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Abstract: In this paper, we propose a non-parametric clustering method to recognize

the number of human motions using features which are obtained from a single

microelectromechanical system (MEMS) accelerometer. Since the number of human

motions under consideration is not knowna priori and because of the unsupervised nature of

the proposed technique, there is no need to collect trainingdata for the human motions. The

infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cluster

the human motions using extracted features. From the experimental results, we show that

the unanticipated human motions are detected and recognized with significant accuracy, as

compared with the parametric Fuzzy C-Mean (FCM) technique,the unsupervised K-means

algorithm, and the non-parametric mean-shift method.

Keywords: MEMS application; human motion recognition; non-parametric Bayesian

inference; infinite Gaussian mixture model; Gibbs sampler

1. Introduction

Human motion recognition (HMR) is an important topic currently being researched due to its large

number of applications in tracking, personal navigation, health care, personal life log, surveillance, and

sports, among other things. Human motion recognition [1–13] systems have been proposed to efficiently

detect numerous human motions, and they are widely applicable in the above mentioned domains.
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However, the motion recognition system has some limitations that cannot be mitigated. One of these

limitations is inherent in the dynamic nature of human motions; that is, the daily motions of a person

are not limited but rather vary from a small to a large set of motions. The introduction of new human

motions makes detection and recognition challenging. Therefore, there is a need for a HMR system that

is adaptable, accurate, and robust to the dynamic nature of the daily motions performed by a human.

In the health care domain, motions of patients are monitoredvia wearable sensors. This is useful for

three reasons: (1) to keep track of the movements performed by a patient during the medical examination

period, (2) to reduce the number of patient visits to medicalfacilities, and (3) automated motions retrieval

and management to facilitate the documentation of a patient’s history.

Two main technologies being currently used for motion recognition are body-mounted sensors

(accelerometers) [1,2] or image-based recognition (cameras) [3,5] for monitoring a subject’s motions.

Both methodologies have their own pros and cons. The benefit of camera aided motion identification is

that multiple subjects can be monitored simultaneously without the need for any other device. However,

the drawbacks of such a technology include (1) failure to achieve higher accuracy due to clutter, light

fluctuation under different settings, and varied activities in real environments [4]; (2) image-based

motion recognition can be require extensive resources and complex processing [3], and (3) it is not

cost effective as it requires at least one calibrated camerain each room setting. On the other hand,

the pros of body-mounted sensors are that (1) sensed data is independent of environmental conditions

and is person-specific; (2) sensors are compact and portable; and (3) processing data does not require

a great deal of resources. Alternatively, the downside of body-mounted sensors is service issues in

terms of early battery exhaustion. Numerous HMR techniquesdeveloped in the past have focused on

the acceleration signals in different directions that enable the classification of physical motions [1,2,6].

Motion recognition using multiple sensors instead of relying on a single sensor is also discussed in the

literature [6,8,10–13]. However, these approaches are impractical due to the difficulty and inconvenience

associated with affixing these sensors to a subject’s body and/or clothing. Previous research about the

incorporation of multiple sensors for motion detection results in recognition accuracy ranging from 83%

to 95% [11]. In [14], the detection accuracy is shown to be less variable for data acquired in the laboratory

compared to data collected in a real life environment. The detection accuracy drops from 95% in the

laboratory environment to 65% [14] in the real world.

In the literature regarding the features, most studies incorporated fast Fourier transform (FFT) [15],

while others used wavelet transform [6,8], support vector machines (SVM), signal-magnitude area

(SMA), mean, variance, entropy, and correlations [1,2,5,11]. However, these features are computed

using a wide time window, which is not very effective for detecting rapid transitional movements, such

as sitting to standing. In [1], short-term transition motions are detected with 95% accuracy.

Methodologies investigated to this point follow heuristicclassifiers, Gaussian mixture models

(GMM) [16], support vector machines [12], and hidden Markov model (HMM) [17,18]. However, those

approaches consider a fixed number of human motions. In otherwords, most studies follow parametric

classification with a known number of motions. In a daily routine, human motions are not fixed—instead

they may vary, and new human motion can also occur. Therefore, motion recognition becomes more

challenging when the non-parametric nature of human motions is considered. Non-parametric behavior

refers to the fact that the number of motions observed may increase as the amount of data increases,
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and may not remain fixed or could be unknowna priori. Therefore, parametric approaches for motion

detection fail to achieve higher accuracy when new or transitional motions are observed, such as state

transition motions (sitting to standing) for which the motion recognition accuracy is 78% [1,19].

In this paper, we propose motion-dependent sensor metrics to identify human motion. Sensors

produce a set of unique signal metrics for various human motions. A signal metric is a component

of the sensor readings, such as acceleration in thex, y andz axes of a MEMS accelerometer. These

motion-dependent unique signals enable the identificationof various motions, including standing,

walking, running, taking the stairs, riding an elevator, and more. We considered the autocorrelation

function of the tilt angle and the variance of acceleration against thex and y axes as features for

clustering. Our proposed technique differs from the conventional technique in the following ways:

• Selected features are independent of the sensor device, butonly dependent of a particular motion.

• It is an observation-based detection system that does not require any protocol or any active

coordination among devices.

• Unsupervised clustering is used without any prior knowledge about the number of clusters.

Our contributions in this study are as follows:

• We propose a non-parametric human motion recognition technique that can detect and recognize

an unbounded number of motions (clusters). By unbounded, wemean that the number of clusters

(activities) is not fixed. Our techniques can automaticallycluster those motions without any

prior information.

• The accuracy of the motion detection ranges from 97% to 99% with an unknown number

of clusters.

• We compute the Kullback–Leibler divergence (KLD) for newlydetected motion using already

recognized motions. This enables the system to draw inferences regarding the newly detected

motions and cluster them.

• The proposed cluster algorithm collects no prior information about the number of motions, and

achieves higher accuracy in detecting the number of clusters compared to the conventional method.

The rest of the paper is organized as follows: Section 2 presents current literature describing

various motion recognition techniques. Section 3 presentsthe system model and feature space with

an explanation of each feature. Section 4 presents the non-parametric inference and Section 5 explains

the non-parametric inference for motion recognition. Section 6 presents the experimental setup, Section

7 demonstrates experimental results, and Section 8 concludes this paper.

