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Abstract: The reliability of cutting tools is critical to machining precision and production 

efficiency. The conventional statistic-based reliability assessment method aims at providing 

a general and overall estimation of reliability for a large population of identical units under 

given and fixed conditions. However, it has limited effectiveness in depicting the 

operational characteristics of a cutting tool. To overcome this limitation, this paper 

proposes an approach to assess the operation reliability of cutting tools. A proportional 

covariate model is introduced to construct the relationship between operation reliability 

and condition monitoring information. The wavelet packet transform and an improved 

distance evaluation technique are used to extract sensitive features from vibration signals, 

and a covariate function is constructed based on the proportional covariate model. 

Ultimately, the failure rate function of the cutting tool being assessed is calculated using 

the baseline covariate function obtained from a small sample of historical data. 

Experimental results and a comparative study show that the proposed method is effective 

for assessing the operation reliability of cutting tools. 

Keywords: operation reliability assessment; condition monitoring information; distance 

evaluation technique; proportional covariate model; cutting tool 
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Abbreviations 

Acronyms J Feature number of each condition 

CNC Computerised Numerical Control C Number of the conditions 

PCM Proportional Covariate Model Km,c,j 
jth feature of the mth sample under the cth 

condition 

WT Wavelet Transform 
( )
j

bv  Inter-class difference factor 

WPT Wavelet Packet Transform Mc Sample number of the cth condition 

MLE Maximum Likelihood Estimation uc,j 
Average feature value of all samples under 

the same condition 

CI Confidence Interval dc,j 
Average distance of the same condition 

samples 

Notations 
( )
j

wd  Average intra-class difference factor 

Z(t) Sensitive feature set 
( )
j

bd  
Average distance between different sample 

conditions 

Zrm(t) mth feature in the sensitive feature set 
( )
j

wv  Intra-class difference factor of 
( )

j

wd  

h(t) Failure rate function aj Distance evaluation criterion 

c0(t) Baseline covariate function j  Compensation factor 

hin(t) Initial failure rate function ja  Normalised distance evaluation criterion 

)(
~

th  Updated failure rate function 
 Threshold for sensitive feature selection 

f(t) Probability density function VB Flank wear value 

R(t) Reliability function   Shape parameter of the Weibull distribution 

( ( ))t Z  Feature covariate function   Scale parameter of the Weibull distribution 

Em 
Wavelet energy entropy of the mth level 

decomposition 
n  Lifetime data 

X(m,n) 
nth frequency band coefficient of the mth 

level decomposition 
mf Number of lifetime data 

Sm,n Single branch reconstruction of X(m,n) M Dimension of the signal feature set 

rm,n Amplitude of Sm,n w Feature weight vector 

L Length of the original signal F(t) Failure distribution of the cutting tool 

Em,n Wavelet packet energy of Sm,n )(
~

tZ  
Sensitive feature set of the cutting tool in 

operation 

Pm,n Normalised wavelet packet energy of Sm,n )(
~

tZrm  
mth sensitive feature of the cutting tool in 

operation 

K Original feature set   
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1. Introduction 

Tool failure is a major cause of unscheduled stoppages in the current manufacturing industry and is 

costly, not only in terms of time lost, but also in terms of capital destroyed [1]. Statistically, for modern 

machine tools, approximately 20% of downtime resulting in reduced productivity and economic losses 

is attributed to cutting tool failure [2]. The traditional tool replacement strategy based on regular time 

periods can reduce unplanned downtime and production losses to some extent, but tool degradation is a 

complex process and is easily affected by sophisticated and various machining environments [3]. There 

is a need to assess the real-time operation performance of a cutting tool to guarantee high machining 

quality and avoid unscheduled downtime to achieve higher economic efficiency and fewer disastrous 

accidents. For instance, during the manufacturing process of aircraft landing gear, the required 

processing precision is extremely high and scrapping a workpiece is not desirable because of the 

considerable cost. It is necessary to monitor the running states and assess the performance of cutting 

tools to create timely replacement policies or extend tool service life. 

The past several decades have witnessed the rapid development of tool condition monitoring 

methods. As one of the outstanding examples in this field, wear-prediction-based monitoring methods 

have received great attention. Methods such as ANN [4], ANN ensemble [5], and SVM [6] have 

proved to be effective in tool condition monitoring [7]. Although these methods have played an 

important role in preventing degradation in machining quality, the wear value of a cutting tool is a 

single index; thus, it is difficult to provide a comprehensive estimation of the running condition of a 

cutting tool and the associated machining quality. It is necessary to find a method that can 

comprehensively assess the condition of a cutting tool and the performance of the corresponding 

machining process. Reliability theory describes the probability that a system will complete its expected 

function during an interval of time. The reliability function obtained from the reliability assessment of 

a cutting tool could provide a more detailed analysis of the cutting tool’s performance [8].  

Therefore, an effective reliability assessment of a cutting tool is necessary to develop a more effective 

real-time tool replacement strategy, avoid unplanned shutdowns, guarantee high machining quality, and 

promote productivity. 

