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Abstract: In this paper, we propose a non-parametric clustering ndetborecognize
the number of human motions using features which are oltainem a single
microelectromechanical system (MEMS) accelerometer. ceSithe number of human
motions under consideration is not knoapriori and because of the unsupervised nature of
the proposed technique, there is no need to collect traotatg for the human motions. The
infinite Gaussian mixture model (IGMM) and collapsed Gibdspler are adopted to cluster
the human motions using extracted features. From the erpatal results, we show that
the unanticipated human motions are detected and recabwitle significant accuracy, as
compared with the parametric Fuzzy C-Mean (FCM) technitheunsupervised K-means
algorithm, and the non-parametric mean-shift method.

Keywords. MEMS application; human motion recognition; non-parameBayesian
inference; infinite Gaussian mixture model; Gibbs sampler

1. Introduction

Human motion recognition (HMR) is an important topic cuthgmeing researched due to its large
number of applications in tracking, personal navigatiaglth care, personal life log, surveillance, and
sports, among other things. Human motion recognitiefl ] systems have been proposed to efficiently
detect numerous human motions, and they are widely appdidabthe above mentioned domains.
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However, the motion recognition system has some limitatithat cannot be mitigated. One of these
limitations is inherent in the dynamic nature of human mmaicthat is, the daily motions of a person
are not limited but rather vary from a small to a large set ofioms. The introduction of new human
motions makes detection and recognition challenging. dfbee, there is a need for a HMR system that
is adaptable, accurate, and robust to the dynamic natuhe afdily motions performed by a human.

In the health care domain, motions of patients are monitei@evearable sensors. This is useful for
three reasons: (1) to keep track of the movements perforpnaghtient during the medical examination
period, (2) to reduce the number of patient visits to medaalities, and (3) automated motions retrieval
and management to facilitate the documentation of a patibkistory.

Two main technologies being currently used for motion redtogn are body-mounted sensors
(accelerometers)[2] or image-based recognition (camera3)p] for monitoring a subject’s motions.
Both methodologies have their own pros and cons. The berief#mera aided motion identification is
that multiple subjects can be monitored simultaneousliiout the need for any other device. However,
the drawbacks of such a technology include (1) failure taea@hhigher accuracy due to clutter, light
fluctuation under different settings, and varied actigitia real environments4]; (2) image-based
motion recognition can be require extensive resources antplex processing3], and (3) it is not
cost effective as it requires at least one calibrated canmeesmach room setting. On the other hand,
the pros of body-mounted sensors are that (1) sensed datdeigsandent of environmental conditions
and is person-specific; (2) sensors are compact and pgreaide(3) processing data does not require
a great deal of resources. Alternatively, the downside alybmounted sensors is service issues in
terms of early battery exhaustion. Numerous HMR techniglee®loped in the past have focused on
the acceleration signals in different directions that ém#fe classification of physical motions,2,6].
Motion recognition using multiple sensors instead of myon a single sensor is also discussed in the
literature p,8,10-13]. However, these approaches are impractical due to theuliffiand inconvenience
associated with affixing these sensors to a subject’s bodioaclothing. Previous research about the
incorporation of multiple sensors for motion detectiorutesin recognition accuracy ranging from 83%
to 95% [11]. In[14], the detection accuracy is shown to be less variable f@ aequired in the laboratory
compared to data collected in a real life environment. Thea®n accuracy drops from 95% in the
laboratory environment to 65%4)] in the real world.

In the literature regarding the features, most studiesrparated fast Fourier transform (FFT)4],
while others used wavelet transforr§,§], support vector machines (SVM), signal-magnitude area
(SMA), mean, variance, entropy, and correlatioh®,b,11]. However, these features are computed
using a wide time window, which is not very effective for dgteg rapid transitional movements, such
as sitting to standing. Irl], short-term transition motions are detected with 95% esoy

Methodologies investigated to this point follow heuristitassifiers, Gaussian mixture models
(GMM) [16€], support vector machine&?], and hidden Markov model (HMM)1[7,18]. However, those
approaches consider a fixed number of human motions. In wibkels, most studies follow parametric
classification with a known number of motions. In a daily inat human motions are not fixed—instead
they may vary, and new human motion can also occur. Therefooéion recognition becomes more
challenging when the non-parametric nature of human mei®oonsidered. Non-parametric behavior
refers to the fact that the number of motions observed magase as the amount of data increases,
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and may not remain fixed or could be unknowpriori. Therefore, parametric approaches for motion
detection fail to achieve higher accuracy when new or ttenmal motions are observed, such as state
transition motions (sitting to standing) for which the neotirecognition accuracy is 78%,[19].

In this paper, we propose motion-dependent sensor metriedentify human motion. Sensors
produce a set of unique signal metrics for various humanansti A signal metric is a component
of the sensor readings, such as acceleration inctheand » axes of a MEMS accelerometer. These
motion-dependent unique signals enable the identificatibwarious motions, including standing,
walking, running, taking the stairs, riding an elevatordanore. We considered the autocorrelation
function of the tilt angle and the variance of acceleratigaiast thex and y axes as features for
clustering. Our proposed technique differs from the cotigeal technique in the following ways:

e Selected features are independent of the sensor devicenlyudependent of a particular motion.

e It is an observation-based detection system that does noireeany protocol or any active
coordination among devices.

e Unsupervised clustering is used without any prior knowedgout the number of clusters.

Our contributions in this study are as follows:

e \We propose a non-parametric human motion recognition tqabkrthat can detect and recognize
an unbounded number of motions (clusters). By unboundedn@an that the number of clusters
(activities) is not fixed. Our techniques can automaticallyster those motions without any
prior information.

e The accuracy of the motion detection ranges from 97% to 99%h wan unknown number
of clusters.

e We compute the Kullback—Leibler divergence (KLD) for nevdgtected motion using already
recognized motions. This enables the system to draw infeseregarding the newly detected
motions and cluster them.

e The proposed cluster algorithm collects no prior informatabout the number of motions, and
achieves higher accuracy in detecting the number of clistanpared to the conventional method.