2. Literature Review

In this section, we review recently developed approaches inthe motion recognition domain.

Khanet al. [19] used autoregressive (AR) modeling of three-dimensional data from the accelerometer.

In their work, AR was combined with the signal-magnitude-area and tilt angle obtained from the sensor

readings; all of these parameters formed a feature space forthe classification of different gaits. These

features were utilized to classify a fixed number of human motions, such as standing, walking, running,
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and lying down. A significant improvement in the detection rate was achieved (95% to 99%); however,

the detection rate decreased as new motions were incorporated [1].

Adil et al. [1] proposed a system that addressed motion recognition for more than ten gaits with

a significant detection rate. Linear discriminant analysiswas incorporated in order to extract features.

They proposed a hierarchical recognition method for the classification and also explored transitional

state change detection. The broad set of motions was dividedinto three categories: (1) static (stand, sit);

(2) transitional (sit-stand, walk-stand,etc.); (3) dynamic (run, walk,etc.). The achieved accuracy was

97%; however, a fixed number of motions was considered for classification.

Ling et al. [11] used multiple sensors (five) for motion recognition. The mean, energy,

frequency-domain entropy, and correlation of the data werecomputed, serving as a source for motion

detection. Decision trees outperformed other techniques,attaining an accuracy of 84%. Accelerometers

mounted on a subject’s thigh and wrists were used to detect their daily motions in a naturalistic way. The

fast Fourier transform (FFT) and decision tree algorithm were used to classify different human gaits.

Frequency-domain entropy was calculated as the normalizedinformation entropy of the FFT component

magnitudes of the signals. The decision tree algorithm was able to recognize the motion style with a

higher number of labels, such as walking slowly and walking briskly. However, the overall detection

accuracy was 80%.

Rodrigoet al. [7] proposed sensor-based human motion recognition using thehidden Markov model

(HMM) with a large feature set. Candidate features were obtained from the feature space, while the

HMM classifier was used to classify the data points for different motions. The multiple sensor-based

approach was used to gather data features, and then only those features that are relevant were utilized

for the target classes. Genetic algorithms were incorporated to explore the feature set then to select and

utilize only those features that are most relevant to the target motion. However, the accuracy of predicting

human motion decreases with an increase in the number of motions to be predicted. This is due to the

uncertainty that arises from a greater number of classes. Therefore, the probability of assigning a data

point to its correct class decreases.

Slyperet al. [8] demonstrated an animation system for e-textile application using multiple MEMS

accelerometers that are embedded in a shirt. The accelerometer readings are continuously matched

against accelerations computed from existing motion capture data, and an avatar is animated with the

closest match using wavelet transform, which is a parametric approach.

Ravi et al. [9] formulated human motion recognition as a parametric classification problem. Authors

proposed an approach to classify different human motions and selected only those features that are

important for classification. The following features were used to classify motions: correlation, mean,

standard deviation, and energy. The correlation was calculated between each pair of axes as the ratio

of covariance and the product of standard deviation. Motions were classified with reasonable accuracy

using the above mentioned features.

Practically, human motions are dynamic in that the number ofmotions varies with time. For example,

a person at a particular moment is standing with friend, thenafter some time he or she starts walking.

He or she may then start cycling and during cycling he or she may fall. The flow of different motions

performed by a person can fluctuate over time and vary by individual, making it very likely that a motion

recognition system will encounter unfamiliar motions. In other words, the number of motions shows
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non-parametric behavior. Therefore, a flexible system thatcan incorporate the time varying behavior of

human motions, instead of relying on a fixed number of motions, is needed. In this paper, we propose a

non-parametric Bayesian technique that is flexible enough to accommodate the detection and clustering

of newly observed motions in order to account for the dynamicand unexpected nature of human motions

that vary with time.

System architecture and feature space for the proposed non-parametric human motion recognition

will be described in the next section.

3. System Architecture and Feature Space for Motion Recognition

The architecture of the proposed system for human motion recognition is illustrated in Figure 1. Each

rectangle in the system architecture corresponds to a component responsible for performing a particular

task. The system architecture is divided into the followingcomponents.

Figure 1. System architecture with components and feature space for the proposed

motion recognition.

While recording real-time data from a MEMS sensor, the output includes noise. It is important

to remove this noise before extracting the features from thesensor output. This component tends to

remove signal outliers by filtering the signal. The feature space for motion recognition is described in the

following subsection, and infinite Gaussian modeling and non-parametric Bayesian inference modeling
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are discussed in detail in the following sections. The Gibbssampler results in clusters, where each

cluster corresponds to a particular human motion. The clusters obtained from the Gibbs sampler are

further mapped to a particular recognized human motion.

In this section, we introduce the features used in the proposed motion recognition system. To

distinguish among different motions, we need to identify unique features that govern various human

motions. These features can be extracted from the readings taken by the MEMS sensor attached to the

human body. We used an inertial MEMS sensor system (SD777) with a three-axis accelerometer and a

single-axis gyroscope. The inertial MEMS sensor (SD777) isa device that measures its own acceleration

as a four-dimensional (4D) vector. This 4D vector includes two measurement ranges for the gyroscope,

± 100 ◦/s and± 300 ◦/s, and one measurement range accelerometer (three axes) from±1 g to±5 g.

The acceleration can be defined as the rate of change of speed,(m/s2). The acceleration corresponding

to each axis can be recorded by a sensor mounted on the subject’s chest, as shown in Figure2.

Figure 2. The experimental setup for MEMS sensor: (a) A MEMS sensor tagged on the

subject’s chest; (b) Three axes of MEMS accelerometers for experimental setup.

For data collection, we placed the accelerometer device on the chest of the subject. We obtained

a 4D data set from the accelerometer, consisting of the acceleration on three axes and one gyroscope

reading. We propose using the following features for human motion recognition: (1) cumulative sum of

a gyroscope’s angular speed, tilt angleφ; (2) sum of the variance of the acceleration in thex andy axes;

and (3) the autocorrelation function of the tilt angle,φ. The selected features are unique to each human

motion, and all of the features are dependent on human motion. In this study, we assumed that all of the

features follow a Gaussian distribution; however the proposed algorithm is not very sensitive to the exact

distribution. Each feature is described in detail in the following subsections.
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3.1. Tilt Angle Sum (TAS)

The tilt angle refers to the tilt of a body in space. The tilt angle can be defined as the angle between

thex axis and gravitational vectorg. Accelerometers are often used to calculate a tilt angle. The angle

can be calculated from the acceleration as follows:

φ = arcsin(a) (1)

wherea = [ax, ay, az] andax, ay, az are the accelerations along thex, y, andz axes, respectively. To get

an accurate tilt angle, they are often combined with one or more gyros, and a combination of data is used

to calculate the angle. Bothx andy tilt angles can be sensed simultaneously using the output ofall three

axes, as shown below.

