of the most recently proposed protocols in this group of multipath 

routing protocols. Table 3 provides an in-depth comparison of the presented routing protocols based on 

the details of their employed route discovery and traffic distribution algorithms.  
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Table 3. Summary of the multipath routing protocols mainly designed to provide efficient 

resource utilization. 

 Features 

 

Protocols 

Path 

Disjointedness 

Route 

Maintenance 

Traffic 

Distribution

Number of 

Paths 

Path 

Chooser 

Interference 

Avoidance 

Technique 

Improved 

Performance 

Parameters 

Energy-

Efficient 

Multipath 

Routing 

Node-disjoint 

When two or 

less than two 

paths are 

active 

Per-packet 

splitting 
Not limited 

 Sink node 

 Intermediate 

nodes 

None 

 Network 

lifetime  

 Delay 

AOMDV-

Inspired 

Multipath 

Routing 

Link-disjoint 

When all the 

paths have 

failed 

Per-packet 

splitting 
Not limited  Sink node None 

 Network 

lifetime  

 Delay 

I2MR Node-disjoint 

When first and 

second paths 

have failed 

Per-packet 

splitting 
Three paths 

 Sink node 

 Intermediate 

nodes 

Through using the 

exact location of 

the source and 

destination nodes 

 Throughput 

MR2 Node-disjoint 
When a path 

has failed 

Per-packet 

splitting 

Based on the 

bandwidth 

requirements 

of the target 

application 

 Sink node 

 Intermediate 

nodes 

Through using the 

broadcast nature of 

wireless channel 

 Network 

lifetime 

 Throughput 

  Data 

delivery ratio

EECA Node-disjoint Not mentioned 
Per-packet 

splitting 
Two paths 

 Intermediate 

nodes 

Through using the 

exact location of 

sensor nodes 

 Network 

lifetime 

 Data delivery 

ratio 

LIEMRO Node-disjoint 

When  less 

than two paths 

are active 

Per-packet 

splitting 

Based on the 

end-to-end 

throughput of 

the active 

paths  

 Sink node 

 Intermediate 

nodes 

Through using the 

broadcast nature of 

wireless channel 

 Network 

lifetime 

 Throughput 

 Delay 

 Data delivery 

ratio 

 

Energy-Efficient Multipath Routing Protocol [67] exploits the path diversity provided by 

multipath routing approach to prolong network lifetime by distributing network traffic over multiple 

node-disjoint paths. When an event occurs in the network, a sensor node in the event area is selected as 

the source node and initiates the route discovery process. Accordingly, the selected source node 

transmits multiple Route-request messages to its neighboring nodes. These Route-request messages 

include different path IDs to construct multiple node-disjoint paths from the selected source node 

towards the sink node. During the route discovery process, all the intermediate nodes select one of 

their best next-hop neighboring nodes towards the sink node, which satisfy Equation (6) and it is not 

included in any other path: 
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ൌ ݌݋݄_ݐݔ݁ܰ  arg min௕אேೌ ቐ൬1 െ ௘್,ೝ೐ೞ೔೏ೠೌ೗௘್,೔೙೔೟ ൰൤ഁ൫భషሺ∆೏శభሻ൯೏ೌ೤ ൨ቑ    (6) 

where Na represents the neighboring set of node a. day is the distance (in hop count) between node a 

and sink node, dby is the distance (in hop count) between node b and sink node, and ∆d is the difference 

between day and dby. eb,residual and eb,init represent the residual and initial battery level of node b, 

respectively.  

Upon reception of the first Route-request message by the sink node, it sets a timer to fulfill the path 

establishment process in an acceptable period. Therefore, all the paths discovered after the timer 

timeouts are considered as low-quality paths and the sink node discards the Route-request messages 

received from these paths. Then, the sink node assigns different data rates to the established paths 

using Equation (7). Sink node uses the ASSIGN messages to inform the selected source node about the 

assigned data rate of each path. Source node starts data transmission upon the reception of the ASSIGN 

messages: ݎ௝ ൌ ோ௉ೕ ∑ ௜ܲே௜ୀଵ , j = 1, 2, …, N     (7) 

Assuming N paths between a pair of source-sink nodes, rj is the assigned data rate to the jth path, R is 

the requested data rate (by the application) that should be arrived at the sink node. pi and pj are the 

costs of ith and jth paths.  

The main advantage of this protocol is to prolong network lifetime by distributing network traffic 

over several paths according to the cost of data transmission over these paths. The residual battery 

level of the sensor nodes and their distance to the sink node are considered as the main parameters in 

the route discovery and load distribution algorithms. However, the interference level experienced by 

the intermediate nodes (along nearby paths) and its effects on the network performance is disregarded. 

On the other hand, as demonstrated in [59,68], a lower number of interference-minimized paths 

provides higher performance compared to the situation in which more number of paths is established 

without considering the effects of interference. Nevertheless, this protocol establishes and utilizes all 

the discovered node-disjoint paths.  

AOMDV-Inspired Multipath Routing Protocol [69] is designed based on the multipath version of 

AODV (i.e., AOMDV [70]) to achieve energy-efficient and low-latency communication in wireless 

sensor networks through using cross-layer information. Path construction is similar to the mechanism 

introduced in AOMDV with a few improvements. While AOMDV tries to discover all the possible 

link-disjoint paths between each pair of source-sink nodes, the AOMDV-Inspired Multipath Routing 

Protocol uses different routing table management strategy to construct only hop count optimal paths 

towards the destination node. With this protocol, the sink node confirms an additional path only if its 

first hop is different from the previously discovered paths and if this path provides the same hop count 

towards the sink node. Otherwise, if the sink node receives a Route-request message with the lower 

hop count than the existing routes (established from the same source node), it substitutes all the 

previously established paths by the newly discovered path. Figure 10 demonstrates the routing tables 

constructed at the source node by AODV, AOMDV and AOMDV-Inspired Multipath Routing Protocol.  
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Figure 10. Constructed routing tables at the source node by AODV, AOMDV and 

AOMDV-Inspired Multipath routing protocols. 