The rest of the paper is organized as follows: Section 2 ptsseurrent literature describing
various motion recognition techniques. Section 3 prest@ssystem model and feature space with
an explanation of each feature. Section 4 presents the a@mgtric inference and Section 5 explains
the non-parametric inference for motion recognition. B&ch presents the experimental setup, Section
7 demonstrates experimental results, and Section 8 coeshinis paper.

2. Literature Review

In this section, we review recently developed approacheshé& motion recognition domain.
Khanet al. [19] used autoregressive (AR) modeling of three-dimensioatd /om the accelerometer.
In their work, AR was combined with the signal-magnitudeaaand tilt angle obtained from the sensor
readings; all of these parameters formed a feature spat¢bdalassification of different gaits. These
features were utilized to classify a fixed number of humanongt such as standing, walking, running,
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and lying down. A significant improvement in the detectiotenaas achieved (95% to 99%); however,
the detection rate decreased as new motions were incoepidit

Adil et al. [1] proposed a system that addressed motion recognition foe t@n ten gaits with
a significant detection rate. Linear discriminant analygs incorporated in order to extract features.
They proposed a hierarchical recognition method for thesiligation and also explored transitional
state change detection. The broad set of motions was diudethree categories: (1) static (stand, sit);
(2) transitional (sit-stand, walk-stanetic); (3) dynamic (run, walketc). The achieved accuracy was
97%; however, a fixed number of motions was considered faesiflaation.

Ling et al. [11] used multiple sensors (five) for motion recognition. Theame energy,
frequency-domain entropy, and correlation of the data weraputed, serving as a source for motion
detection. Decision trees outperformed other technicatésning an accuracy of 84%. Accelerometers
mounted on a subject’s thigh and wrists were used to detectdhily motions in a naturalistic way. The
fast Fourier transform (FFT) and decision tree algorithnmengsed to classify different human gaits.
Frequency-domain entropy was calculated as the normahteanation entropy of the FFT component
magnitudes of the signals. The decision tree algorithm Viedes t# recognize the motion style with a
higher number of labels, such as walking slowly and walkinigkly. However, the overall detection
accuracy was 80%.

Rodrigoet al. [7] proposed sensor-based human motion recognition usinigidaken Markov model
(HMM) with a large feature set. Candidate features wereinbthfrom the feature space, while the
HMM classifier was used to classify the data points for ddfermotions. The multiple sensor-based
approach was used to gather data features, and then onby fibetsires that are relevant were utilized
for the target classes. Genetic algorithms were incorpdratt explore the feature set then to select and
utilize only those features that are most relevant to tlgeetanotion. However, the accuracy of predicting
human motion decreases with an increase in the number obnsotd be predicted. This is due to the
uncertainty that arises from a greater number of classesreidre, the probability of assigning a data
point to its correct class decreases.

Slyperet al. [8] demonstrated an animation system for e-textile appbecatising multiple MEMS
accelerometers that are embedded in a shirt. The acceleEmoneadings are continuously matched
against accelerations computed from existing motion capdata, and an avatar is animated with the
closest match using wavelet transform, which is a paramefpproach.

Raviet al. [9] formulated human motion recognition as a parametric diaaon problem. Authors
proposed an approach to classify different human motiomssahected only those features that are
important for classification. The following features wersed to classify motions: correlation, mean,
standard deviation, and energy. The correlation was cledilbetween each pair of axes as the ratio
of covariance and the product of standard deviation. Matiwware classified with reasonable accuracy
using the above mentioned features.

Practically, human motions are dynamic in that the numbenatfons varies with time. For example,
a person at a particular moment is standing with friend, tiftgr some time he or she starts walking.
He or she may then start cycling and during cycling he or she fadd The flow of different motions
performed by a person can fluctuate over time and vary by iiha@t, making it very likely that a motion
recognition system will encounter unfamiliar motions. lier words, the number of motions shows
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non-parametric behavior. Therefore, a flexible systemahatincorporate the time varying behavior of
human motions, instead of relying on a fixed number of moti@seeded. In this paper, we propose a
non-parametric Bayesian technique that is flexible enoagitttommodate the detection and clustering
of newly observed motions in order to account for the dynaanit unexpected nature of human motions
that vary with time.

System architecture and feature space for the proposegar@ametric human motion recognition
will be described in the next section.

3. System Architecture and Feature Space for Motion Recognition

The architecture of the proposed system for human motiargration is illustrated in Figure 1. Each
rectangle in the system architecture corresponds to a coempoesponsible for performing a particular
task. The system architecture is divided into the followetoghponents.

Figure 1. System architecture with components and feature spaceh®rmptoposed
motion recognition.
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Results

While recording real-time data from a MEMS sensor, the outpaludes noise. It is important
to remove this noise before extracting the features fromstresor output. This component tends to
remove signal outliers by filtering the signal. The featyrace for motion recognition is described in the
following subsection, and infinite Gaussian modeling and-parametric Bayesian inference modeling
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are discussed in detail in the following sections. The Gibéspler results in clusters, where each
cluster corresponds to a particular human motion. The elsisibtained from the Gibbs sampler are
further mapped to a particular recognized human motion.

In this section, we introduce the features used in the prgbasotion recognition system. To
distinguish among different motions, we need to identifyque features that govern various human
motions. These features can be extracted from the reacikga by the MEMS sensor attached to the
human body. We used an inertial MEMS sensor system (SD7#l)anthree-axis accelerometer and a
single-axis gyroscope. The inertial MEMS sensor (SD77@)dsvice that measures its own acceleration
as a four-dimensional (4D) vector. This 4D vector includes measurement ranges for the gyroscope,
+ 100°/s and+ 300°/s, and one measurement range accelerometer (three axes}fr g to+5 g.
The acceleration can be defined as the rate of change of gpeéd). The acceleration corresponding
to each axis can be recorded by a sensor mounted on the subjexdt, as shown in Figug

Figure 2. The experimental setup for MEMS sensoa) A MEMS sensor tagged on the
subject’s chest;) Three axes of MEMS accelerometers for experimental setup.