φ = arctan

(

ax
√

a2y + a2z

)

(2)

and

ρ = arctan

(

ay
√

a2x + a2z

)

(3)

The cumulative sum of the tilt angle,φ, is an important feature that follows a unique behavior for

most human motions. The tilt angle shows distinguishing behavior in a static condition (stay, lift-up,

lift-down) compared with dynamic (run, walk, fall) human motions. The TAS can be represented

as follows:

Ø(n) =
W
∑

i=1

(|φ|), (4)

wheren is a data point from the set of data pointsN . A data point is the observation recorded from the

attached MEMS accelerometer, whileW is the window size of 512 observations.

3.2. The Sum of the Variance of Accelerations (SVA)

Most dynamic gaits (walk, run, fall) produce similar signalamplitude readings for the acceleration in

thex andy directions, but the variance of each distinguishes them from one another. The SVA plays a

significant role in distinguishing different motions. To distinguish between the resting state and motion,

all three axis reading changes are represented by this feature. In [20], the signal magnitude area (SMA) is

used to distinguish between static and dynamic movements; however, we use different version of SMA.

We tend to include the variance of all three axes, which separates dynamic and static human motions in

an efficient way. Dynamic motions such as walking, running and falling follow similar behavior, while

the variance of the acceleration along different axes differs, which helps in motion detection. We define

SVA as the signal magnitude area, that is, the sum of the variance of the areas under the moduli of

integrals in the time domain. The SVA can be represented as follows:

Ψ(n) =

W
∑

i=1

(

var

(
∫

t

ax(t)dt

)

+ var

(
∫

t

ay(t)dt

)

+ var

(
∫

t

az(t)dt

)

)

(5)

whereΨ(n) is the value calculated for a single window.ax(t), ay(t), andaz(t) are the body acceleration

components in thex-axis,y-axis, andz-axis samples, respectively. This feature is calculated bysumming
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each sampled value progressively The value obtained from this feature varies for the dynamic and static

movements of the human under consideration.

3.3. Autocorrelation Coefficient of Tilt Angle (ACT)

The autocorrelation of a signal measures the similarity between observations as a function of the time

separation between them. The goal is to identify a repeatingpattern in the time-domain signal. Letφ be a

repeatable random process, andi be the time point after the start of the process, thenφi is the realization

of the process at time stampi. Assume that the process is known to have values for the mean (µ) and

variance (σ) for all timesi. The autocorrelation between timea andb can be defined as:

R(φa, φb) =
E[(φb − µb)(φa − µa)]

σbσa

(6)

whereE is the expected value, and the expressions for the autocorrelation are not well defined because

the variance may be zero or infinity. However, in our data set,the variance is bounded by a well-defined

limit. The above mentioned features play an important role in distinguishing among various static and

dynamic motions; however, there are some motions that show low similarity with each other in terms

of the time-domain signal for the tilt angle,φ (e.g., walk, run), but some motions have a smooth curve

when the tilt angle is plotted as a function of time (picking up, putting down). Therefore, the ACT is

an important metric in capturing this distinct and motion-specific variation. The ACT is represented

as follows:

∆(n) =

W
∑

i=2

R(φi, φi−1)

W − 1
(7)

wherei is the realization of theφ from the time-domain signal.

Figure 3. 3D feature space with three human motions recognized.
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The clusters are modeled as the distribution of a unique hyper-parameter set. Each parameter

set represents a unique cluster. The cluster may refer to a particular human motion with a unique

hyper-parameter set. Figure3 illustrates human motion recognition via a 3D feature space, and further

demonstrates how the three human motions (walking, runningand falling) shown in the figure are

dependent on the features used for clustering. Figure3 shows that the selected features cluster human

motions efficiently.

4. Non-Parametric Bayesian Inference

Suppose we haveN data points (observations) constituting all of the above mentioned features,
~O = [~o1, ~o2, ~o3, ..., ~oN ], where each data point is a vector ofD = 3, representing each feature’s value. Our

goal is then to build a posterior distribution for the set of observations where the posterior distribution

represents the total number of human motions (clusters) in the data set, which can also be used to infer

which data point belongs to which motion (cluster). Two generic models exist to represent and model

the data points: (a) generative models and (b) discriminantmodels. We prefer to model our feature space

using the generative model [21] rather than a discriminant model for three reasons: (1) discriminant

models do not allow one to generate samples from joint distributions of two or more variables; (2) gener-

ative models are more flexible in expressing dependencies ina more complex learning environment; and

(3) discriminant models are inherently supervised and cannot be extended to unsupervised learning.

The generative model is a model used to randomly generate observable data given hidden parameters.

It specifies a joint distribution over observations and labels. Generative models serve two purposes in

machine learning: (1) modeling data directly and (2) forming a conditional probability density function.

GMM, HMM, naive Bayes (NB), and latent Dirichlet allocationare some examples of generative models.

We intend to use the GMM for clustering data points, as the GMMis flexible and can be easily extended

to the case in which the number of hidden clusters is unknown.Two models exist in the GMM literature:

the finite Gaussian mixture model (FGMM) and the infinite Gaussian mixture model (IGMM). When

the number of clusters is knowna priori, the FGMM is used. On the other hand, if there is no prior

knowledge about the number of clusters, then the IGMM can be used. Since we do not limit the

number of human motions (clusters) to any fixed number, we intend to use the IGMM rather than the

FGMM. However, both models are closely related to each other, so to grasp the idea of the IGMM, an

understanding of the FGMM is also necessary. Before explaining the GMMs, we discuss the Dirichlet

distribution that governs both models.