 
 

AOMDV does not introduce any load distribution mechanism to split network traffic over the 

established paths. AOMDV-Inspired Multipath Routing Protocol utilizes the information provided by 

the MAC layer to reduce data transmission latency. To this aim, during data transmission process, each 

intermediate node searches its routing table and forwards its received data packets to the next-hop 

neighboring node that wakes up earlier. While this MAC layer technique can reduce the transmission 

delay and interference, it requires all the sensor nodes to be aware about their neighboring nodes’ 

timing information. Furthermore, similar to the ad hoc-based routing protocols, this protocol should 

flood the whole path information throughout the network during the route discovery phase. This 

flooding process imposes significant overhead to the resource-limited sensor nodes. 

Interference-Minimized Multipath Routing Protocol (I2MR) [45] aims to support high-rate 

streaming in low-power wireless sensor networks through considering the recent advances in designing 

high-bandwidth backbone networks. I2MR tries to construct zone-disjoint paths and distributes 

network traffic over the discovered paths by assuming a special network structure and the availability 

of particular hardware components. Figure 11 demonstrates a simple schematic of the network 

structure assumed in this protocol.  

All the deployed gateway nodes are assumed as the final destinations and it is supposed that these 

nodes are directly connected to the command center using non-interfering and high-capacity links. In 

I2MR, the source node utilizes two paths for data transmission and keeps only one backup path 

towards the central command center. The route discovery phase includes three main steps: in the first 

step, each source node selects one gateway node as its primary gateway node and constructs the 

shortest possible path towards this gateway node. Then, in the interference-zone marking step, one and 

two-hop neighboring nodes of all the intermediate nodes along the first path are marked as the 

interference zone of the primary path. Finally, in the last stage, the primary gateway node determines 

the preferred quadrants from which the secondary and backup gateway nodes should be selected. As it 

is shown in Figure 12, these quadrants are determined based on the location of the source node. 

Furthermore, the preferred gateway nodes should be located beyond the interference rang of the 

primary gateway node and they should have less distances to the source node than the other candidate 

gateway nodes. When the secondary and backup gateway nodes are determined, the source node starts 

to construct the secondary and backup paths through the nodes that are not marked as the interference-

zone of the primary path. At the end of the path construction process, source node loads the primary 
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and secondary paths with the highest possible data rate and preserves the third path to achieve prompt 

packet recovery upon path failure. During the data transmission process, whenever an intermediate 

node along an active path detects a long-term congestion, it should notify the source node to reduce its 

injected data rate. 

Figure 11. Assumed network structure in the design of I2MR. Constructed paths between 

each source node and command centre are demonstrated. 

 

Figure 12. Preferred quadrants for the secondary and backup destinations based on the 

source node location. 
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The simulation results indicate the higher performance of I2MR compared to the standard AODV 

and a simple node-disjoint multipath routing protocol [45]. However, the achieved performance 

improvement requires a special network structure and particular hardware components, which may  

not be feasible for many applications. In addition, due to the high complexity of the introduced  

zone-marking algorithm, this mechanism cannot effectively construct interference-minimized paths. 

Moreover, source nodes construct the three shortest paths (i.e., with minimum hop count) towards 

three separate gateway nodes to reduce the effects of wireless interference among the successive nodes 

along a path. However, due to the time-varying properties of low-power wireless links, data 

transmission over long hops results in increased packet loss ratio. 

Maximally Radio-Disjoint Multipath Routing (MR2) [71] utilizes an adaptive incremental 

technique to construct minimum-interfering paths, which satisfy the bandwidth requirements of 

multimedia applications. Additional paths are constructed whenever the active paths cannot provide 

the bandwidth requirements of the available network traffic. Like the other query-based routing 

protocols [14,55,56], the sink node initializes the route discovery process by flooding the network with 

a request message. Upon reception of the request message by the immediate neighboring nodes of the 

sink node, the receiver node adds its ID to the received request message as the path ID and 

rebroadcasts this message. Then, whenever a node receives a request message, it first checks the 

reported path ID and if it has not any path from the introduced source node (i.e., path ID) towards the 

sink node, it should add the reported path to its routing table. Otherwise, if the included path ID in the 

received request message already exists in the routing table of the receiver, the introduced path should 

be replaced with the previous one if it provides a path with lower hop count. If the received request 

message causes an update operation on the routing table, the receiver node should rebroadcast the 

request message. This process is continued until the request message is received by a sensor node that 

can provide sink node with the requested data. At this time, source node starts packet transmission 

towards the sink node through the shortest discovered path. In order to address the mutual interference 

problem between adjacent paths, all the intermediate nodes along the active path should notify their 

neighboring nodes to act as the passive nodes in order to prevent them from participating in any route 

discovery process. Therefore, during the data transmission process, intermediate nodes that receive a 

data packet should send a bepassive message to all of their neighboring nodes except their next and 

previous-hop neighbors along the active path. Using this mechanism, whenever an additional path 

should be constructed (to provide sufficient bandwidth for data transmission), passive nodes are unable 

to respond to any request message. 