(a) (b)

For data collection, we placed the accelerometer devicénerchest of the subject. We obtained
a 4D data set from the accelerometer, consisting of the eat&ln on three axes and one gyroscope
reading. We propose using the following features for humation recognition: (1) cumulative sum of
a gyroscope’s angular speed, tilt anglg2) sum of the variance of the acceleration in th@endy axes;
and (3) the autocorrelation function of the tilt angle,The selected features are unique to each human
motion, and all of the features are dependent on human mdhdhis study, we assumed that all of the
features follow a Gaussian distribution; however the psaglalgorithm is not very sensitive to the exact
distribution. Each feature is described in detail in théofelng subsections.



Sensor012, 12 13191

3.1. Tilt Angle Sum (TAS)

The tilt angle refers to the tilt of a body in space. The tilgkncan be defined as the angle between
the x axis and gravitational vectar. Accelerometers are often used to calculate a tilt angle. artgle
can be calculated from the acceleration as follows:

¢ = arcsin(a) (1)

wherea = [a,, a,, a.] anda,, a,, a, are the accelerations along thgy, andz axes, respectively. To get
an accurate tilt angle, they are often combined with one aerggros, and a combination of data is used
to calculate the angle. Bothandy tilt angles can be sensed simultaneously using the outalt thiree
axes, as shown below.

Qg
¢ = arctan <W) (2)

and

p = arctan <#> (3)
The cumulative sum of the tilt angle;, is an important feature that follows a unique behavior for
most human motions. The tilt angle shows distinguishingalin in a static condition (stay, lift-up,
lift-down) compared with dynamic (run, walk, fall) human tiams. The TAS can be represented

as follows:
w

O(n) = (I9]), (4)

=1
wheren is a data point from the set of data poifNs A data point is the observation recorded from the
attached MEMS accelerometer, whilé is the window size of 512 observations.

3.2. The Sum of the Variance of Accelerations (SVA)

Most dynamic gaits (walk, run, fall) produce similar sigaatplitude readings for the acceleration in
the x andy directions, but the variance of each distinguishes them fooe another. The SVA plays a
significant role in distinguishing different motions. Tetihguish between the resting state and motion,
all three axis reading changes are represented by thiséedtf20], the signal magnitude area (SMA) is
used to distinguish between static and dynamic movemeoigeVver, we use different version of SMA.
We tend to include the variance of all three axes, which sgeardynamic and static human motions in
an efficient way. Dynamic motions such as walking, running &tling follow similar behavior, while
the variance of the acceleration along different axes iffehich helps in motion detection. We define
SVA as the signal magnitude area, that is, the sum of thenegiaf the areas under the moduli of
integrals in the time domain. The SVA can be represented|iasvi

w

V(n) =) <W ( / ax(t)dt) + var ( / ay(t)dt) + var ( / az(t)dt)> (5)

i=1

whereV (n) is the value calculated for a single windaw.(¢), a,(t), anda.(t) are the body acceleration
components in the-axis,y-axis, and:-axis samples, respectively. This feature is calculateslioyming
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each sampled value progressively The value obtained fraidature varies for the dynamic and static
movements of the human under consideration.

3.3. Autocorrelation Coefficient of Tilt Angle (ACT)

The autocorrelation of a signal measures the similaritwbeh observations as a function of the time
separation between them. The goal is to identify a repepaitigrn in the time-domain signal. Lebe a
repeatable random process, dri the time point after the start of the process, thgs the realization
of the process at time stamip Assume that the process is known to have values for the mgaan(
variance §) for all times:. The autocorrelation between timendb can be defined as:

[(¢b - Mb)(¢a - ,ua)]

O0p0yq

R(bar ) = 2 6)

whereF is the expected value, and the expressions for the autdatioreare not well defined because
the variance may be zero or infinity. However, in our datatbetyariance is bounded by a well-defined
limit. The above mentioned features play an important moldistinguishing among various static and
dynamic motions; however, there are some motions that shawsimilarity with each other in terms
of the time-domain signal for the tilt angle,(e.g., walk, run), but some motions have a smooth curve
when the tilt angle is plotted as a function of time (picking putting down). Therefore, the ACT is
an important metric in capturing this distinct and motigresific variation. The ACT is represented
as follows:

w
Ay = Y2 T00ct) )

wherei is the realization of the from the time-domain signal.

Figure 3. 3D feature space with three human motions recognized.

o e .O. vl.:a". .
°7] %& £ K | | | | & wak
2.5 | R N

S 15—
(75}
1
05— -0.1
0
0 ACT
18000 16000 14000 12000 10000 8000 6000 4000 2000 o O

TAS



Sensorg012, 12 13193

The clusters are modeled as the distribution of a unique riyg@ameter set. Each parameter
set represents a unique cluster. The cluster may refer tateyar human motion with a unique
hyper-parameter set. Figuallustrates human motion recognition via a 3D feature spaod further
demonstrates how the three human motions (walking, runamg falling) shown in the figure are
dependent on the features used for clustering. Figigleows that the selected features cluster human
motions efficiently.

4. Non-Parametric Bayesian Inference

Suppose we havéV data points (observations) constituting all of the aboventineed features,
0= (01, 02, 03, ..., On], Where each data point is a vector/of= 3, representing each feature’s value. Our
goal is then to build a posterior distribution for the set bEervations where the posterior distribution
represents the total number of human motions (cluster$)emata set, which can also be used to infer
which data point belongs to which motion (cluster). Two genmodels exist to represent and model
the data points: (a) generative models and (b) discrimimattels. We prefer to model our feature space
using the generative mode2]] rather than a discriminant model for three reasons: (1grofisnant
models do not allow one to generate samples from joint distions of two or more variables; (2) gener-
ative models are more flexible in expressing dependencesiare complex learning environment; and
(3) discriminant models are inherently supervised and caba extended to unsupervised learning.