4.1. Dirichlet Distribution

The Dirichlet distribution is a continuous multivariate distribution parameterized by the vectorα of

the positive real. Furthermore, the multivariate generalization of the beta distribution is also a Dirichlet

distribution [22]. The Dirichlet distribution is used as a prior distribution in the Bayes inference engine

due to the following two reasons: (1) the Dirichlet distribution is the conjugate prior of the categorical

and multinomial distribution; (2) the probability distribution function of the Dirichlet distribution results

in the belief aboutK components (clusters) that constitutes the Gaussian mixture model.
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The Dirichlet distribution of order K≥ 2 with parametersα1, α2, ..., αK > 0 has a probability density

function with respect to the Lebesgue measure on the Euclidean spaceRK−1 given by:

f(o1, o2, o3, ..., oK−1) =
1

B(α)

K
∏

i=1

oαi−1
i (8)

for all o1, o2, o3, ..., oK−1 > 0 satisfyingo1 + o2, ..., oK−1 < 1 [21,23]. The normalizing constant is a

multinomial beta function, which can be expressed in terms of the gamma function:

B(α) =

K
∏

i=1

Γ(αi)

Γ(
K
∑

i=1

αi)

, α = (α1, α2, ..., αK) (9)

4.2. Finite Gaussian Mixture Model

A FGMM is a hidden variable probabilistic model based on weighted multivariate Gaussian random

variables. The FGMM provides an accurate approximation formulti-modal probability density

estimation and clusters data points if the hidden variablesare interpreted as class labels. The

FGMM assumes that all of the data points are generated from a finite number of Gaussians with

unknown parameters.

Recall from the previous section that we know matrix~O = [~o1, ~o2, ~o3, ..., ~oN ], with N number

of data points where each~oi represents a vector withD dimensions. The number of dimensionsD

is fixed at three in our problem, representing the features space discussed in the previous section.

Figure4 illustrates the finite Gaussian mixture model. Each clusterin the mixture constitutes weight

~ωk, which is the probability of assigning a data point to one of cluster (K) and~ω = [ω1, ω2, ω3, ..., ωN ].

Since the Gaussian mixture is a multi-modal probability distribution with a different set of parameters

corresponding to each cluster in the mixture, each cluster follows a Gaussian distribution with parameters
~θk, where~θk is the vector with a mean,~µk and covariance,Σk. Each data point is associated withci,

indicating to which clusterK the data pointoi belongs. Theci belongs to clusterk with probabilityωk.

The FGMM can be represented by:

~ω|α ∼ Dir(
α

K
,
α

K
, ...,

α

K
); ~θk ∼ ~H ; ci|~ω ∼Multinomial(.|~ω) (10)

~xi|~θk ∼ Gaussian(.|~θk) (11)

The hyper-parameters~H are the parameters representing prior knowledge, in this case incorporating

our prior knowledge about the data points. It realizes the degree of our belief about the underlying system

of parameters. They arise when the use of a conjugate prior isnecessary to simplify the calculations

for posterior estimation. The actual parameters that govern the underlying system are~θk, while the

hyper-parameters tend to accurately estimate the true data. Let ~L be[ α
K
, α
K
, ..., α

K
].

The FGMM is effective when the number of labels is known, but in reality, we do not know how many

clusters are in the mixture. Therefore, we need to have a flexible model that does not have a fixed prior
~θ. Therefore,~θ follows the base distribution~H, which tends to give the model flexibility.

The problem becomes challenging when we do model selection for the FGMM. In our problem, if we

have knowledge about the number of human motions, then we could apply the FGMM. However, there



Sensors2012, 12 13195

is no bound on the number of human motions; they may grow with time. Since it is not appropriate to

use the FGMM, the IGMM is introduced in the next subsection for model selection.

Figure 4. Finite and Infinite Gaussian Mixture Models.

4.3. Infinite Gaussian Mixture Model

The IGMM is an extension of the FGMM, whereK → ∞. It is assumed that the number of clusters

tends to go to countably infinity because the number of human motions a person can perform is bounded

(finite). Therefore, the IGMM can be utilized to model our problem in a generative way for a given data

set. Figure4(b) shows the IGMM as the number of clusters goes to infinity. In the FGMM, the term~ω

is dependent onK; as the number of clustersK increases, the value of~ω is affected. It is possible to

work on the infinite dimensional model, which will integrateout ~ω. Therefore,~ω can be marginalized

out due to the Dirichlet prior because the Dirichlet prior isthe conjugate of the discrete multinomial

likelihood. The use of a conjugate prior helps us to integrate our complex integrations. The IGMM can

be represented as follows:

~ω|α ∼ Stick(α); ci|~ω ∼Multinomial(.|~ω); ~θ ∼ ~H ; oi|ck, ~θk ∼ Gaussian(.|~µk,Σk) (12)

where~θk ∼ ~H and the conjugate prior for multivariate normal is inverse Wishart random variable [24].

Σk ∼ inverseWishart(Λo); ~µk ∼ G(~µo,
Σk

Ko

) (13)

where the Stick breaking follows beta distribution and is given as:

~ω ∼ Beta(1, α);ωk = ω′
k

K−1
∏

j=1

(1− ω′
j);K →∞ (14)
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whereω′ is an initial probability for each cluster. The conjugate prior for the multivariate normal

distribution is the inverse Wishart, playing a significant role in the posterior estimation for labelsci.

The prior hyper-parameters for the model are given as~H = {µo, κo, υo,Λo}.

Stick breaking process is used in the IGMM to model and imparts flexibility in terms of a variable

number of clusters. In the stick breaking process, a stick ofunit length is assumed, which can be

represented as
K
∑

i=1

ωi = 1. The stick breaking process begins by breaking the stick into two parts,

modeled using the Beta distribution [24], where the length of one of the parts isω1, which corresponds

to the weight. The same process is repeated for the remainingpart of the stick(1 − ω1). The countably

infinite concept that we discussed in the previous subsection is realized here in the form of the Stick

breaking process.

The IGMM fully models the problem under consideration, where the number of human motions is not

known. Each type of motion forms a cluster with parameters~θk. The parameter vector consists of~µk and

Σk. The mixing weights(~ω) are obtained from the Stick breaking process, where~ωk is the probability

that a data point belongs to clusterk. Theα represents our confidence in the model parameters. Data

modeling is done in this section, and we need a non-parametric clustering approach that clusters the data

points based on the prior information. In the next section, we explain how we cluster data into different

clusters based on non-parametric Bayesian inference usingGibbs sampling.