This protocol eliminates the negative effects of wireless interference by putting some nodes in the 

passive state. Simulation results confirm that MR2 improves the overall data reception rate at the sink 

node more than 70% and 30% compared to a multipath routing approach without interference-awareness 

and a single-path routing scheme, respectively. Still, this protocol suffers from two main drawbacks: 

first, MR2 is only suitable for query-driven applications; second, the utilized flooding strategy for 

constructing non-interfering paths imposes a high control overhead.  

Energy-Efficient and Collision-Aware Multipath Routing Protocol (EECA) [25] is an on-demand 

multipath routing protocol and uses the location information of all the sensor nodes to establish two 

collision-free paths between a pair of source-sink nodes. EECA aims to reduce the negative effects  

of wireless interference through constructing two paths in both sides of the direct line between the 
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source-destination pair. Furthermore, the distance between these two paths is more than the 

interference range of the sensor nodes. This is demonstrated in Figure 13. In the first stage of the route 

discovery process, the source node checks its neighboring nodes to find two distinct groups of the 

nodes on both sides of the direct line between the source-destination pair. Figure 13 represents these 

two groups with white and gray circles. After finding these neighboring sets, the source node 

broadcasts a Route-request packet towards these nodes to establish two node-disjoint paths. During the 

route discovery process, intermediate nodes utilize the same technique (used at the source node) to 

select their next-hop neighboring nodes and broadcast the received Route-request packet towards the 

sink node. Upon reception of a Route-request packet by an intermediate node, the receiver node uses a 

back-off timer to restrict the overhead introduced by the route discovery flooding. Before broadcasting 

the received Route-request packet by the intermediate nodes, they set a back-off timer according to 

their distance from the sink node and their residual battery level. Neighboring nodes with higher 

residual battery and shorter distance to the sink node select shorter back-off timer. Therefore, at each 

stage of the Route-request flooding only one node wins to broadcast its received Route-request packet 

towards the sink node. Upon reception of the Route-request packet at the sink node, it sends a Route-

reply packet in the reverse path towards the source node. When the source node receives a Route-reply 

packet, it can transmit its traffic through the established path. 

Figure 13. A simple example of the constructed paths by EECA. 

 
 

Although EECA tries to discover the two shortest paths such that their distance from each other is 

more than interference range of the sensor nodes, it needs the nodes to be GPS-assisted and relies on 

the information provided by the underlying localization update method. These requirements increase 

the cost of network deployment and intensify the communication overhead, specifically in large and 

dense wireless sensor networks. In addition, as low-power wireless links exhibit significant signal 

variations over time, calculating the interference range of the sensor nodes based on the distance may 

not result in an accurate interference estimation [72]. Moreover, while transmitting data over 

minimum-hop paths can theoretically reduce end-to-end delay and resource utilization, however, using 

such paths in low-power wireless networks increases the probability of packet loss and intensifies the 

overhead of packet retransmission over each hop. 

Low-Interference Energy-Efficient Multipath Routing Protocol (LIEMRO) [59,68] improves the 

performance demands of event-driven sensor networks (e.g., delay, data delivery ratio, throughput, and 
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lifetime) through construction of an adequate number of interference-minimized paths. LIEMRO 

utilizes an adaptive iterative approach to construct a sufficient number of node-disjoint paths with 

minimum interference from each event area towards the sink node. Whenever an event occurs in the 

sensor field and there is no active path for data transmission towards the sink node, the selected source 

node starts to establish the first path by transmitting a Route-request message towards the sink node. 

During this stage, source node and all the intermediate nodes select one of their next-hop neighboring 

nodes using Equations (8) and (9): ܰ݁݌݋݄_ݐݔ௜ ൌ ൛݆|݆׊ א ௜ܰ ܽ݊݀ ݐݏ݋ܥ௜,௝ ൌ ݅ܯ ௝݊אே೔൫ݐݏ݋ܥ௜,௝൯ൟ   (8) ݐݏ݋ܥ௜,௝ ൌ ൫ܽܿܿܶܧ ௜ܺ,௦௜௡௞൯ · ൬ ଵ௥௘௦஻௔௧௧ೕ൰ · ൫1 ൅ ݁ݒ݁ܮ݁ܿ݊݁ݎ݂݁ݎ݁ݐ݊݅ ௝݈൯ (9) 

In Equation (8) Ni represents the neighboring set of node i. In Equation (9), resBattj is the residual 

battery level of node j, interferenceLevelj is the experienced interference level at node j, and 

accETXi,sink is the accumulated ETX value from node i to the sink node through neighboring node j. 

ETX value of a link is calculated as 1/pq, where p and q indicate the probability of successful forward 

and backward packet reception over that link, respectively. During the network initialization and 

neighbor discovery phase, the accumulated ETX value of all the sensor nodes towards the sink node 

are calculated through constructing the optimal spanning tree using the ETX cost. 

Upon reception of the first Route-request message by the sink node, it confirms the discovered path 

by forwarding a Route_reply message along the reverse path. While the Route_reply message moves 

from sink node towards the source node, whenever a node overhears this message it updates its 

interference level value based on the backward packet reception probability (i.e., q) of the node from 

which this message has been overheard. When the source node receives a Route_reply packet, it 

transmits its data packets through the constructed path and starts the construction of another path by 

sending a new Route-request message towards the sink node. Path construction process continues in an 

iterative manner as long as the sink node realizes that using a new path results in higher end-to-end 

throughput; otherwise, if the last established path reduces the end-to-end throughput, sink node asks 

the source node to disable the last constructed path. Upon establishing a new path (i.e., when the 

source node receives a Route_reply packet), the source node transmits a portion of its traffic through 

this path using a quality-based load distribution algorithm. The proposed load balancing algorithm 

calculates the optimal traffic rate of the established paths based on their accumulated residual battery 

level, experienced interference level, and the probability of successful forward and backward packet 

reception over the links of a path. 