Considerable efforts have been made by researchers and engineers to investigate the reliability of 

cutting tools. Hitomi et al. derived the reliability of cutting tools based on the tool-wear distribution 

estimated from tool-wear experiments [9]. To quantify the reliability of carbide tools, Negishi and Aoki 

studied the influence of feed rate on the life of cutting tools during intermittent cutting [10]. Liu and 

Makis used a proportional hazard model to assess the reliability of cutting tools in variable conditions 

by taking machining conditions into consideration [11]. Based on the theorem of total probability, Klim 

et al. obtained the mean time to failure of cutting tools from the reliability function through a stochastic 

model [8]. Wang et al. predicted the reliability of cutting tools based on a reliability-dependent failure 

rate model that involves two decay factors: the embedded decay factor and the process-dependent 

decay factor [12]. Lin et al. used the normal distribution model to calculate the reliability of cutting 

tools in high-speed turning and revealed that the tool flank wear rate can be described by the reliability 

degradation rate [13]. Hsu et al. proposed a non-homogenous continuous-time Markov process to model 

the tool wear process and performed a reliability assessment of a cutting tool with multi-state 

deterioration [14]. 
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The investigations mentioned above have made significant progress in cutting tool reliability 

analysis. However, some difficult problems still remain. Most of the above studies, to some extent, rely 

on the complex mechanisms of tool wear or machining conditions, which are generally unstable. More 

importantly, these studies only provide a general overall estimation of a group of cutting tools. The 

estimation is useful to manufacturers that produce units in high volumes [15]. However, the 

aforementioned approaches become less powerful and are not accurate for the operation reliability 

assessment of cutting tools during field use. Unfortunately, engineers are particularly concerned about 

such characteristics of operation performance and operation reliability. To evaluate operation reliability 

that can effectively reflect the performance of a given cutting tool, it is preferable to develop a 

reliability assessment approach that depends less on professional knowledge of the complex wear 

mechanisms of the cutting tool and machining environment. 

Accurate condition monitoring information of a cutting tool, including direct and indirect 

sensor-based information, can effectively reflect the real-time running state of the cutting tool. Over the 

past decades, a considerable number of studies have been carried out to focus on tool condition 

monitoring by using direct [16,17] or indirect sensor-based methods. Owing to the advantages of a less 

complicated setup and less reliance on professional knowledge of complex wear mechanisms, indirect 

sensor-based approaches have been widely preferred over direct sensor-based methods [18]. Among all 

of the indirect sensor-based information that can be obtained, such as cutting forces [19], vibration 

signals [20–23], acoustic emission signals [23–26], current signals [27] and internal CNC signals [28], 

vibration signals have been widely used in equipment condition monitoring for their advantages of low 

price, easy implementation and continuous on-line testing [29]. Investigation results show that the 

features extracted from vibration signals in the time domain or the frequency domain are sensitive to 

tool wear [30,31] and insensitive to the variation in cutting conditions [32]. It is beneficial to take 

advantage of real-time sensor-based vibration signals to evaluate the operation reliability of a cutting 

tool. However, there still remain some challenges in establishing an appropriate reliability assessment 

model to represent the relationship between vibration signals and operation reliability. 

This study proposes an operation reliability assessment approach for cutting tools by applying the 

proportional covariate model (PCM) to construct the relationship between condition monitoring 

information and operation reliability. In the proposed method, wavelet packet transform (WPT) is 

utilised to analyse vibration signals. In this method, a feature set consists of the wavelet packet energy 

of each frequency-band signal and the wavelet packet energy entropy is obtained. An improved 

distance evaluation technique is performed to select sensitive features associated with cutting tool 

degradation and to determine the weights of sensitive features. Then, the feature covariate function of 

the sensitive features is constructed. Subsequently, the baseline covariate function is quantitatively 

obtained by integrating lifetime data and sensitive features extracted from historical vibration signals. 

The PCM is established to calculate the failure rate function of the cutting tool in operation. Finally, 

the operation reliability of the cutting tool during processing is assessed via the failure rate function. 

Experiments on a CNC lathe were carried out to verify the effectiveness of the proposed method. The 

assessment result verified that the presented approach is capable of and practical for evaluating the 

operation reliability of a given cutting tool during processing. 

The rest of the paper is organised as follows: Section 2 introduces the proposed operation reliability 

assessment approach. Section 3 describes the experimental setup and sensor-based information 



Sensors 2012, 12 12968 

 

 

acquisition. In Section 4, the proposed method is verified and the main results are discussed. Finally, 

conclusions are drawn in Section 5. 

2. Operation Reliability Assessment Approach for Cutting Tools 

The key to the proposed operation reliability assessment approach is to establish the relationship 

between the condition monitoring information and the operation reliability of a cutting tool by 

applying PCM. Section 2.1 describes the rationale of the PCM. The calculation methods of the two key 

functions (the feature covariate function and the baseline covariate function) for constructing PCM are 

presented in Section 2.2 and Section 2.3, respectively. The algorithm of the proposed method is 

illustrated in Section 2.4. 

2.1. Proportional Covariate Model 

It is commonly understood that the deterioration of a mechanical system generally tends to increase 

the probability of failure. Accurate condition monitoring information of a system can reflect its 

deterioration progress. It is reasonable to assume that features extracted from condition monitoring 

information or a function of these features is proportional to the failure rate of the system. This 

assumption has been widely used to study mechanical systems and has been verified by Sun [33,34]. 

PCM was proposed to estimate the failure rate of a mechanical system by using condition monitoring 

information based on this assumption [33]. PCM was constructed to forge a relationship between the 

failure rate function and condition monitoring information. 