The generative model is a model used to randomly generage\@ide data given hidden parameters.
It specifies a joint distribution over observations and lsb&enerative models serve two purposes in
machine learning: (1) modeling data directly and (2) forgrenconditional probability density function.
GMM, HMM, naive Bayes (NB), and latent Dirichlet allocatiare some examples of generative models.
We intend to use the GMM for clustering data points, as the GiSlflexible and can be easily extended
to the case in which the number of hidden clusters is unknd@wi.models exist in the GMM literature:
the finite Gaussian mixture model (FGMM) and the infinite Gaaus mixture model (IGMM). When
the number of clusters is knowanpriori, the FGMM is used. On the other hand, if there is no prior
knowledge about the number of clusters, then the IGMM can delu Since we do not limit the
number of human motions (clusters) to any fixed number, wenhto use the IGMM rather than the
FGMM. However, both models are closely related to each p#weto grasp the idea of the IGMM, an
understanding of the FGMM is also necessary. Before explgitne GMMs, we discuss the Dirichlet
distribution that governs both models.

4.1. Dirichlet Distribution

The Dirichlet distribution is a continuous multivariatesttibution parameterized by the vectorof
the positive real. Furthermore, the multivariate gengaion of the beta distribution is also a Dirichlet
distribution R2]. The Dirichlet distribution is used as a prior distributim the Bayes inference engine
due to the following two reasons: (1) the Dirichlet disttibm is the conjugate prior of the categorical
and multinomial distribution; (2) the probability disttibon function of the Dirichlet distribution results
in the belief aboufs components (clusters) that constitutes the Gaussian rairtodel.
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The Dirichlet distribution of order K> 2 with parametera;, as, ..., ax > 0 has a probability density
function with respect to the Lebesgue measure on the Eaclidpace?’“ ! given by:

K

1
flo1,09,03,...,0_1) = —— 0?7‘_1 (8)
(01,02,03 K-1) B(O‘)H

for all 01, 09,03, ...,0_1 > 0 satisfyingo; + 09, ...,0x_1 < 1[21,23]. The normalizing constant is a
multinomial beta function, which can be expressed in terfise@gamma function:

Blo) == — a=(ag,ag,..,0) 9)

4.2. Finite Gaussian Mixture Model

A FGMM is a hidden variable probabilistic model based on w&g multivariate Gaussian random
variables. The FGMM provides an accurate approximation rfaidti-modal probability density
estimation and clusters data points if the hidden varialales interpreted as class labels. The
FGMM assumes that all of the data points are generated fromite fiumber of Gaussians with
unknown parameters.

Recall from the previous section that we know matfix = [01, 09, 03, ..., On], With N number
of data points where eaal represents a vector with dimensions. The number of dimensiohs
is fixed at three in our problem, representing the featuregesmliscussed in the previous section.
Figure 4 illustrates the finite Gaussian mixture model. Each clusteéhe mixture constitutes weight
Wk, Which is the probability of assigning a data point to onelaéter () andd = [wy, we, ws, ..., w].
Since the Gaussian mixture is a multi-modal probabilityrébstion with a different set of parameters
corresponding to each cluster in the mixture, each clustievis a Gaussian distribution with parameters
9}, where@} is the vector with a mean;j, and covariancey,. Each data point is associated with
indicating to which clustek the data poinb; belongs. The; belongs to clustek with probabilitywy,.
The FGMM can be represented by:

o «
(E’ KT E)%
7i|0x ~ Gaussian(.|6;) (11)

W|a ~ Dir O, ~ H:¢;|@ ~ Multinomial (.|@) (10)

The hyper-parameteri’é’r are the parameters representing prior knowledge, in tlsis tecorporating
our prior knowledge about the data points. It realizes tlygekof our belief about the underlying system
of parameters. They arise when the use of a conjugate prioedessary to simplify the calculations
for posterior estimation. The actual parameters that gotlee underlying system ar,, while the
hyper-parameters tend to accurately estimate the true dettd be [, %00 )

The FGMM is effective when the number of labels is known, bugality, we do not know how many
clusters are in the mixture. Therefore, we need to have afkernodel that does not have a fixed prior
g. Thereforef follows the base distributioR, which tends to give the model flexibility.

The problem becomes challenging when we do model seleardahé FGMM. In our problem, if we

have knowledge about the number of human motions, then wd epply the FGMM. However, there
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is no bound on the number of human motions; they may grow witk.t Since it is not appropriate to
use the FGMM, the IGMM is introduced in the next subsectiamfiodel selection.

Figure 4. Finite and Infinite Gaussian Mixture Models.

‘-\" x
-/ N——’
(a) Finite Gaussian Mixture Model (FGMM) (b) Infinite Gaussian Mixture Model (IGMM)

4 3. Infinite Gaussian Mixture Model

The IGMM is an extension of the FGMM, whefé — co. It is assumed that the number of clusters
tends to go to countably infinity because the number of humatioms a person can perform is bounded
(finite). Therefore, the IGMM can be utilized to model our Iplem in a generative way for a given data
set. Figured(b) shows the IGMM as the number of clusters goes to infinthythe FGMM, the termJ
is dependent ork’; as the number of clusters increases, the value af is affected. It is possible to
work on the infinite dimensional model, which will integraiet 5. Therefore/ can be marginalized
out due to the Dirichlet prior because the Dirichlet priothe conjugate of the discrete multinomial
likelihood. The use of a conjugate prior helps us to integgoatr complex integrations. The IGMM can
be represented as follows:

Bla ~ Stick(q); ¢;|@ ~ Multinomial(|@); 6 ~ H; oicy, 0, ~ Gaussian(.|fx, L) (12)

wheref;, ~ H and the conjugate prior for multivariate normal is inversisiert random variable2f].