LIEMRO improves the performance demands of event-driven applications through distributing 

network traffic over high-quality paths with minimum interference. This protocol utilizes a dynamic 

path maintenance mechanism to monitor the quality of the active paths during network operation and 

regulates the injected traffic rate of the paths according to the latest perceived paths quality. Therefore, 

it accounts for the temporal variations of the low-power wireless links and adjusts traffic distribution 

accordingly. However, similar to the most of the previously discussed protocols, LIEMRO does not 

consider the effects of buffer capacity and service rate of the active nodes to estimate and adjust the 

traffic rate of the active paths.  



Sensors 2012, 12 678 

 

5. Application Related Issues 

Nowadays, multipath routing is widely considered as a promising approach to cope with the 

limitations of wireless sensor networks and it can be used to improve the performance demands of 

different applications. However, while a multipath routing approach improves the performance 

requirements of a specific application, it may negatively affect the performance requirements of 

another application. For example, as transmitting multiple copies of data packets increases delivery 

reliability, it also reduces network lifetime and capacity due to the imposed overhead. Therefore, 

choosing a right multipath routing approach is highly application dependent and involves the trade-off 

between several performance parameters. Table 4 summarizes the main motivation and employed 

approaches behind the development of the protocols presented in the previous section.  

As mentioned earlier, the first motivation behind utilizing multipath routing approaches in wireless 

sensor networks was to improve path resilience against route failures through the alternative path 

routing technique. Since, the key idea in this approach is to use one path for data transmission and 

reserve the alternative paths as the backup paths in the case of route failures, these protocols suffer 

from the same main drawback of single-path routing approaches, i.e., limited end-to-end capacity. The 

improvement of this approach over single-path routing is that this technique increases network 

performance (it reduces the consumed energy per bit, loss rate caused by path failure, and path 

reconstruction delay), while it also reduces the frequency of the route rediscovery process. As partially 

disjoint paths can provide fault-tolerant routing through the alternative path routing approach with 

minimum cost, most of the multipath routing protocols in this category use this kind of path 

disjointedness to reduce the imposed overhead by the route discovery and maintenance processes.  

Table 4. Summary of the presented multipath routing protocols. 

Path Utilization Motivation Approach Protocols 

Alternative Path 

Routing 

Fault-Tolerant  

Routing 
Path Switching 

Directed Diffusion, Braided Multipath 

Routing, Reliable and Energy-Aware Routing

Concurrent Multipath 

Routing 

Reliable Data 

Transmission 

Copying the Original 

Packets 
ReInForm, MMSPEED, MCMP, ECMP 

Erasure Coding H-SPREAD, DCHT, EQSR 

Packet Salvaging N-to-1 Multipath Routing 

Efficient Network 

Resource Utilization 
Load Balancing 

Energy-Efficient Multipath Routing, 

AOMDV-Inspired Multipath Routing, I2MR, 

MR2, EECA, LIEMRO 

 

Some of the critical applications (e.g., battlefield surveillance and intrusion detection) require high 

data transmission reliability; accordingly, the second group of multipath routing protocols is mainly 

designed to cope with the time-varying properties and unreliability of low-power wireless links. As we 

described in Section 4.2.1, these protocols provide reliable communication through utilizing the path 

diversity nature of multipath routing approach and introduce data redundancy into the data delivery 

process (e.g., transmitting multiple copies of original packets, or erasure coding). Although the 

efficiency of these protocols in improving data transmission reliability is demonstrated through 



Sensors 2012, 12 679 

 

extensive performance evaluations [29,57,60,64], still, they suffer from the high overhead caused by 

transmitting multiple copies of data packets and utilizing coding scheme.  

Due to the resource limitations of sensor nodes and low capacity of individual paths, recently, 

multipath routing approach is broadly utilized to increase network capacity under high traffic 

conditions (e.g., multimedia streaming [46,56,66,71]). As it is observable from Figure 3 and Table 4, 

most of the recently proposed multipath routing protocols utilize concurrent multipath routing to 

support even traffic distribution (to balance resource utilization) and provide the required bandwidth of 

high-rate applications. On the other hand, when data is transmitted through multiple nearby paths, the 

overall capacity of each path reduces due to the interference caused by the other paths. From the MAC 

layer point of view, a node belonging to a path may sense the carrier busy while a nearby node in an 

adjacent path is transmitting. In addition, an ongoing transmission on a path may be affected by the 

interference induced from nearby paths. These issues cause higher medium access delay, increased 

packet loss and elevated end-to-end latency of the packets being transmitted to the sink node. 

Therefore, the use of concurrent multipath routing cannot necessarily satisfy the performance demands 

of high data rate applications. While the protocol designer should consider the required end-to-end 

latency and capacity of the underlying applications to establish a tradeoff between the inter-path 

distances and the length of each path, special MAC layer mechanisms may be required to schedule  

per-hop transmissions based on the experienced interference. Specifically, as cross-layer interactions 

of the network and MAC layer can result in higher performance [62,63,73], multipath routing can be 

significantly improved through utilizing cross-layer principles. 

6. Conclusions and Future Directions 

This paper provides a comprehensive analysis of the most recently proposed multipath routing 

protocols for wireless sensor networks. Nowadays, multipath routing techniques are considered an 

efficient approach to improve network capacity and resource utilization under heavy traffic conditions. 