Suppose that at time t, T

21 ))(,),(),(()( tZtZtZt rMrr Z  is an M-dimensional signal feature set 

extracted from the condition monitoring information of a system. ( ( ))t Z  is the feature covariate 

function of the feature set Z(t). It is time dependent and represents the running states of the system. h(t) 

is the failure rate function of the operation reliability. PCM is formulated as follows [33]:  

0( ( )) ( ) ( )t c t h t Z  (1) 

where c0(t) represents the proportional relationship between the failure rate function and the condition 

monitoring information. Thus, the failure rate function can be obtained as: 

0

( ( ))
( )

( )

t
h t

c t




Z
 (2) 

There are two key techniques used to estimate the failure rate function: one is the construction  

of the feature covariate function ( ( ))t Z , and the other is the creation of the baseline covariate 

function c0(t). 

Constructing a suitable mathematical model for  ( )t Z  plays a critical role in improving the 

accuracy of failure rate estimation, especially when M > 1. In this study, Z(t) is an M-dimensional 

sensitive feature set extracted and selected from a vibration signal. Many statistical models are available 

for the formulation of ( ( ))t Z  [35,36]. The exponential model, one of the most commonly used in 

practice, is employed in this paper as follows: 

  T

1

( ) exp( ( ))=exp( ( ))
M

m rm

m

t w Z t t


 Z w Z  (3) 
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where T

21 ))(,),(),(()( tZtZtZt rMrr Z  is the sensitive feature set and the variables in 
T

21 ),,,( Mwww w  are the corresponding feature weights. The detailed construction method for 

 ( )t Z  is described in Section 2.2. 

Furthermore, studies have shown that there are two approaches to estimate the baseline covariate 

function: (1) Estimate the function from historical failure data and condition monitoring information. 

(2) In the case of sparse or even zero historical data, the baseline covariate function can also be 

determined according to the anecdotal experience of operators of plants and/or by using supplementary 

information such as data from accelerated life tests. In this study, we focus on the first approach. The 

baseline covariate function is quantitatively calculated by using historical failure data and condition 

monitoring information. The detailed approach is presented in Section 2.3. 

Once both the feature covariate function ( ( ))t Z  and the baseline covariate function c0(t) are 

determined, the failure rate function of the cutting tool during processing can be calculated by using the 

condition monitoring information of the cutting tool as follows: 

)(

))(
~

exp(

)(

))(
~

(
)(

~

0

T

0 tc

t

tc

t
th

ZwZ



 (4) 

where T

21 ))(
~

,,)(
~

,)(
~

()(
~

tZtZtZt rMrr Z  is the sensitive feature set of the cutting tool that is  

being assessed. 

It has been stated that PCM was developed to estimate the failure rate of a system to ultimately 

perform a reliability assessment of a cutting tool. Some of the most essential definitions of reliability 

theory are reviewed as follows. The failure rate h(t) is defined as the ratio of probability density function 

f(t) to reliability R(t): 

( ) ( ) / ( )h t f t R t  (5) 

where f(t) is defined as: 

d ( ) d ( )
( )

d d

F t R t
f t

t t
    (6) 

yielding: 

0
( ) exp( ( )d )

t

R t h t t   (7) 

Eventually, the reliability assessment of a cutting tool can be obtained by PCM. 

2.2. The Construction of the Feature Covariate Function 

To construct the feature covariate function, a two-stage feature covariate function construction 

approach based on WPT and an improved distance evaluation technique is presented in this subsection. 

Section 2.2.1 details the first stage: feature extraction by WPT. Section 2.2.2 presents the second stage: 

feature selection and weighting by using the improved distance evaluation technique. 
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2.2.1. Feature Extraction 

Feature extraction is critical to acquiring characteristic information regarding cutting tool degradation. 

It has been reported that the characteristics mainly focus on some specific frequency bands [22]. 

Therefore, WPT is performed to decompose the vibration signal into a set of distinct frequency bands. 

Wavelet transform (WT) is a powerful multi-resolution analysis method that is localised both in the 

time domain and the frequency domain [37–39]. However, an unavoidable drawback of WT is that the 

frequency resolution in the high-frequency region is rather poor [40]. As a generalisation of WT, WPT 

further decomposes the high-frequency bands and thus generates a finer frequency-band partition over 

the whole analysed frequency interval [40,41]. In this study, WPT is utilised to analyse the vibration 

signals of a cutting tool. 

Study [29] shows that the variations in the wavelet packet energies within some frequency bands are 

consistent with cutting tool degradation. Moreover, this can be easily recognised regardless of the 

cutting parameters. The energy value of each frequency band can effectively reflect the running 

condition of a cutting tool and provide useful information to conduct a cutting tool operation reliability 

assessment. Thus, single branch reconstruction is performed, and the wavelet packet energy of each 

frequency band is then calculated. The benefits of single branch reconstruction are manifold, including 

the preservation of the analysis resolution in both the time domain and the frequency domain, as well as 

the suppression of frequency aliasing. 