5. Non-Parametric Bayesian Inference for Motion Recognition

In this section, we focus on the non-parametric Bayesian inference model for motion recognition. We

define the labels~C = [c1, c2, ..., cN ] for each data point~O, whereci indicates the cluster to which the

data pointoi belongs. In this section, we answer the following questions: (1) How many human motions

have generated the data set? (2) Which human motion does eachdata point~oi result from?Hence, the

parameter of interest is~C; once we find~C, then we are able to answer the above questions.

The IGMM is a generic model that can be extended by numerous approaches for parameter estimation

described in the literature. For example, for parameter estimation, the following methods can be utilized

with the IGMM for clustering: expectation maximization (EM), Markov chain Monte Carlo (MCMC),

moment matching, spectral methods,etc. In our problem, we restrict ourselves to the use of MCMC

due to its clustering accuracy. The realization of MCMC is the Gibbs sampling algorithm [25] that we

incorporate to draw inferences about the data points. In theGibbs sampling approach, parameters are

integrated out, which results in lower complexity. The Gibbs sampler is used to obtain a sequence of

random samples from a joint probability distribution of more than one random variable. The random

samples obtained can be used to approximate the joint probability distribution, to approximate unknown

parameters, or to compute integrals [25].

Recall that we are interested in the~C, which is difficult to find due to the complex integration

process. Therefore, instead of finding the joint probability distribution, we tend to calculate

P (ci = k| ~O, ~C−1, α; ~H). Therefore, applying the Bayes rule, we get:

P (ci = k| ~O, ~C−i, α; ~H) = P (ci = k| ~O−i, α, ~θk, ~H,~oi) (15)
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P (ci = k| ~O, ~C−i, α; ~H) ∝ P (oi| ~O−i; ~H)P (ci = k| ~C−i, α) (16)

where∼ is introduced to replace the normalization constant from the above equation. In the equation

above, the term~H is a Student t-distribution, which can be computed easily. The Student t-distribution

is used to compute the mean of a normally distributed population where the sample size is small and the

population standard deviation is unknown [24]. The termP (ci = k| ~C−i, α) in the equation is unknown,

and will be calculated in the following subsection.

5.1. FGMM and Motion Recognition

In the context of FGMM, the number of clusters are fixed and assumed to beK. The value of interest

here isP (ci = k| ~C−i, α) underK clusters. The FGMM is modeled in Equation (10). Let us assume that

N data points are clustered and we received~oN+1, then the probability of assigning this new data point

to a clusterk is given below:

P (cN+1 = k|c1..N ;α, ~L) =

∫

P (cN+1 = k|~ω)P (~ω|c1:N ;α, ~L)d~ω (17)

=

∫

P (cN+1 = k|~ω)P (~ω;α∗, ~L∗)d~ω (18)

= E(P (cN+1 = k|~ω)) (19)

=
α∗m∗

K
∑

i=1

α∗m∗
i

= m∗
k. (20)

Equation (17) is the marginal distribution, where~ω is integrated out. Equation (19) is the expected

value of~ω. Equation (20) gives the marginal probability of allocating a new data point to the clusters

already present, wheremk = α
K

is the number of data points in the clusterk. The posterior distribution

of the weights is the Dirichlet distribution with updated prior parameters [25],

α∗ = α +N ;~L∗ =
α~L+NF

α +N
(21)

whereF is empirical distribution. The cluster assignment for theoN+1 can be given by [21,23]:

P (cN+1 = k|c1..N ;α, ~L) =
α/K + nk

α+N
(22)

wherenk is the number of data points originating from the same cluster.

5.2. IGMM and Motion Recognition

Now, we will relax the limit over theK and letK → ∞. In this section, we extend the model from

finite K to infinity, therefore, whenK → ∞ the FGMM transforms to the IGMM. From [21,23], we

know that,

P (cN+1 = k|c1..N ;α, ~L) =
nk

α+N
(23)
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where the right side of Equation (23) is the probability that data pointN + 1 belongs to clusterk.

However, from the property of exchangeability of the non-parametric Bayesian [24], we can replace

N + 1 with any value ofi without changing the joint probability. Therefore, we have

P (ci = k| ~C−i;α) =
nk,−i

α +N − 1
(24)

where nk,−i is the number of data points assigned to thekth cluster. However, the left side of

Equation (24) represents the probability of assigning a data point to an existing cluster (human motion).

However, there is also the possibility that new human motionis detected and, as discussed in previous

sections, that new human motion detection will follow different feature values. Therefore, we can model

the new motion detection with the probability given by:

P (ci 6= cj , ∀j 6= i| ~C−i, α) = 1−

K
∑

j=1

nj,−i

α +N − 1
=

α

α +N − 1
(25)

From Equation (25), we can see that probability of assigning a data point to a new cluster is equal to 1

minus the sum of all probabilities assigned to existing clusters. This process is called Chinese restaurant

process (CRP) [26]. In the CRP the number of tables (clusters) and the number ofcustomers sitting at a

particular table (data points) can be infinity. The first customer arriving at the restaurant will always sit

at the first table. However, the second customer arriving at the restaurant will want to sit at the first table

or he may choose a new table, and this process continues for the rest of the customers arriving at the

restaurant. The probability that a customer will sit at an already occupied table depends on the number

of customers already seated at the tablemk; given in Equation (24). However, the probability of sitting

at a new table is proportional toα; given in Equation (25).

At this stage, we need Gibbs sampler to obtain the samples of~C. After observingN−1 data points, we

can update priors using Bayes rule. Therefore, the probability of assigning a data point to the represented

cluster is given as:

P (ci = k| ~C−i, α, ~θ, ~H, ~O) = P (ci = k| ~C−i, α)P (~oi|~θk) (26)

where ~C−i is the set of observations currently assigned to clusteri exceptoi, P (ci = k| ~C−i, α) in the

Equation (26) follows the Chinese restaurant process andP (~oi|~θk) follows Gaussian with parameters~θk.