With respect to the recent advances in the development of multipath routing protocols for wireless 

sensor networks, there is a need to investigate the significance as well as the detailed operation and 

classification of the proposed approaches. To fill this gap, in this paper we have attempted to identify 

the challenges pertaining to the design of multipath routing protocols for wireless sensor networks. In 

addition, we have highlighted the main advantages of using multipath routing approach to satisfy the 

performance requirements of different applications. This paper also introduces a new taxonomy on the 

multipath routing protocols designed for wireless sensor networks. The provided classification is 

performed based on the employed path utilization methods that can be used by multipath routing 

protocols to achieve various performance benefits. Tables 1–3 demonstrate detailed operational 

characteristic of the existing multipath routing protocols related to the different categories. Finally, all 

the presented multipath routing protocols in this paper are summarized in Table 4 to provide a fast 

overview of the main motivations behind their design and the methods employed to achieve the desired 

goals. 

Although in the past years multipath routing has been researched through numerous studies, 

nevertheless, there are several important research issues that should be further investigated. These 

possible areas can be summarized as follows: first, cross-layer principles can be used to improve 
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multipath routing protocols. For instance, the channel access delay and per-hop latency perceived at 

the MAC layer can be used at the network layer to achieve more accurate path quality estimation and 

rate assignment. Second, when multiple paths are in use, packet reception order at the sink node may 

be different from the packet transmission order at the source node. This issue affects the performance 

of applications such as multimedia streaming and wastes network resources. Finally, the development 

of multi-constrained QoS multipath routing protocols to guarantee the QoS demands of different 

applications is an open area. To this aim, different multipath routing approaches (such as using backup 

paths, sending multiple copies of data packets, and concurrent path utilization) should be integrated 

efficiently.  

Acknowledgements 

This research was financially supported by the Ministry of Education, Science Technology (MEST) 

and National Research Foundation of Korea (NRF) through the Human Resource Training Project for 

Regional Innovation. In addition, Marjan Radi and Behnam Dezfouli would like to thank Universiti 

Teknologi Malaysia (UTM) for awarding International Doctoral Fellowship (IDF). 

References  

1. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 

2292–2330. 

2. Couto, D.S.J.D.; Aguayo, D.; Bicket, J.; Morris, R. A High-Throughput Path Metric for  

Multi-Hop Wireless Routing. Wirel. Netw. 2005, 11, 419–434. 

3. Chen, D.; Varshney, P.K. QoS Support in Wireless Sensor Networks: A Survey. In Proceedings 

of the International Conference on Wireless Networks, (ICWN ’04), Las Vegas, NV, USA, 21–24 

June 2004; pp. 227–233. 

4. Al-Karaki, J.N.; Kamal, A.E. Routing Techniques in Wireless Sensor Networks: A Survey. IEEE 

Wirel. Commun. 2004, 11, 6–28. 

5. Akkaya, K.; Younis, M. A Survey on Routing Protocols for Wireless Sensor Networks. Ad Hoc 

Netw. J. 2005, 3, 325–349. 

6. Son, D.; Krishnamachari, B.; Heidemann, J. Experimental Study of Concurrent Transmission in 

Wireless Sensor Networks. In Proceedings of the 4th International Conference on Embedded 

Networked Sensor Systems (SenSys ’06), Boulder, CO, USA, 31 October–3 November 2006;  

pp. 237–250. 

7. Kang, J.; Zhang, Y.; Nath, B. End-to-End Channel Capacity Measurement for Congestion Control 

in Sensor Networks. In Proceedings of the 2nd International Workshop on Sensor and Actor 

Network Protocols and Applications (SANPA ’04), Boston, MA, USA, 22 August 2004. 

8. Lou, W.; Liu, W.; Zhang, Y. Performance Optimization Using Multipath Routing in Mobile Ad 

Hoc and Wireless Sensor Networks. Combinator. Optim. Commun. Netw. 2006, 2, 117–146. 

9. Woo, A.; Tong, T.; Culler, D. Taming the Underlying Challenges of Reliable Multihop Routing in 

Sensor Networks. In Proceedings of the 1st International Conference on Embedded Networked 

Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 14–27. 



Sensors 2012, 12 681 

 

10. Zamalloa, M.Z.; Krishnamachari, B. An Analysis of Unreliability and Asymmetry in Low-Power 

Wireless Links. ACM Trans. Sens. Netw. 2007, 3, doi:10.1145/1240226.1240227. 

11. Alwan, H.; Agarwal, A. A Survey on Fault Tolerant Routing Techniques in Wireless Sensor 

Networks. In Proceedings of the 3th International Conference on Sensor Technologies and 

Applications (Senosrcomm ’09), Athens, Greece, 18–23 June 2009; pp. 366–371. 

12. Tarique, M.; Tepe, K.E.; Adibi, S.; Erfani, S. Survey of Multipath Routing Protocols for Mobile 

Ad Hoc Networks. J. Netw. Comput. Appl. 2009, 32, 1125–1143. 

13. Mueller, S.; Tsang, R.; Ghosal, D. Multipath Routing in Mobile Ad Hoc Networks: Issues and 

Challenges. Lect. Note. Comput. Sci. 2004, 2965, 209–234. 

14. Intanagonwiwat, C.; Govindan, R.; Estrin, D. Directed Diffusion: A Scalable and Robust 

Communication Paradigm for Sensor Networks. In Proceedings of the 6th Annual International 

Conference on Mobile Computing and Networking (MobiCom ’00), Boston, MA, USA, 6–11 

August 2000; pp. 56–67. 

15. Heinzelman, W.R.; Kulik, J.; Balakrishnan, H. Adaptive Protocols for Information Dissemination 

in Wireless Sensor Networks. In Proceedings of the 5th ACM/IEEE Annual International 

Conference on Mobile Computing (MOBICOM 99), Seattle, WA, USA, 15–20 August 1999;  

pp. 174–185. 