Let X(m,n) represent the nth frequency band signal of the mth level decomposition and Sm,n represent 

the single branch reconstruction of X(m,n); the corresponding wavelet packet energy Em,n is calculated as 

follows [42]: 

2 2

, , ,

1

( ) d ( )
L

m n m n m n

i

E S t t r i


   (8) 

where )2,,2,1;,,2,1(,

m

nm nNmr   is the amplitude of the reconstructed signal Sm,n, and L represents 

the length of the signal. For the generalisation of the application, the normalised wavelet packet energy 

of Sm,n is calculated as follows: 

,

,

,

m n

m n

m n

n

E
P

E



 
(9) 

Energy entropy is capable of detecting the change in signal energy in different frequency bands  

and reveals the amount of information stored in the observed signal. The wavelet packet energy 

entropy quantifies the statistical properties of the instantaneous power of a vibration signal that are 

largely unaffected by changes in the machining environment. The wavelet packet energy entropy Em is 

defined as: 

, ,log m m n m n

n

E P P  
(10) 

Thus, the original signal feature set of the vibration signal is constructed as follows: 

},,,,{
2,2,1, mmmm EPPPK m  (11) 



Sensors 2012, 12 12971 

 

 

2.2.2. Feature Selection and Weighting 

The extracted features in the original feature set have various degrees of importance in reflecting 

the degradation severity of a cutting tool from different aspects. Some features are sensitive and closely 

related to the degradation of the cutting tool, while others are not. Irrelevant or redundant features not 

only mask information that is useful for an operation reliability assessment but also increase the 

computational burden. Hence, an improved distance evaluation technique is introduced to select 

sensitive features of cutting tool degradation and reduce irrelevant or redundant features from the 

original feature set. The distance evaluation technique is carried out based on the “intra-class” and 

“inter-class” distances [43]. In other words, the features that engender longer intra-class distances and 

shorter inter-class distances are regarded as superior. However, the distance evaluation technique 

ignores the difference between the aggregation degree among conditions and the intra-class distance. 

The improved distance evaluation technique enhances the evaluation results defining and calculating a 

compensation factor. 

Suppose that a feature set of C conditions is: 

},,2,1;,,2,1;,,2,1,{ ,, JjCcMmK cjcm    (12) 

where Km,c,j is the jth feature of the mth sample under the cth condition, Mc is the sample number of the 

cth condition, and J is the feature number of each condition. The feature selection steps based on the 

improved distance evaluation technique are as follows. 

(a) Calculate the average distance of the same condition samples: 

miMmiKK
MM

d c

M

mi

jcijcm

cc

jc

c




 


,,,2,1, ,
)1(

1

1,

,,,,,   (13) 

then determine the average intra-class distance of C conditions 
( )

,

1

1 C
w

j c j

c

d d
C 

  . 

(b) Define and calculate the intra-class difference factor of 
( )w

jd  as follows: 

( )

, ,max( ) min( )w

j c j c jv d d  (14) 

(c) Compute the average feature value of all samples under the same condition: 

, , ,

1

1 M

c j m c j

mc

u K
M 

   (15) 

then determine the average distance between different sample conditions: 

ecCecuu
CC

d
C
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jcje

b

j 


 


,,,2,1, ,
)1(

1

1,

,,

)(   (16) 

(d) Compute the inter-class difference factor: 

ecCec
uu

uu
v

jcje

jcjeb

j 



 ,,,2,1, ,

)min(

)max(

,,
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(e) Define and calculate the compensation factor: 

( ) ( )

1

( ) ( )
[ ]
max( ) max( )

w b

j j

j w b

j j

v v

v v
    (18) 

(f) Calculate the ratio of ( )b

jd  to ( )w

jd  and create the compensation factor: 

( )

( )

b

j

j j w

j

d
a

d
  (19) 

Finally, normalise the value of aj and use its maximum value to determine the distance  

evaluation criterion: 

•
Jja

a
a

j

j

j
},,2,1;max{ 

  (20) 

Obviously, high a value of ja  indicates that the corresponding feature is quite capable of 

distinguishing different degradation conditions of a cutting tool. By setting a threshold value [0,1] , 

the first M most sensitive features can be selected from the original feature set according to the criterion 

ja  . 

Although sensitive features have been selected from the original feature set via the improved distance 

evaluation technique, the selected features have different sensitivities in reflecting the running condition 

of a cutting tool. Feature weighting is implemented here to achieve a more dependable reliability 

assessment result. The basic idea of feature weighting is to multiply each feature by a number within the 

interval [0,1] that is proportional to the capability of a given feature to distinguish between different 

conditions. Fortunately, the value of the distance evaluation criterion represents a feature’s sensitivity to 

different conditions. Thus, it is rational to use the acquired distance evaluation criteria as weight factors 

of the sensitive features, that is: 

m mw a  (21) 

As mentioned in Section 2.1, the recommended form of the feature covariate function  ( )t Z  is 

as expressed in Equation (3) in the case of multiple features. The determined distance evaluation 

criteria act as the feature weights of each sensitive feature and are then substituted into Equation (3). 

Thus, the feature covariate function  ( )t Z  can be fully constructed. 

2.3. Quantitative Calculation of the Baseline Covariate Function 

As previously mentioned in Section 2.1, there are two approaches to estimate the baseline covariate 

function. In this paper, the first approach is employed. According to Equation (2), a set of discrete 

values of c0(t) can be obtained: 

),,2,1( 
)(

))(exp(

)(

))((
)(

T

0 c

iin

i

iin

i
i mi

th

t

th

t
tc 

ZwZ
 (22) 

where ( ( ))it Z  is the discrete value of the feature covariate function calculated by historical 

condition monitoring information, mc is the sample size of historical vibration signals, and hin(ti) is the 
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initial failure rate of the condition monitoring information at the corresponding moment. ( ( ))it Z  is 

determined by historical condition vibration signals according to Section 2.2. 