The probability that a data point belongs to a represented cluster is given by:

P (ci 6= j, ∀j 6= i| ~C−i, α, ~θ, ~H, ~O) =
α

α +N − 1

∫

~θ

P (~oi|~θ)P (~θ| ~H)d~θ (27)

The integration is the marginal probability, where~θ is integrated out. The use of the conjugate prior

has made the integration tractable. Moreover, we know that the conjugate prior of the multivariate normal

distribution is the inverse Wishart. By integrating out theparameter~θ the sample size of the problem is

reduced and the Gibbs sampler will converge early. Therefore, we adopt collapsed Gibbs sampler [27]

to increase the performance in terms of reduced complexity.
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5.3. Collapsed Gibbs Sampler

Remember that our goal is to estimate the posterior distribution for the infinite Gaussian mixture

model using the Gibbs sampler. Therefore, we have already chosen the inverse Wishart distribution

which make it possible integrate out parameters~θk. In the collapsed Gibbs sampling approach, the

parameter~θk is integrated out. Therefore, it is possible to obtain a closed-form solution for the posterior

distribution. From [23], we have,

P (ci = k| ~C−i, α, ~H, ~O) = P (ci = k| ~O−i, α)P (~oi| ~Ok,−i; ~H) (28)

The first term on the right side of Equation (28) follows the Chinese restaurant process and is given by

Equation (23). However, the second term follows the multivariate Student-t [24]. The hyper-parameters
~H is used to simplify the integration steps in the posterior estimation. Therefore, we choose the inverse

Wishart as a prior for theΣk distribution and Gaussian distribution for~µk.

Σk ∼ inverseWishartυo(Λ
−1
o ) (29)

~µk ∼ Gaussian(~µo,Σk/κo) (30)

From [24], we can write the second term in the Equation (28) as,

P (~oi| ~Ok,−i; ~H) ∼ tvn −D + 1

[

~µn,
Λn, (κn + 1)

κn(υn −D + 1)

]

(31)

where

~µn =
κo

κo +N
~µo +

N

κo +N
~O (32)

κn = κo +N, υn = υo +N (33)

Λn = Λo + S +
κon

κo +N
(~(O)− ~µo)( ~O − ~µo)

T (34)

~O = (~o1, ~o2, . . . , ~oN)/N (35)

whereD is the number of dimension,S is the sample variance of the observations~O, and~µn, κn, υn,Λn

are the updated hyper-parameters.n is the number of observations in that particular cluster. The

advantage of integrating out the parameters is that it reduces the sample space, resulting in a quick

convergence [26]. Using Equation (31), the distribution can be determined as a multivariate Student-t

distribution with hyper-parameters,

P (~oi; ~H) ∼ tvn −D + 1

[

~µn,
Λn, (κn + 1)

κn(υn −D + 1)

]

(36)

The above results in two cases for clustering. One is the casewhen data point belongs to one of the

represented cluster fromK clusters. In the second case, the data point belongs to a new cluster. The first

case can be represented as,

P (ci = k| ~C−i, ~O;α, ~H) ∼
mk,−i

α +N − 1
tvn −D + 1

[

~µn,
Λn, (κn + 1)

κn(υn −D + 1)

]

(37)
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In the second case when the data point observed is assigned a new cluster, it can be represented as,

P (ci 6= j, ∀j 6= i| ~C−i, ~O, α, ~H) ∼
α

α +N − 1
tvn −D + 1

[

~µn,
Λn, (κn + 1)

κn(υn −D + 1)

]

(38)

The posterior derived is used in the collapsed Gibbs sampler.

Algorithm 1: Non-parametric Bayesian clustering algorithm for human motion recognition using

collapsed Gibbs sampler

Input: ~O(~oi, D), Sweeps,Γ(a, b), ~H

Output: K, ci

begin1

~C←c1,c2,...,c
Ḱ

2

K+← 0;3

foreach s in Sweepsdo4

Cs ← Cs−15

foreach s in Sweepsdo6

m
−i ←

Ḱ
∑

j=1

(cj == ci)− 1 ;
7

if m
−i == 0 then8

cj← cj-1; ∀ j ≻ i9

K+←K+ -110

end11

dim← length(µD)12

foreach i in K do13

covariances(i,dim)← iWishart(λ, v)14

means←MVrnd(µ, covariances(i,dim))15

mk = ΣR
i=1I(ci = k)16

ci← MVrnd(means,covariances)17

end18

/* Estimate the priorP (~oi| ~O; ~H) using Equation (31) */19

if ci ≻ K+ then20

K+←K++121

end22

/* Estimate the priorP (ci = k|~C
−i, α) using Equations (23) and (24) */23

end24

end25

/* Collapsed Gibbs Sampling */26

/* Estimate the posteriorP (ci = k| ~O, ~C
−i, α; ~H) using Equation (37) */27

28

end29

In Algorithm 1, input parameters are the measured data pointfrom MEMS sensor, the number of

sweep to monitor the convergence of algorithm, and hyper-parameters. The data model is estimated

using the observed data and hyper-parameters. Algorithm 1 runs for the specified number of sweeps

(steps) till convergence after initialization procedure.For example, the loop in the step 6 runs for 100

sweeps. The samples obtained for each data point from the conditional distribution are used to estimate
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the joint distribution of all variables. In Algorithm 1, priors are estimated and updated for each step in

the Gibbs sampler. After repeated estimation and update process, the final posterior estimation can be

obtained at the last step in Algorithm 1.

5.4. Motion Recognition Method

The result we get from the collapsed Gibbs sampler is the indicators ~C, and the indicators are

associated with every data point that is input into the collapsed Gibbs sampler. The indicator~C obtained

as an output from the collapsed Gibbs sampler answers the twoquestions that we are supposed to answer.

Recall from Section 5, the questions we have to answer are (1)how many clusters represent the data set

and (2) which data point belongs to which cluster. As every data point is associated with its respective

indicator (ci, i = 1 : N), the indicator demonstrates to what cluster the data point(~oi, i = 1 : N)

belongs. The first question can be answered by counting the unique values ofci. The last step in motion

recognition is motion mapping. The mean and variance of eachcluster can be used to identify human

motion. We assume that we are given each motion-dependent value for the feature space. We compare

those with the values obtained from the collapsed Gibbs sampler, and the similarity between the two

distributions is measured via the Kullback–Leibler divergence. The KLD value is computed between

each cluster obtained from the non-parametric Bayesian andthe reference training data. The decision is

made over a minimum value of KLD.