Y
Xy ~ inverseWishart(A,); fix ~ G(ii,, fk) (13)
where the Stick breaking follows beta distribution and isegias:

K-1

ﬁwBeta(l,a);wk:w,;H(l—w});K—M)o (14)
=1
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wherew’ is an initial probability for each cluster. The conjugatéopifor the multivariate normal
distribution is the inverse Wishart, playing a significaokerin the posterior estimation for labets
The prior hyper-parameters for the model are giveﬁas { oy Koy Vo, Ao}

Stick breaking process is used in the IGMM to model and ingpiekibility in terms of a variable
number of clusters. In the stick breaking process, a stickrof length is assumed, which can be

K
represented a§_ w; = 1. The stick breaking process begins by breaking the stiak twb parts,

modeled usiné?he Beta distributiop4], where the length of one of the partsusg, which corresponds
to the weight. The same process is repeated for the remagpaint®f the stick1 — w;). The countably
infinite concept that we discussed in the previous subsedsioealized here in the form of the Stick
breaking process.

The IGMM fully models the problem under consideration, vere number of human motions is not
known. Each type of motion forms a cluster with paramefgré’ he parameter vector consistsiqafand
Yx. The mixing weightg) are obtained from the Stick breaking process, whgres the probability
that a data point belongs to cluster The o represents our confidence in the model parameters. Data
modeling is done in this section, and we need a non-paranwtistering approach that clusters the data
points based on the prior information. In the next sectiomgxplain how we cluster data into different
clusters based on non-parametric Bayesian inference @bigs sampling.

5. Non-Parametric Bayesian I nference for Motion Recognition

In this section, we focus on the non-parametric Bayesiarémice model for motion recognition. We
define the label§’ = [c1, ¢a, ..., cy] fOr each data poin@, wherec; indicates the cluster to which the
data poinb; belongs. In this section, we answer the following questighsHow many human motions
have generated the data set? (2) Which human motion doesdedéalpointo; result from?Hence, the
parameter of interest i§; once we find”, then we are able to answer the above questions.

The IGMM is a generic model that can be extended by numerqu®aphes for parameter estimation
described in the literature. For example, for paramet@mesion, the following methods can be utilized
with the IGMM for clustering: expectation maximization (EMJarkov chain Monte Carlo (MCMC),
moment matching, spectral metho@sg In our problem, we restrict ourselves to the use of MCMC
due to its clustering accuracy. The realization of MCMC is @ibbs sampling algorithn®p] that we
incorporate to draw inferences about the data points. IrGilvs sampling approach, parameters are
integrated out, which results in lower complexity. The Gildampler is used to obtain a sequence of
random samples from a joint probability distribution of mdhan one random variable. The random
samples obtained can be used to approximate the joint pipalstribution, to approximate unknown
parameters, or to compute integr28§]f

Recall that we are interested in tii& which is difficult to find due to the complex integration
process. Therefore, instead of finding the joint probabiliistribution, we tend to calculate
P(c; = k|O,C_1, o; H). Therefore, applying the Bayes rule, we get:

P(c; =k|O,C_;,a; H) = P(c; = k|O_;, a0, 0, H, ) (15)
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P(c; = k|6, (j—z‘,Oé; ﬁ) X P(0i|6—i§ ﬁ)P(Ci = k?|(j—i704) (16)
where~ is introduced to replace the normalization constant froenahove equation. In the equation
above, the ternff is a Student t-distribution, which can be computed easihe $tudent t-distribution
is used to compute the mean of a normally distributed pojamathere the sample size is small and the
population standard deviation is unknov@d]. The termP(c; = k|(7,i, «) in the equation is unknown,
and will be calculated in the following subsection.

5.1. FGMM and Motion Recognition

In the context of FGMM, the number of clusters are fixed andaesl to bel. The value of interest
here isP(¢; = k|C_;, ) underK clusters. The FGMM is modeled in Equatidt0y. Let us assume that
N data points are clustered and we receivgd,, then the probability of assigning this new data point
to a clustelk is given below:

Py = klein; o, L) = / Pley = k@) P(&]ern; o, L)dd (17)
= / P(cnsr = K|@)P(@; o, L¥)dd (18)
= E(P(cy = k|W)) (19)
-] (20)
&

Equation (7) is the marginal distribution, wherg is integrated out. Equatiori9) is the expected
value of. Equation R0) gives the marginal probability of allocating a new datanpdo the clusters
already present, where; = % is the number of data points in the clusterThe posterior distribution
of the weights is the Dirichlet distribution with updatedgormparametersZ9],

. oL+ NF
g N[ =—— 21
@ o+ a+ N (21)

whereF’ is empirical distribution. The cluster assignment for éhe; can be given by41,23]:

- a/K +n
P(CNJrl = k|ClnN;C(,L) = ﬁ

wheren,, is the number of data points originating from the same ctuste

(22)

5.2. IGMM and Motion Recognition

Now, we will relax the limit over thek and letK' — oo. In this section, we extend the model from
finite K to infinity, therefore, whenk’ — oo the FGMM transforms to the IGMM. Fron2[,23], we
know that,

N
a+ N

P(CN+1 = k?|01__N;Oz,I_:) = (23)
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where the right side of Equatior2d) is the probability that data poin¥V + 1 belongs to clustek.
However, from the property of exchangeability of the nonapaetric BayesianZ4], we can replace
N + 1 with any value ofi without changing the joint probability. Therefore, we have

N, —i

P(c; = k|C_;; ) = P N —1

(24)
where n;, _; is the number of data points assigned to #th cluster. However, the left side of
Equation 24) represents the probability of assigning a data point toxéstieg cluster (human motion).
However, there is also the possibility that new human mosahetected and, as discussed in previous
sections, that new human motion detection will follow diéfet feature values. Therefore, we can model
the new motion detection with the probability given by:

K
nj7_z
1

= = [0
P(e; #¢;,¥j #ilC_i,a) =1 — 2 =
(ei # ¢, ] #1|Ci, @) a+N—-1 a+N-1

(25)

From EquationZ5), we can see that probability of assigning a data point toraahester is equal to 1
minus the sum of all probabilities assigned to existingteliss This process is called Chinese restaurant
process (CRP)Z6]. In the CRP the number of tables (clusters) and the numbeungtbmers sitting at a
particular table (data points) can be infinity. The first ous¢r arriving at the restaurant will always sit
at the first table. However, the second customer arrivingetestaurant will want to sit at the first table
or he may choose a new table, and this process continuesdaesh of the customers arriving at the
restaurant. The probability that a customer will sit at aeady occupied table depends on the number
of customers already seated at the tahje given in Equation24). However, the probability of sitting
at a new table is proportional tg given in Equation25).