To evaluate the initial failure rate function hin(t), a proper failure distribution for the cutting  

tool being analysed must first be determined. A Weibull distribution is used to describe the tool  

failure [13,37]. The failure rate function of a Weibull distribution with two parameters is: 

1
( ) ( )( )h t t


  


  (23) 

where β and η are the shape parameter and the scale parameter of the Weibull distribution, respectively. 

To make sure that the failure distribution of the cutting tool obeys a Weibull distribution, the 

hypothesis test is implemented. The failure distribution of the cutting tool is identified based on the 

historical lifetime data },,2,1:{ fn mn   by the hypothesis test, where mf is the number of lifetime 

data points. Once the failure distribution is determined, maximum likelihood estimation (MLE) is 

employed to identify the unknown parameters β and η by using the historical lifetime data. 

By utilising the initial failure rate function hin(t) and the historical feature covariate function 

( ( ))t Z , a set of discrete values of ),,2,1( )(0 ci mitc   are obtained by Equation (22). According to 

the recommendation made in [33], a multiplicative model is chosen to represent the baseline covariate 

function, that is: 

0 ( ) bc t at  (24) 

Then, the baseline covariate function can be estimated from the discrete data set 

},,2,1 :)(,{ 0 cii mitct  . 

2.4. The Algorithm of the Operation Reliability Assessment Approach 

To assess the operation reliability of the cutting tool that is to be assessed, a sensor-based data 

acquisition process that can record useful information about the cutting tool must be carried out first. 

In the present study, the vibration signals of the cutting tool and optical microscopy-based flank wear 

values are recorded. The lifetimes of the historical samples are determined under the condition that 

their flank wear value VB exceeds 0.6 mm according to ISO3685. Then, the proposed approach is 

applied to estimate the operation reliability of the cutting tool to be assessed. The flowchart of the 

method is depicted in Figure 1. The detailed steps are summarised as follows: 

Step 1: (Determine proper failure distribution for the cutting tool): Identify the failure distribution of 

the cutting tool by implementing a hypothesis test using the historical lifetime data },,2,1:{ fn mn  . 

Step 2: (Estimate the initial failure rate function): Once the failure distribution is determined,  

MLE is adopted to evaluate the parameters of the initial failure rate function hin(t) by using historical 

lifetime data. 

Step 3: (Feature extraction): To acquire characteristic information regarding cutting tool 

degradation, WPT is performed to extract features from the vibration signals. 

Step 4: (Feature selection and weighting): Feature selection is performed through the improved 

distance evaluation technique. And the distance evaluation criteria of each sensitive feature act as 

feature weights to construct the feature covariate function. 
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Step 5: (Construct the feature covariate function): The feature covariate function is constructed 

using the feature weights of each sensitive feature based on step 3 and step 4. 

Step 6: (Calculate the baseline covariate function): After the initial failure rate function and the 

feature covariate function are obtained using information from the historical samples, discrete baseline 

covariate values are calculated, and the baseline covariate function is then calculated by a regression 

analysis technique using the discrete baseline covariate values. 

Figure 1. Flowchart of the proposed method. 

 

Step 7: (Update the failure rate function of the test cutting tool): To update the failure rate function 

of the test cutting tool, the vibration signals of the test cutting tool are monitored by an acceleration 

sensor. The feature covariate function of the cutting tool is constructed according to step 3 and step 4. 
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Then, PCM is constructed to update the failure rate function of the test cutting tool based on the feature 

covariate function and the baseline covariate function of the cutting tool: 
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 (25) 

Assuming that the failure rate function of the cutting tool is of the form 
1

( ) ( )( )h t t


  


  

shown in Equation (23), )(
~

th  can be evaluated using )}(
~

,{ jj tht  by regression analysis. Thus, the 

updated failure rate function of the test cutting tool is obtained. 

Step 8: (Assess the operation reliability): Calculate the operation reliability of test cutting tool that is 

to be assessed using the updated failure rate function via Equation (7). 

3. Experimental Setup and Sensor-Based Information Acquisition 

To test the effectiveness of the proposed operation reliability assessment method, an experimental 

system for the studied cutting tool was designed and carried out on a CNC lathe. Figure 2 shows a 

schematic diagram of the experimental setup. Figure 3 shows the experimental system of the test rig and 

the locations of sensors. In the experiment, the carbide cutting tool was utilised to process 45# steel bars. 

The vibration signals of the cutting tool were monitored by an acceleration sensor, sent to a data 

acquisition and signal processing system (LMS SCADAS305), and finally stored in a portable computer. 

The flank wear value VB of the cutting tool was measured by an optical microscopy system with a CCD 

camera, an adjustable LED annular source, and a micrometer. The surface roughness data of the 

workpiece, the current signals of the spindle motor and the Z-servo motor were also monitored for 

further study. Table 1 shows the experimental conditions. Table 2 lists the detailed information 

obtained by the sensors used in the experiment. 

To accumulate sufficient vibration signals and lifetime data from the cutting tool, vibration signals 

and flank wear values were monitored during the cutting process under constant condition. Vibration 

signals were sampled every 2 min during the cutting process with a sampling frequency of 32,768 Hz 

and a sample interval of 2 s. 