6. Experimental Setup

In experiment, the MEMS accelerometer device was mounted tothe chest of the individual as shown

in Figure 2. The data set for our experiments was collected in an unsupervised way. Every motion

was performed by fifty different individuals without any supervision. In consequence, fifty data sets

are acquired for each motion, where the distance for walk andrun was 10 meters. Data sets were

acquired using USB (Universal Serial Bus) interface from the MEMS device. The sampling rate

for data acquisition was 45 Hz/sample. We considered human motions such as standing, walking,

running, turning, falling, taking the stairs, and taking the elevator, all of which can happen in a building

environment. The acceleration (ax) and tilt angle (φx) in x axis are depicted for different human motions

in Figure5. It is evident from Figure5 that different motions show different patterns. In Figure6, the

plots for tilt angle are shown for left and right turn. It is clear from the plots in Figure6 that the left and

right turns show distinguishing characteristics for tilt angle. The tilt angle is a useful feature to cluster

human motions.
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Figure 5. The acceleration (ax) and tilt angle (φx) signals of human motions obtained from

the MEMS sensor.
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Figure 6. Tilt angle signals for turning motions.
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6.1. Hyper-Parameters

In this section, we will explain the hyper-parameters that are useful in carrying out the clustering

procedure. Since we rely on the IGMM, we have to set the hyper-parameters in such a way that represents

our actual true data set. The complexity of the Gibbs samplergrows significantly as the number of data

points increases [21,23]. Therefore, it is desirable to set hyper-parameters such that the true data is

obtained faster in order to reduce the Gibbs sampler complexity.

Since we have employed the generative model, we have to setupthe following hyper-parameters,
~H = {~µo, κo,Λo, υo} andα, whereα is the concentration parameter that encodes the number of clusters
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in the data set. As the value ofα increases, the number of clusters also increases, which is evident from

Equation (25). In our scenario we keep the value ofα small initially because the number of human

motions in the initial stage is assumed to be smaller.

The mean vector~µo of a cluster follows a Gaussian distribution with mean~µo and covarianceΣo/κo.

Therefore, the two hyper-parameters~µo andκo represent the mean for the cluster. Whereκo is the

dispersion measure of the cluster, the higher is the value ofκo, the closer the clusters are to each other,

and vice versa.

The covariance matrix of the cluster depends on the following two hyper-parameters,υo andΛo.

These parameters are related to the inverse Wishart distribution. Parameterυo is the degree of freedom

whileΛo quantifies the variability around the mean of the feature space. Suppose that feature point TAS

shows a wide range of variability from its mean value, which is specific to a particular human motion

such as running. Therefore, this variability is quantified by Λo. The value ofυo represents our confidence

aboutΛo.

6.2. Mapping Cluster to Motion

The Gibbs sampler results in a number of clusters that constitute the data set, as well as each

data point’s association with a particular cluster. We assume that the mean values of the features are

available for all of the human motions. After clustering, wecompare and then map the clusters to the

human motion.

7. Experimental Results

In this section, we present the performance analysis of the proposed motion detection technique, in

addition to comparing our proposed technique with the parametric Fuzzy C-Means (FCM) [28], the

unsupervised K-Means clustering algorithm [29], the non-parametric mean-shift clustering method [30].

In the performance analysis, we study the effect of varying the number of human motions. The results

demonstrate the effect of introducing new human motion on the clustering accuracy. In the following

subsection, we briefly discuss the K-means and mean-shift clustering approaches.

7.1. K-means Clustering

In the K-means clustering algorithm, theN data points are partitioned intok clusters, where each

observation belongs to the cluster with the nearest mean. Given a set of observations~o1, ~o2, . . . , ~oN ,

where each observation~oi is aD-dimensional vector, the K-means clustering algorithm tends to cluster

thoseN observations intoK sets, where(K ≤ N) andK = [k1, k2, . . . , kK ], in order to minimize the

intra-cluster sum of squares.

argmin

K
∑

i=1

∑

~oj∈ki

||~oj − ~µi||
2 (39)

where~µi is the mean of points inki.
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The overall algorithm proceeds in two steps. Initially it isassumed that the initial means for theK

clusters are given byh1
1, h

1
2, . . . , h

1
K , where the two steps for the algorithm are the assignment step and

the update step. In the assignment step each observation is assigned to a cluster with minimum mean,

represented as,

k
(t)
i = {~op : ||~op − ~µ

(t)
i || ≤ ||~op − ~µ

(t)
j ||∀1 ≤ j ≤ k} (40)

where each~op goes to one of thek(t)
i . In the update step new means are calculated based on the

observations.

h
(t+1)
i =

1

|k
(t)
i |

∑

~oj∈k
(t)
i

~oj (41)

The algorithm converges when there are no updates. The k-means inD-dimensions is NP hard.

7.2. Mean-Shift Clustering

Mean-shift is a non-parametric clustering algorithm [30]. The mean-shift procedure is obtained by

successive computation of the means-shift vector~θi and translation of the kernelG(~oj) by ~θi. The

mean-shift procedure is guaranteed to converge at a nearby point where the kernel estimate has zero

gradient [30]. It is useful for detecting modes of the density function, which is iterative method with

initial start. Here we use Gaussian kernel function for the distance to the current estimate given as,

G(~oj − ~µi) = exp(c||~oj−~µi||)
2
. The weighted mean of the density for clusterk is given as,

~θi =

∑

~oi∈N(~oi)

exp(c||~oj−~µi||)2 ~oi

∑

~oi∈N(~oi)

exp(c||~oj−~µi||)2
− ~oj (42)

whereN(~oi) is a set of data points for whichG(~oi) 6= 0. Similarly, assignment is done~oi = ~θi in iterative

way until the convergence point is reached.

7.3. Performance Evaluation Criteria

The accuracy of the proposed non-parametric Bayesian inference can be evaluated using the following

three metrics:

(1) The hit rate for detecting the right number of human motions in the data set. The percentage is

calculated for the correct number of human motions detectedover the total number of trials performed.

(2) The hit rate for each data point is realized by assigning every feature point to its correct cluster. It

is the percentage of feature points assigned to its correct cluster over the total number of feature points.