16. Braginsky, D.; Estrin, D. Rumor Routing Algorithm for Sensor Networks. In Proceedings of the 

1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, 

USA, 28 September 2002; pp. 22–31. 

17. Ye, F.; Chen, A.; Lu, S. A Scalable Solution to Minimum Cost Forwarding in Large Sensor 

Networks. In Proceedings of the 10th International Conference on Communications and Networks, 

Scottsdale, AZ, USA, 15–17 October 2001; pp. 304–309. 

18. Shah, R.C.; Rabaey, J.M. Energy Aware Routing for Low Energy Ad Hoc Sensor Networks.  

In Proceedings of the 10th International Conference on Communications and Networks (WCNC 

2002), Orlando, FL, USA, 17–21 March 2002; pp. 350–355. 

19. Manjeshwar, A.; Agrawal, D.P. TEEN: A Routing Protocol for Enhanced Efficiency in Wireless 

Sensor Networks. In Proceedings of the 15th International Parallel and Distributed Processing 

Symposium (IPDPS’01), San Francisco, CA, USA, 23–27 April 2001; pp. 2009–2015. 

20. Manjeshwar, A.; Agrawal, D. APTEEN: A Hybrid Protocol for Efficient Routing and 

Comprehensive Information Retrieval in Wireless Sensor Networks. In Proceedings of the 16th 

International Parallel and Distributed Processing Symposium (IPDPS), Lauderdale, FL, USA, 

15–19 April 2002; pp. 195–202. 

21. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication 

Protocol for Wireless Microsensor Networks. In Proceedings of the 33rd Annual Hawaii 

International Conference on System Sciences, Maui, HI, USA, 4–7 January 2000. 

22. Lindsey, S.; Raghavendra, C. PEGASIS: Power-Efficient Gathering in Sensor Information 

Systems. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 

2002; pp. 1125–1130. 
  



Sensors 2012, 12 682 

 

23. Ye, H.L.; Cheng, J.; Lu, S.; Zhang, L. A Two-Tier Data Dissemination Model for Large-scale 

Wireless Sensor Networks. In Proceedings of the 8th Annual International Conference on  

Mobile Computing and Networking (MobiCom ’02), Atlanta, GA, USA, 23–28 September 2002;  

pp. 148-159. 

24. Yu, Y.; Govindan, R.; Estrin, D. Geographical and Energy Aware Routing: A Recursive Data 

Dissemination Protocol for Wireless Sensor Networks; Technical Report UCLA/CSD-TR; 

Citeseer: University Park, PA, USA, 2001. 

25. Wang, Z.; Bulut, E.; Szymanski, B.K. Energy Efficient Collision Aware Multipath Routing for 

Wireless Sensor Networks. In Proceedings of the 2009 IEEE International Conference on 

Communications (ICC’09), Dresden, Germany, 14–18 June 2009; pp. 91-95. 

26. Xu, Y.; Heidemann, J. Geography-Informed Energy Conservation for Ad Hoc Routing. In 

Proceedings of the 7th Annual International Conference on Mobile Computing and Networking 

(MobiCom ’01), Rome, Italy, 16–21 July 2001. 

27. Sohrabi, K.; Gao, J.; Ailawadhi, V.; Pottie, G.J. Protocols for Self-Organization of A Wireless 

Sensor Network. IEEE Person. Commun. 2000, 7, 16–27. 

28. Tian, H.; Stankovic, J.A.; Chenyang, L.; Abdelzaher, T. SPEED: A Stateless Protocol for  

Real-Time Communication in Sensor Networks. In Proceedings of the 23rd International 

Conference on Distributed Computing Systems, Providence, RI, USA, 19–22 May 2003; pp. 46–55. 

29. Felemban, E.; Lee, C.G.; Ekici, E. MMSPEED: Multipath Multi-SPEED Protocol for QoS 

Guarantee of Reliability and Timeliness in Wireless Sensor Networks. IEEE Trans. Mobile 

Comput. 2006, 5, 738–754. 

30. Akkaya, K.; Younis, M.F. An Energy-Aware QoS Routing Protocol for Wireless Sensor 

Networks. In Proceedings of the 23rd International Conference on Distributed Computing 

Systems, Providence, RI, USA, 19–22 May 2003, pp. 710–715. 

31. He, L. Delay-Minimum Energy-Aware Routing Protocol (DERP) for Wireless Sensor Networks. 

In Proceedings of the International Conference on Software Engineering, Artificial Intelligence, 

Networking, and Parallel/Distributed Computing (SNPD ’07), Qingdao, China, 30 July–1 August 

2007; Volume 3, pp. 155–160. 

32. Ganesan, D.; Govindan, R.; Shenker, S.; Estrin, D. Highly-Resilient, Energy-Efficient Multipath 

Routing in Wireless Sensor Networks. Mobile Comput. Commun. Rev. 2001, 5, 11–25. 

33. Lou, W. An Efficient N-to-1 Multipath Routing Protocol in Wireless Sensor Networks. In 

Proceedings of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor System 

(MASS ’05), Washington, DC, USA, 7–10 November 2005; pp. 672–680. 

34. Fonseca, R.; Gnawali, O.; Jamieson, K.; Levis, P. Four-Bit Wireless Link Estimation.  

In Proceedings of the 6th Workshop on Hot Topics in Networks (HotNetsVI), Atlanta, GA, USA, 

14 November 2007. 

35. Kim, K.-H.; Shin, K.G. On Accurate and Asymmetry-Aware Measurement of Link Quality in 

Wireless Mesh Networks. IEEE/ACM Trans. Netw. 2009, 17, 1172–1185. 