Figure 2. The schematic diagram of the experimental setups. 
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Figure 3. Experimental system and sensor locations. 
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Table 1. Experimental conditions. 

CNC lathe FTC-20 

Workpiece  45# Steel bars 

Cutting tool  Type: Diamond carbide tool 

Model: CNMG120408-HM 

Material: 42CrMo4 

Cutting conditions 

 

Feed rate f: 0.15 mm/rev 

Cutting speed vc: 200 m/min 

Depth of cut ap: 2 mm 

Table 2. Detailed information of the sensors. 

Sensor  Sensor model Detailed information 

Acceleration sensor PCB ICP352C34  Sensitivity: 100 mv/g 

 Working frequency range: 0.3 Hz–15 KHz 

 Measurement range: ±50 g pk 

 Resolution: 0.00015 g 

 Temperature range: −54 °C to +93 °C 

 Size: Φ50 mm × 160 mm 

 Weight: 5.6 g 

Optical microscope MZDH0670  Zoom objective magnification 0.58X~7.0X 

 Zoom radio 12:1 

 Working distance 82 mm (1× objective) 

 Adjusting high-brightness long-life LED coaxial illumination 

 The measurement to match between the support and the main 

body: Φ45 mm 

4. Results and Discussion 

First, 10 cutting tools were investigated as historical samples. The variation curves of the cutting 

tools’ flank wear values are shown in Figure 4. The cutting tool is considered to have failed when the 

flank wear value VB ≥ 0.6 mm. Lifetime data of all 10 cutting tools were obtained according to the 

measured flank wear values of the cutting tools. 
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Figure 4. Variation curves of the cutting tools flank wear values. 
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4.1. Initial Failure Distribution Determination 

The hypothesis test was implemented to analyse the failure distribution of the cutting tool. The result 

is shown in Figure 5. It is rational to assume that the failure distribution of the cutting tool obeys a 

Weibull distribution. Then, the failure distribution of the cutting tool was estimated by MLE: 
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Figure 5. Weibull distribution fitting test. 
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4.2. Construction of the Feature Covariate Function 

The vibration signals of the 10 historical samples were investigated by WPT and the improved 

distance evaluation technique to construct the feature covariate function. 

4.2.1. Feature Extraction and Selection 

To extract the features sensitive to cutting tool wear, WPT was adopted to decompose the  

vibration signals of the cutting tool. According to the characteristics of the vibration signals, the mother 

wavelet used here should have the properties of orthogonality, short support, symmetry and a certain 

order of vanishing moment. Thus, the Daubechies 10 (db10) wavelet was chosen as the mother wavelet 

to analyse the vibration signals of the cutting tool. The decomposition level can be determined by the 

sampling frequency and frequency scope of the concentrated energy of the signal obtained from 

spectrum analysis [44]. First, the vibration signals were analysed to construct the feature covariate 

function. Tool No. 3 was taken as an example to demonstrate the procedure of feature extraction and 

feature set construction. Figure 6 shows the raw vibration signal of the tool after running for 69.5 min 

and its spectrum. The energy of the signal is mainly concentrated in two specific frequency bands, [2,4] 

KHz and [7,10] KHz, the latter of which contains richer energy information. According to the 

concentration of the energy shown in Figure 6(b), the vibrations signal was decomposed into four 

levels by WPT. The wavelet packet energies of the sixteen frequency-band signals and the WPT  

energy entropy of the vibration signal were calculated according to Equation (9) and Equation (10), 

respectively. Then, the original feature set },,,,{ 416,42,41,4 EPPPK   of the vibration signal was 

constructed at each sample time. Figure 7 displays the variation of the normalised wavelet packet energy 

values of tool No. 3 running from 69.5 min to 77.5 min. It can be observed that the frequency-band 

energy distribution presents certain variation regularity during the manufacturing process. For instance, 

the normalised energy values of band 9 decrease from 0.487 to 0.360 with the degradation of the cutting 

tool. The above analysis procedures were also applied to the other nine cutting tools, and signal feature 

sets at different running times were obtained with similar vibration regularities. 

The wear states of the cutting tool were divided into three different conditions according to the tested 

flank wear values [14,45]. Each feature set obtained from the vibration signal of the cutting tool 

corresponds to a certain condition. Then, based on the acquired corresponding feature sets of each 

condition, the improved distance evaluation technique was performed to evaluate the ability of the 

feature to distinguish different conditions. Figure 8 displays the distance evaluation criteria 

)17,,2,1( ja j  of all of the features. A high ja  value means that the corresponding feature is 

highly sensitive to degradation. To select the most sensitive features from the original feature set and 

keep only the important features, a threshold value   must be properly selected. According to [43], the 

range median of the evaluation criteria, 0.5, was chosen as the threshold to select the most sensitive 

features in the study. Therefore, the four most sensitive features ( 4,7 4,9 4,11 4, , ,P P P E ) were selected. The 

corresponding distance evaluation criteria of the selected features are T(0.6085,0.6406,0.5717,1)w . 
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Figure 6. (a) Vibration signal and (b) spectrum of tool No. 3 after running for 69.5 min. 
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Figure 7. Changes in WPT energy spectrum. 
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4.2.2. The Construction of the Feature Covariate Function 