At this stage, we need Gibbs sampler to obtain the samp@sAﬂer observingV—1 data points, we
can update priors using Bayes rule. Therefore, the prababilassigning a data point to the represented
cluster is given as:

P(c; =k|C_i,a,0,H,0) = P(c; = k|C_;, &) P(5:|6) (26)

whereC'_; is the set of observations currently assigned to clusestcepto;, P(¢; = k|C_;, o) in the
Equation 6) follows the Chinese restaurant process ﬂ@@|5k) follows Gaussian with parameteﬁ?‘}@
The probability that a data point belongs to a representesten is given by:

T e a LR 7 g
Plei £3.¥) #IC00,0.1,0) = —S— [ P@I# @) 27)

0

The integration is the marginal probability, wherés integrated out. The use of the conjugate prior
has made the integration tractable. Moreover, we know fteatdnjugate prior of the multivariate normal
distribution is the inverse Wishart. By integrating out ﬁmameteﬁthe sample size of the problem is
reduced and the Gibbs sampler will converge early. Theeefwe adopt collapsed Gibbs sampl27][
to increase the performance in terms of reduced complexity.
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5.3. Collapsed Gibbs Sampler

Remember that our goal is to estimate the posterior digtabuor the infinite Gaussian mixture
model using the Gibbs sampler. Therefore, we have alreadgerhthe inverse Wishart distribution
which make it possible integrate out parameuérs In the collapsed Gibbs sampling approach, the
parameteﬁ} is integrated out. Therefore, it is possible to obtain aediekorm solution for the posterior
distribution. From 23], we have,

P(c; = k|C_i,a, H,0) = P(c; = k|O_;, @) P(6:| Oy —i; H) (28)

The first term on the right side of Equatio®d) follows the Chinese restaurant process and is given by
Equation 23). However, the second term follows the multivariate Stud¢@4]. The hyper-parameters

H is used to simplify the integration steps in the posteridinestion. Therefore, we choose the inverse
Wishart as a prior for th&,, distribution and Gaussian distribution fgy.

Y ~ inverseWishart,, (A1) (29)
fix ~ Gaussian(fiy, X/ Ko) (30)

From [24], we can write the second term in the Equati@B)(as,

= = Ay, (R + 1)
P(o; o H)Y~t, —D+1|[ 31
(01|Ok, 79 ) Up, + M, I{n(Un—D—I—l) ( )
where

K N S
— — o — 32
fin H0+NMO+KO+NO (32)
Kn = ko + N,v, = v, + N (33)

Ko~ -

A, =A,+S = 0) — i) (0 — )T 34
+ +K0+N(() fio) (O — f15) (34)
6: (517527--->5N)/N (35)

whereD is the number of dimensiol, is the sample variance of the observatidjjsandﬁn, Ky Uny Ay,

are the updated hyper-parameters.is the number of observations in that particular cluster.e Th
advantage of integrating out the parameters is that it esltite sample space, resulting in a quick
convergenceZ6]. Using Equation 31), the distribution can be determined as a multivariate &t
distribution with hyper-parameters,

—

A, (i + 1
P(G; H) ~t,, — D+ 1 (o 1)

Kn(vp, — D +1)
The above results in two cases for clustering. One is the was® data point belongs to one of the
represented cluster froid clusters. In the second case, the data point belongs to alastgrc The first
case can be represented as,

(36)

-
Hon,

Ay, (kn+ 1)

MMk, —i -
=t D41/
T En(Up — D 4+ 1)

P(Cz‘ = kf|étm6;0[,ﬁ) ~ m Un (37)
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In the second case when the data point observed is assigmsd@uster, it can be represented as,

A, (K + 1)
En(Up — D 4+ 1)

@ t
a+N—-1"

P(c; # j,Vj #i|C_i, 0,0, H) ~ — D+ 1|jin, (38)

The posterior derived is used in the collapsed Gibbs sampler

Algorithm 1: Non-parametric Bayesian clustering algorithm for humastiom recognition using
collapsed Gibbs sampler

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 end

Input: O(a;, D), SweepsI'(a, b), H
Output: K, ¢;

K+ 0;

foreach sin Sweepsio
Cs+—Cs1
foreach sin Sweepslo

if m_; == 0then
cj—ci-LiVj i
K, +K,-1
end
dim <« length@p)
foreach 7in K do
covariances(i,dimy)- iWishart(\, v)
means— MVrnd(u, covariances(i,dim))
my = SR 1(¢; = k)
¢; + MVrnd(means,covariances)
end
/* Estimate the priot?(;|0; H) using Equationg1) */
if ¢; = K4 then
K, «+ K +1
end
[* Estimate the prio?(¢; = k|C‘_i, «) using Equationsa3) and @4) */
end
end
/* Collapsed Gibbs Sampling */
/* Estimate the posterioP(c; = k|0, C_;, a; H) using Equationg7) */

In Algorithm 1, input parameters are the measured data fant MEMS sensor, the number of

sweep to monitor the convergence of algorithm, and hypearpaters. The data model is estimated
using the observed data and hyper-parameters. Algorithon4 for the specified number of sweeps
(steps) till convergence after initialization proceduFar example, the loop in the step 6 runs for 100
sweeps. The samples obtained for each data point from thibtmoral distribution are used to estimate
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the joint distribution of all variables. In Algorithm 1, s are estimated and updated for each step in
the Gibbs sampler. After repeated estimation and updateepsy the final posterior estimation can be
obtained at the last step in Algorithm 1.