36. He, T.; Ren, F.; Lin, C.; Das, S. Alleviating Congestion Using Traffic-Aware Dynamic Routing in 

Wireless Sensor Networks. In Proceedings of the 5th Annual IEEE Communications Society 

Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON ’08),  

San Francisco, CA, USA, 16–20 June 2008; pp. 233–241. 



Sensors 2012, 12 683 

 

37. Wang, C.; Li, B.; Sohraby, K.; Daneshmand, M.; Hu, Y. Upstream Congestion Control in 

Wireless Sensor Networks Through Cross-Layer Optimization. IEEE J. Select. Areas Commun. 

2007, 25, 786–795. 

38. Gallardo, J.R.; Gonzalez, A.; Villasenor-Gonzalez, L.; Sanchez, J. Multipath Routing Using 

Generalized Load Sharing for Wireless Sensor Networks. In Proceeding of the International 

Conferences on Wireless and Optical Communications, Montreal, QC, Canada, 30 May–1 June 

2007. 

39. Popa, L.; Raiciu, C.; Stoica, I.; Rosenblum, D. Reducing Congestion Effects in Wireless 

Networks by Multipath Routing. In Proceedings of the 2006 IEEE International Conference on 

Network Protocols, Santa Barbara, CA, USA, 12–15 November 2006; pp. 96–105. 

40. Key, P.; Massoulie, L.; Towsley, D. Path Selection and Multipath Congestion Control. In 

Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE 

INFOCOM ’07), Anchorage, AK, USA, 6–12 May 2007; pp. 143–151. 

41. Jones, E.; Karsten, M.; Ward, P.A.S. Multipath Load Balancing in Multi-Hop Wireless Networks. 

In Proceedings of the IEEE International Conference on Wireless and Mobile Computing, 

Networking and Communications (WiMob ’05), Montreal, QC, Canada, 22–24 August 2005;  

pp. 158–166. 

42. Jain, K.; Padhye, J.; Padmanabhan, V.N.; Qiu, L. Impact of Interference on Multi-Hop Wireless 

Network Performance. Wirel. Netw. 2005, 11, 471–487. 

43. Pearlman, M.R.; Haas, Z.J.; Sholander, P.; Tabrizi, S.S. On the Impact of Alternate Path Routing 

for Load Balancing in Mobile Ad Hoc Networks. In Proceedings of the 1st Annual Workshop on 

Mobile and Ad Hoc Networking and Computing (MobiHOC’00), Boston, MA, USA, 11 August 

2000; pp. 3–10. 

44. Wei, W.; Zakhor, A. Interference Aware Multipath Selection for Video Streaming in Wireless Ad 

Hoc Networks. IEEE Trans. Circ. Syst. Video Tech. 2009, 19, 165–178. 

45. Teo, J.Y.; Ha, Y.; Tham, C.K. Interference-Minimized Multipath Routing with Congestion 

Control in Wireless Sensor Network for High-Rate Streaming. IEEE Trans. Mobile Comput. 

Mobile Comput. 2008, 7, 1124–1137. 

46. Fu, B.; Li, R.; Xiao, X.; Liu, C.; Yang, Q. Non-Interfering Multipath Geographic Routing for 

Wireless Multimedia Sensor Networks. In Proceedings of the International Conference on 

Multimedia Information Networking and Security, Wuhan, China, 18–20 November 2009;  

pp. 254–258. 

47. Roy, S.; Bandyopadhyay, S; Ueda, T.; Hasuike, K. Multipath Routing in Ad Hoc Wireless 

Networks with Omni Directional and Directional Antenna: A Comparative Study. In Proceedings 

of the 4th International Workshop on Distributed Computing, Mobile and Wireless Computing 

(IWDC ’02), Calcutta, India, 28–31 December 2002; pp. 184–191. 

48. Tarn, W.H.; Tseng, Y.C. Joint Multi-Channel Link Layer and Multi-Path Routing Design  

for Wireless Mesh Networks. In Proceedings of the 26th IEEE International Conference  

on Computer Communications (INFOCOM ’07), Anchorage, AK, USA, 6–12 May 2007;  

pp. 2081–2089. 



Sensors 2012, 12 684 

 

49. Yan, B.; Gharavi, H. Multi-Path Multi-Channel Routing Protocol. In Proceedings of the 5th IEEE 

International Symposium on Network Computing and Applications (NCA ’06), Cambridge, MA, 

USA, 24–26 July 2006; pp. 27–31. 

50. Yang, Y.; Wang, J.; Kravets, R. Interference-Aware Load Balancing for Multihop Wireless 

Networks; Technical Report UIUCDCS-R-2005-2526; Department of Computer Science, 

University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2005. 

51. Subramanian, A.P.; Buddhikot, M.M.; Miller, S. Interference Aware Routing in Multi-Radio 

Wireless Mesh Networks. In Proceedings of the 2nd IEEE Workshop on Wireless Mesh Networks 

(WiMesh ’06), Reston, VA, USA, 25 September 2006; pp. 55–63. 

52. Wu, K.; Harms, J. Performance Study of a Multipath Routing Method for Wireless Mobile Ad 

Hoc Networks. In Proceedings of the 9th International Symposium on Modeling, Analysis and 

Simulation of Computer and Telecommunication Systems, Cincinnati, OH, USA, 15–18 August 

2001; pp. 99–107. 

53. Parissidis, G.; Karaliopoulos, M.; Baumann, R.; Syyropoulos, T. Routing Metrics for Wireless 

Mesh Networks. In Guide to Wireless Mesh Networks; Springer: London, UK, 2009; pp. 199–230. 