After the four most sensitive features were selected from the original feature set, the distance 

evaluation criteria of the four selected features acted as weight factors to construct the feature covariate 

function. The corresponding feature weights set for the selected sensitive features set 
T

4,7 4,9 4,11 4( ) ( ( ), ( ), ( ), ( ))t P t P t P t E tZ  was T(0.6805 0.6406 0.57171)w , , , . Then, the feature covariate 

function of the sensitive features was constructed: 
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T

4,7 4,9 4,11 4( ( )) exp( ( )) exp(0.6085 ( )+0.6406 ( )+0.5717 ( ) ( ))t t P t P t P t E t   Z w Z   

4.3. The Quantitative Calculation of the Baseline Covariate Function 

According to Section 2.3, discrete values of the baseline covariate function can be obtained based on 

the initial failure rate function and the constructed feature covariate function of the 10 historical cutting 

tools. Then, the baseline covariate function can be estimated by using regression analysis based on the 

discrete values. The estimation result of the baseline covariate function for the cutting tool is: 

27 12.71

0 ( ) 1.343 10c t t    

4.4. Failure Rate Function Update and Operation Reliability Assessment Using PCM 

To assess the operation reliability of tool No. 11 during operation, the feature covariate function of 

tool No. 11 was constructed by using the corresponding vibration signals. Then, the PCM was utilised 

to update the failure rate function of tool No.11. According to Equation (25), discrete failure rates for 

the tool can be obtained as follows: 
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where mn = 16 is the number of sensitive feature sets extracted from the vibration signals of tool No. 11. 

Consequently, the failure rate function for tool No. 11 was acquired by regression analysis, that is: 
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Finally, the operation reliability of the cutting tool can be calculated according to Equation (7). As 

mentioned in the Introduction, the conventional reliability assessment method fails to reflect the 

characteristics of a specific cutting tool. To verify that the proposed method can overcome this drawback, 

the updated failure rate of tool No. 11 was compared with the population failure rate calculated by the 

conventional reliability assessment method in Figure 9(a). The reliability assessment result of the 

proposed method was compared with the population reliability in Figure 9(b).  

To test the effectiveness of the reliability assessment result, the lifetime of the cutting tool is 

estimated based on the reliability assessment of the proposed method and compared with the measured 

real lifetime of the tool by experiment. Based on engineering practice, in this paper, R(t) = 0.5 is set to 

be the failure threshold of the cutting tool. The estimated lifetime of tool No. 11 is 96.33 min based on 

the proposed method. Meanwhile, according to the conventional reliability assessment method, the 

estimated lifetime of tool No. 11 is 95.13 min. The experimentally measured real lifetime of the cutting 

tool is 96.83 min (VB = 0.6 mm). Clearly, the proposed method provides a more accurate reliability and 

lifetime evaluation for the cutting tool. On the other hand, based on the assessment of the proposed 

method, the operation reliability of the cutting tool is 0.47 when the cutting tool is running for  

96.83 min, which is also consistent with the cutting tool’s actual running state. 
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To further confirm the effectiveness and general applicability of the proposed method, it was used to 

assess the failure rate and operation reliability of another two cutting tools. The assessment results are 

also shown in Figure 9(a) and Figure 9(b). The actual lifetimes of tool No. 12 and tool No. 13 were 

measured to be 90.24 min and 97.63 min, respectively. Using the proposed operation reliability 

assessment method, the estimated lifetimes for tool No. 12 and tool No. 13 are 93.12 min and 96.41 min, 

respectively. Meanwhile, the estimated lifetimes of tool No. 12 and tool No. 13 are both 95.13 min, as 

determined by the conventional reliability assessment method. Table 3 shows a comparison between 

the two methods. 

Figure 9. (a) Failure rate comparison. (b) Reliability comparison. 
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As illustrated in Figure 9 and Table 3, the estimation error of the proposed method is much smaller 

than that of the conventional reliability assessment method. Moreover, the result of the conventional 

method only reflects the population reliability of the identical units. The proposed method effectively 

reflects the characteristics of the cutting tool in operation by introducing the condition monitoring 

information of the cutting tool into the PCM. 

Table 3. Reliability assessment results of the proposed method compared with those of the 

conventional method. 

 

Real lifetime 

(min) 

The conventional reliability 

assessment method 

The proposed operation reliability 

assessment method 

Estimated lifetime 

(min) 
Error (%) 

Estimated lifetime 

(min) 
Error (%) 

Tool No. 11 96.83 

95.13 

1.76 96.33 0.52 

Tool No. 12 90.24 5.42 93.12 3.19 

Tool No. 13 97.63 2.56 96.41 1.25 

To further validate the performance of the proposed method, the assessment result of the proposed 

method was compared with the assessment result of the previous study [29]. In [29], the reliability of 

the cutting tool was estimated using a logistic regression model based on vibration signals. The test 

cutting tool in [29] corresponds to tool No. 13 in the present study. Figure 10 shows the reliability 

assessment result of tool No.13 by using the logistic regression model introduced in [29]. 

Figure 10. Reliability assessment result of the test tool determined by Chen’s method [29]. 
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It can be observed from Figure 10 that the estimated lifetime of tool No. 13 is 100 min. The 

estimated error is 1.42% in [29]. Meanwhile, using the method proposed in this study, the estimated 

lifetime of the tool is 96.41 min and the estimated error is 1.25%. The assessment result of the method 

proposed in this paper shows an improvement compared with the result presented in [29]. In addition, a 

95% confidence interval (CI) is also given in Figure 10, as depicted by dashed lines. 