5.4. Motion Recognition Method

The result we get from the collapsed Gibbs sampler is thecadisC, and the indicators are
associated with every data point that is input into the pskal Gibbs sampler. The indicatrobtained
as an output from the collapsed Gibbs sampler answers thguestions that we are supposed to answer.
Recall from Section 5, the questions we have to answer aigo@@)many clusters represent the data set
and (2) which data point belongs to which cluster. As evetg @@int is associated with its respective
indicator ¢;,7 = 1 : N), the indicator demonstrates to what cluster the data gojnt = 1 : N)
belongs. The first question can be answered by counting tlge@nalues of;. The last step in motion
recognition is motion mapping. The mean and variance of eagdter can be used to identify human
motion. We assume that we are given each motion-dependieet faa the feature space. We compare
those with the values obtained from the collapsed Gibbs Eamgnd the similarity between the two
distributions is measured via the Kullback—Leibler divesrige. The KLD value is computed between
each cluster obtained from the non-parametric Bayesianhanieference training data. The decision is
made over a minimum value of KLD.

6. Experimental Setup

In experiment, the MEMS accelerometer device was mount#uketahest of the individual as shown
in Figure2. The data set for our experiments was collected in an ungigeer way. Every motion
was performed by fifty different individuals without any supision. In consequence, fifty data sets
are acquired for each motion, where the distance for walkrandwas 10 meters. Data sets were
acquired using USB (Universal Serial Bus) interface frora MEMS device. The sampling rate
for data acquisition was 45 Hz/sample. We considered humations such as standing, walking,
running, turning, falling, taking the stairs, and taking #levator, all of which can happen in a building
environment. The acceleratiom, and tilt angle §.) in x axis are depicted for different human motions
in Figure5. It is evident from Figures that different motions show different patterns. In FigGrehe
plots for tilt angle are shown for left and right turn. It ieak from the plots in Figuré that the left and
right turns show distinguishing characteristics for tiigée. The tilt angle is a useful feature to cluster
human motions.
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Figure 5. The accelerationa(,) and tilt angle §.) signals of human motions obtained from
the MEMS sensor.
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6.1. Hyper-Parameters

In this section, we will explain the hyper-parameters thrat @seful in carrying out the clustering
procedure. Since we rely on the IGMM, we have to set the hppesimeters in such a way that represents
our actual true data set. The complexity of the Gibbs sanyt@awrs significantly as the number of data
points increases?[1,23]. Therefore, it is desirable to set hyper-parameters shahthe true data is
obtained faster in order to reduce the Gibbs sampler contylex

Since we have employed the generative model, we have to Hetufpllowing hyper-parameters,
H= {flo, Ko, Ao, U, } @Ndar, Wherea is the concentration parameter that encodes the numbeusiecs
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in the data set. As the value afincreases, the number of clusters also increases, whicidisrg from
Equation 25). In our scenario we keep the value @fsmall initially because the number of human
motions in the initial stage is assumed to be smaller.

The mean vectofi, of a cluster follows a Gaussian distribution with mg&armand covarianc&, /..
Therefore, the two hyper-parametgis and x, represent the mean for the cluster. Whegeis the
dispersion measure of the cluster, the higher is the valug,dhe closer the clusters are to each other,
and vice versa.

The covariance matrix of the cluster depends on the follgwimo hyper-parameters;, and A,.
These parameters are related to the inverse Wishart distnib Parameter, is the degree of freedom
while A, quantifies the variability around the mean of the featuresp8uppose that feature point TAS
shows a wide range of variability from its mean value, whiglspecific to a particular human motion
such as running. Therefore, this variability is quantifigd\y. The value ob, represents our confidence
aboutA,.

6.2. Mapping Cluster to Motion

The Gibbs sampler results in a number of clusters that datstthe data set, as well as each
data point’s association with a particular cluster. We assthat the mean values of the features are
available for all of the human motions. After clustering, e@mpare and then map the clusters to the
human motion.

7. Experimental Results

In this section, we present the performance analysis of thpgsed motion detection technique, in
addition to comparing our proposed technique with the patamFuzzy C-Means (FCM)28], the
unsupervised K-Means clustering algorith29], the non-parametric mean-shift clustering meth®@.[

In the performance analysis, we study the effect of varyirggriumber of human motions. The results
demonstrate the effect of introducing new human motion encthstering accuracy. In the following
subsection, we briefly discuss the K-means and mean-susgtezing approaches.

7.1. K-means Clustering

In the K-means clustering algorithm, thé data points are partitioned into clusters, where each
observation belongs to the cluster with the nearest meamenG set of observations, o, . . ., oy,
where each observatian is a D-dimensional vector, the K-means clustering algorithnigeto cluster
thoseN observations intd< sets, wheré K’ < N) andK = [ky, ko, ..., kx|, in order to minimize the
intra-cluster sum of squares.

K
argmin » Y " ||3; — jiil|” (39)

i=1 0;€k;

whereji; is the mean of points ik;.
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The overall algorithm proceeds in two steps. Initially iaissumed that the initial means for the
clusters are given by, ki, ... ki, where the two steps for the algorithm are the assignmeptaste
the update step. In the assignment step each observatiesighad to a cluster with minimum mean,
represented as,

KO = {0, 11a, — i1l < 11a, — #°IIV1 < j < k) (40)

where eaclv, goes to one of th@ft). In the update step new means are calculated based on the
observations.

1
t+1 N
W= —= > 5 (41)

|ka | ay-ekf)

The algorithm converges when there are no updates. The ksme&-dimensions is NP hard.