54. Koksal, C.E.; Balakrishnan, H. Quality-Aware Routing Metrics for Time-Varying Wireless Mesh 

Networks. IEEE J. Sel. Area. Commun. 2006, 24, 1984–1994. 

55. Hassanein, H.; Luo, J. Reliable Energy Aware Routing in Wireless Sensor Networks. In 

Proceedings of 2nd IEEE Workshop on Dependability and Security in Sensor Networks and 

Systems, Los Alamitos, CA, USA, 24–28 April 2006; pp. 54–64. 

56. Li, S.; Neelisetti, R.K.; Liu, C.; Lim, A. Efficient Multi-Path protocol for Wireless Sensor 

Networks. Int. J. Wirel. Mobile Netw. 2010, 2, 110–130. 

57. Deb, B.; Bhatnagar, S.; Nath, B. ReInForM: Reliable Information Forwarding Using Multiple 

Paths in Sensor Networks. In Proceedings of the 28th Annual IEEE International Conference on 

Local Computer Networks (LCN’03), Bonn, Germany, 20–24 October 2003; pp. 406–415. 

58. Ming, Y.; Wong, V.W.S. An Energy-Efficient Multipath Routing Protocol for Wireless Sensor 

Networks. Int. J. Commun. Syst. 2007, 20, 747–766. 

59. Radi, M.; Dezfouli, B.; Razak, S.A.; Bakar, K.A. LIEMRO: A Low-Interference Energy-Efficient 

Multipath Routing Protocol for Improving QoS in Event-Based Wireless Sensor Networks. In 

Proceedings of the 4th International Conference on Sensor Technologies and Applications 

(SENSORCOMM ’10), Venice, Italy, 18–25 July 2010; pp. 551–557. 

60. Huang, X.; Fang, Y. Multiconstrained QoS Multipath Routing in Wireless Sensor Networks. J. 

Wirel. Netw. 2007, 14, 465–478. 

61. Lou, W.; Kwon, Y. H-SPREAD: A Hybrid Multipath Scheme for Secure and Reliable Data 

Collection in Wireless Sensor Networks. IEEE Trans. Veh Tech. 2006, 55, 1320–1330. 

62. Dezfouli, B.; Radi, M.; Abd Razak, S. A Cross-Layer Approach for Minimizing Interference and 

Latency of Medium Access in Wireless Sensor Networks. Int. J. Comput. Netw. Commun. 2010, 2, 

126–142. 

63. Dezfouli, B.; Radi, M.; Nematbakhsh, M.A.; Razak, S.A. A Medium Access Control Protocol 

with Adaptive Parent Selection Mechanism for Large-Scale Sensor Networks. In Proceedings of 

the 2011 IEEE Workshops of International Conference on Advanced Information Networking and 

Applications (WAINA ‘11), Singapore, 22–25 March 2011; pp. 402–408. 



Sensors 2012, 12 685 

 

64. Bagula, A.; Mazandu, K. Energy Constrained Multipath Routing in Wireless Sensor Networks. In 

Proceeding of the 5th International Conference on Ubiquitous Intelligence and Computing, Oslo, 

Norway, 23–25 June 2008; pp. 453–467. 

65. Li, W.; Cassandras, C.G. A Minimum-Power Wireless Sensor Network Self-Deployment Scheme. 

In Proceedings of IEEE Wireless Communications and Networking Conference, New Orleans, LA, 

USA, 13–17 March 2005; pp. 1897–1902. 

66. Ben-Othman, J.; Yahya, B. Energy Efficient and QoS Based Routing Protocol for Wireless Sensor 

Networks. J. Parall. Distrib. Comput. 2010, 70, 849–857. 

67. Lu, Y.M.; Wong, V.W.S. An Energy-Efficient Multipath Routing Protocol for Wireless Sensor 

Networks. Int. J. Commun. Syst. 2007, 20, 747–766. 

68. Radi, M.; Dezfouli, B.; Bakar, K.A.; Abd Razak, S.; Nematbakhsh, M.A. Interference-Aware 

Multipath Routing Protocol for QoS Improvement in Event-Driven Wireless Sensor Networks. 

Tsinghua Sci. Tech. 2011, 16, 475–490. 

69. Hurni, P.; Braun, T. Energy-Efficient Multi-Path Routing in Wireless Sensor Networks.  

In Proceedings of the 7th International Conference on Ad-Hoc, Mobile and Wireless Networks 

(ADHOC-NOW ’08), Sophia Antipolis, France, 10–13 September 2008; pp. 72–85. 

70. Marina, M.K.; Das, S.R. On-Demand Multipath Distance Vector Routing in Ad Hoc Networks.  

In Proceedings of the 9th International Conference on Network Protocols, Riverside, CA, USA, 

11–14 November 2001; pp. 14–23. 

71. Maimour, M. Maximally Radio-Disjoint Multipath Routing for Wireless Multimedia Sensor 

Networks. In Proceedings of the 4th ACM Workshop on Wireless Multimedia Networking and 

Performance Modeling, Vancouver, BC, Canada, 27–31 October 2008; pp. 26–31. 

72. Baccour, N.; Aa, A.K.; Mottola, L.; Youssef, H.; Boano, C.A.; Ario, M. Radio Link Quality 

Estimation in Wireless Sensor Networks: A Survey. ACM Trans. Sens. Netw. 2012, submitted. 

73. Dezfouli, B.; Radi, M.; Nematbakhsh, M.A. Cross-Layer Interference Avoidance MAC Protocol 

for Dense Wireless Sensor Networks. In Proceedings of the 1st International Conference on 

Networks & Communications (NetCoM-2009), Chennai, India, 27–29 December 2009; pp. 60–65.  

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/).  