4.5. Discussion 

According to the results of the operation reliability assessment, it is convincing that by introducing 

the condition monitoring information of the cutting tool into reliability assessment, the proposed 

operation reliability assessment approach effectively reflects the characteristics of the cutting tool in 

operation. However, other issues still remain to be discussed. 

(1) The major contribution is that an operation reliability approach for assessing cutting tools by 

applying PCM and condition monitoring information is proposed. This contribution features two 

important aspects. First, by using PCM to introduce the condition monitoring information of a running 

cutting tool into operation reliability assessment, the method overcomes the main shortcoming of the 

conventional reliability assessment method: the inability to properly reflect the characteristic operation 

reliability of a given cutting tool. Second, PCM is introduced to assess operation reliability. In PCM, 

the baseline covariate function is employed to describe the relationship between condition monitoring 

information and operation reliability. The baseline covariate function represents the rate of change in 

the running condition when the operation reliability changes. Moreover, the baseline covariate function 

is dependent on both historical failure data and historical condition monitoring information; thus, it can 

be updated according to newly observed failure data and condition monitoring information. 

(2) The input, output, updating, and threshold setup of the model affect the performance of the 

proposed method. Figure 11 shows the fundamental input/output relationship of the proposed method. 

Figure 11. Input/output relationship of the proposed method. 
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The input and output, as well as other factors that affect the estimation accuracy of the proposed 

method, are discussed within the context of each of the three stages in the method (the modeling stage, 

the updating stage and the assessment stage) as follows: 

 In the modeling stage, both the lifetime and vibration signals act as input information with 

which to build the assessment model. In the presented engineering experiment, 10 cutting tools’ 

lifetime data and vibration signals acted as input to construct the PCM, where sample size 

scales with construction accuracy. However, when setting the parameter, there are two 

limitations that should be considered: (a) small sample size and (b) practical experiment or 

engineering practice. To construct the relationship between the vibration signals and operation 

reliability, the failure rate of the cutting tool estimated from the lifetime acted as the output 

initially. The ultimate goal of this stage is to obtain the baseline covariate function of the PCM. 

The baseline covariate function is the final output of this stage. 

 During the updating stage, the input is two-fold. First, there is the baseline covariate function, 

the output of the modeling stage. Then, there are the vibration signals of the cutting tool to be 

assessed. The output of this stage is the updated failure rate function of the cutting tool. During 

this stage, the sample of the input vibration signals is affected by practical experiment and 

computation effort. 

 During the assessment stage, what we are concerned about is the operation reliability threshold. 

In this paper, 0.5 was set to be the operation reliability threshold for the cutting tool. 

Moreover, the setup of the parameters mentioned above requires much more theoretical study and 

experimental work to provide more scientific rules. 

(3) In engineering applications, the measurement of flank wear is difficult because of the 

continuous contact between tools and workpieces, and it is fairly inconvenient due to the presence of 

coolant fluids. Thus, based on the present study, on-line condition monitoring information can be used 

to assess the operation reliability of the cutting tool being studied. 

(4) In this study, the effectiveness of the proposed method was verified by submitting the cutting 

tool under flank wear on a CNC lathe. However, this does not mean the proposed method is limited in 

assessing the reliability of a cutting tool under flank wear. The method is also applicable and can be 

properly generalised for the analysis of other types of degradation failure. It should be mentioned here 

that the proposed method is not suitable in situations when a sudden failure occurs during the machining 

process. Further research will be focused on the application of the proposed method to other types of 

degradation failure. 

5. Conclusions 

In this paper, an operation reliability assessment approach for cutting tools by applying PCM is 

proposed. Taking the condition monitoring information of the cutting tool that was analysed into 

consideration, the approach overcomes the main shortcoming of the conventional reliability 

assessment method: the inability to properly reflect the characteristics of a given cutting tool. WPT and 

an improved distance evaluation technology are employed to extract and select the relevant features 

that are most sensitive to the degradation of the cutting tool. The corresponding distance evaluation 
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criteria of the sensitive features are adopted as their feature weights to construct the feature covariate 

function. Then, the PCM-based reliability assessment model can be constructed without specific 

knowledge about the degradation mechanism of the cutting tool. 

The applications of the proposed approach in the operation reliability assessment of three cutting 

tools under flank wear on a CNC lathe confirmed that the proposed technique is effective in operation 

reliability assessment. Moreover, comparisons of the proposed method with the conventional method 

and another relatively new reliability assessment technique were made and testified the superiority of 

the proposed method. This study provides a foundation for developing specific production planning 

and tool management strategies to avoid unexpected downtime and economic loss. 

In this study, information regarding wear values and that regarding other aspects of condition 

monitoring were fused to comprehensively assess a cutting tool’s condition and corresponding 

machining performance. Based on reliability theory, PCM was used to construct the relationship 

between condition monitoring information and operation reliability and then evaluate the reliability of 

the cutting tool. Although the proposed method was used to evaluate the reliability of a cutting tool, 

this is not our ultimate goal. Further study should be undertaken to fuse other condition monitoring 

information about machining tools to assess the performance of equipment and machining quality. 
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