(3) The false alarm rate can be computed by counting the data points that are assigned to

incorrect clusters.
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7.4. Unforeseen Motion Detection with Limited Data

In this subsection, we will show the efficacy of the proposed motion detection method against

unforeseen motions. As discussed in the previous section, human motions vary with time and

encountering new motions is anticipated. Moreover, the proposed HMR approach is robust in terms

of new motion detection and recognition. For example, a person is walking and instantly falls due

to some unavoidable cause. The person’s fall is a new event that should be detected and recognized

precisely. Therefore, we compared our proposed approach with a parametric Fuzzy C-Means clustering

algorithm [28]. In Fuzzy clustering, the data point can belong to more thana single cluster, and a set

of membership levels can be associated with each data point based on the strength of a data point’s

association with a particular cluster. In FCM, each data point ~oi has a coefficient that represents its

association with a particular cluster~ωk(~oi). In FCM, the centroid of a cluster of the mean of all data

points is a weighted measure belonging to the cluster. This can be represented as

Qk =

∑

~o

ωk(~o)~o

∑

~o

ωk(~o)
(43)

The algorithm also tend to minimize intra-cluster variance.

The accuracies of the proposed and FCM approaches are given in Figure 7. It is evident from the

Figure 7 that the FCM clustering approach fails to recognizethe new motion (fall) due to its parametric

clustering procedure. However, the proposed technique accurately identifies the new motion with 100%

accuracy. The performance evaluation is shown in Table1. In the FCM approach, the new motion is

not detected and all of the data points are classified into twoclusters (motions). However, the proposed

HMR detects the unanticipated fall and clusters with 99.33%accuracy. For the performance metric 1,

the proposed approach clusters the data points into three clusters with 100% accuracy, where the PCM

clusters the same data points into two clusters.

Figure 7. Unforeseen motion detection results by proposed (left) and FCM clustering

algorithm (right).
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Table 1. Performance metrics results for FCM and proposed HMR.

FCM Proposed HMR

Motion Type 2: Hit Accuracy Type 3: False Alarm Type 2: Hit Accuracy Type 3: False Alarm

(%) (%) (%) (%)

Walk 100 66.67 100 0

Run 100 0 100 0

Fall (new) 0 100 99.33 0.67

7.5. Recognition Results for Numerous Motions

In this subsection, we show the recognition accuracies for routine daily motions. We compare

the proposed HMR technique with the K-means, and observe theperformance gains in terms of the

performance metric criteria discussed above. Since we useda generative model, we need to set the

hyper-parameters in such a way that the hit rate is maximizedwith a minimum number of errors. Note

that the clustering results are highly sensitive to the hyper-parameters. Therefore, the hyper-parameters

must be set carefully in order to reduce the chance of clustererrors. We set the values of the

hyper-parameters as~H = {Λo, ~µo, κo, υo}, andκo =0.1,υ =4,Λ = diag(0.3), andΓ(3, 2).

7.6. Varying Number of Human Motions

In the simulations, we compared the proposed approach with the K-Means clustering algorithm.

Figure 8 shows the clustering results for the proposed humanmotion approach and K-Means clustering.

The clustering errors produced by the K-Means are shown in Figure 8. The proposed approach efficiently

clustered the human motions.

Figure 8. Clustered results for the proposed algorithm (left) and the K-Means method (right)
with six human motions.
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Figure 9 demonstrates the accuracy and clustering errors for the proposed method, K-Means, and

mean-shift clustering approaches. The Type 2 hit rate of theproposed approach outperforms that of
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the K-Means and mean-shift approaches in terms of accurate data point clustering. The unsupervised

K-Means and mean-shift algorithms suffer a significant lossin accuracy.

Figure 9. Hit rate (left) and false alarm (right) results for the proposed algorithm, the

K-Means method, and the mean-shift method with varying number of motions.
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7.7. Kullback–Leibler Divergence and Clustering Accuracy

In this section, we compared the accuracy of the proposed approach with that of the K-Means

approach with a varying Kullback–Leibler divergence value. The Kullback–Leibler divergence is the

measure of the difference between two probability distributions. Equation (44) represents the measure

of the KLD, where D is the number of dimensions in the data set.

KLD =
1

2
[trace(Σ−1

2 Σ1) + ( ~µ2 − ~µ1)
TΣ−1

2 ( ~µ2 − ~µ1)− ln(
detΣ1

detΣ2

−D)] (44)

Figure 10. Clustering accuracy (left, hit rate;right, false alarm) with KLD variations for

the proposed algorithm and the K-Means method.
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In this section, we show how the clustering results are affected by varying the KLD for the

proposed and K-Means clustering approaches. In Figure 10, it is shown that the proposed approach

outperforms the K-Means algorithm in terms of its hit rate and false alarm. It is evident from

Figure 10 that the hit accuracy of the proposed approach is increased to 100% when the KLD increases,

but the K-Means algorithm fails to achieve such high hit rate. The proposed approach attains 100%

accuracy at KLD=14 for the clustering data points as shown in Figure 10.

7.8. Convergence

From the simulation results, it is apparent that the proposed collapsed Gibbs sampler converges to a

stable state after a few iterations. Figure11 demonstrates the convergence rate of the collapsed Gibbs

sampler. The plot of the random variables are generated, forthe log probability of training data under the

model and the distribution over the Dirichlet hyper-parameterα, in Figure11. The two graphs are useful

in diagnosing the convergence of the Gibbs sampler. Even though the Gibbs sampler converges [31], it

is difficult to diagnose the convergence of Gibbs sampler in practice; therefore, visual graphs can help

to decide on the convergence. It is clear that the convergence is attained after 30 iterations for the given

data set as shown in Figure11.

Figure 11. Convergence characteristics of the collapsed Gibbs sampler.
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8. Conclusions

In this study, we proposed a non-parametric Bayesian approach for detecting and clustering various

human motions. The proposed work exploits the motion-dependent signal features to model an available

data set using the infinite Gaussian mixture model. The collapsed Gibbs sampler is utilized to classify

the available data set into various human motions. The experimental results show that the proposed

human motion recognition approach significantly outperforms methods including the Fuzzy-C Means,
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K-Means, and mean-shift approaches. The unsupervised nature of the proposed scheme relaxes the upper

bound for the number of human motions under consideration. Therefore, the proposed approach can be

extended to many other applications in which the number of underlying clusters is unknown.
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