7.2. Mean-Shift Clustering

Mean-shift is a non-parametric clustering algorith®d][ The mean-shift procedure is obtained by
successive computation of the means-shift veétoand translation of the kerngl(o;) by g;. The
mean-shift procedure is guaranteed to converge at a neathywhere the kernel estimate has zero
gradient BQ]. It is useful for detecting modes of the density functiorhieh is iterative method with
initial start. Here we use Gaussian kernel function for tistathce to the current estimate given as,
G(8; — ii;) = expll@—7lD* The weighted mean of the density for clustes given as,

Z exp(c||5j_ﬁiH)2 0_,;

- o 576N(0_;) -4
TS expUia? % (42)
0;EN(07)

whereN (q;) is a set of data points for whiaf(a;) # 0. Similarly, assignment is dori = ; in iterative
way until the convergence point is reached.

7.3. Performance Evaluation Criteria

The accuracy of the proposed non-parametric Bayesiareiméercan be evaluated using the following
three metrics:

(1) The hit rate for detecting the right number of human muio the data set. The percentage is
calculated for the correct number of human motions detemtedthe total number of trials performed.

(2) The hit rate for each data point is realized by assignusgyefeature point to its correct cluster. It
is the percentage of feature points assigned to its corhestier over the total number of feature points.

(3) The false alarm rate can be computed by counting the datatspthat are assigned to
incorrect clusters.
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7.4. Unforeseen Motion Detection with Limited Data

In this subsection, we will show the efficacy of the proposeatiom detection method against
unforeseen motions. As discussed in the previous sectiomah motions vary with time and
encountering new motions is anticipated. Moreover, thepsed HMR approach is robust in terms
of new motion detection and recognition. For example, agreis walking and instantly falls due
to some unavoidable cause. The person’s fall is a new evahstould be detected and recognized
precisely. Therefore, we compared our proposed approdthawiarametric Fuzzy C-Means clustering
algorithm R8]. In Fuzzy clustering, the data point can belong to more thamgle cluster, and a set
of membership levels can be associated with each data passtdbon the strength of a data point’s
association with a particular cluster. In FCM, each datafp@i has a coefficient that represents its
association with a particular clustgy.(0;). In FCM, the centroid of a cluster of the mean of all data
points is a weighted measure belonging to the cluster. Tdnde represented as

Z wk(5)5

The algorithm also tend to minimize intra-cluster variance

The accuracies of the proposed and FCM approaches are giiegure 7. It is evident from the
Figure 7 that the FCM clustering approach fails to recogthizenew motion (fall) due to its parametric
clustering procedure. However, the proposed techniquaratsty identifies the new motion with 100%
accuracy. The performance evaluation is shown in Tablen the FCM approach, the new motion is
not detected and all of the data points are classified intactugters (motions). However, the proposed
HMR detects the unanticipated fall and clusters with 99.38%uracy. For the performance metric 1,
the proposed approach clusters the data points into thustecs with 100% accuracy, where the PCM
clusters the same data points into two clusters.

Figure 7. Unforeseen motion detection results by propodeft)(and FCM clustering
algorithm ¢ight).
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Table 1. Performance metrics results for FCM and proposed HMR.

FCM Proposed HMR
Motion  Type2: Hit Accuracy Type3: FalseAlarm Type2: Hit Accuracy Type3: False Alarm
(%) (%) (%) (%)
Walk 100 66.67 100 0
Run 100 0 100 0
Fall (new) 0 100 99.33 0.67

7.5. Recognition Results for Numerous Motions

In this subsection, we show the recognition accuracies datime daily motions. We compare
the proposed HMR technique with the K-means, and observ@dhiermance gains in terms of the
performance metric criteria discussed above. Since we asgeherative model, we need to set the
hyper-parameters in such a way that the hit rate is maximigda minimum number of errors. Note
that the clustering results are highly sensitive to the hyaeameters. Therefore, the hyper-parameters
must be set carefully in order to reduce the chance of clusters. We set the values of the
hyper-parameters @& = {A,, /i,, ko, U, }, andek, =0.1,v =4, A = diag(0.3), andl'(3, 2).

7.6. Varying Number of Human Motions

In the simulations, we compared the proposed approach WwéhKeMeans clustering algorithm.
Figure 8 shows the clustering results for the proposed hun@ion approach and K-Means clustering.
The clustering errors produced by the K-Means are showrgarEi8. The proposed approach efficiently
clustered the human motions.

Figure8. Clustered results for the proposed algorithéfit] and the K-Means methodight)
with six human motions.
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Figure 9 demonstrates the accuracy and clustering errorthéoproposed method, K-Means, and
mean-shift clustering approaches. The Type 2 hit rate ofptioposed approach outperforms that of



Hit rate (%)

Sensor012, 12 13207

the K-Means and mean-shift approaches in terms of accuedtepbint clustering. The unsupervised
K-Means and mean-shift algorithms suffer a significant lassccuracy.

Figure 9. Hit rate (eft) and false alarmr{ght) results for the proposed algorithm, the
K-Means method, and the mean-shift method with varying remolb motions.
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7.7. Kullback-Leibler Divergence and Clustering Accuracy

In this section, we compared the accuracy of the proposedbapip with that of the K-Means
approach with a varying Kullback—Leibler divergence valdde Kullback—Leibler divergence is the
measure of the difference between two probability distidns. Equation44) represents the measure
of the KLD, where D is the number of dimensions in the data set.

detZl
detZQ

1 . S 1, = o
KLD = §[trace(22_121) + (5 — NI)TEQ 1(#2 — p11) — In( — D)) (44)

Figure 10. Clustering accuracyi€ft, hit rate;right, false alarm) with KLD variations for
the proposed algorithm and the K-Means method.
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In this section, we show how the clustering results are tdtedy varying the KLD for the
proposed and K-Means clustering approaches. In Figureti€,shown that the proposed approach
outperforms the K-Means algorithm in terms of its hit rated dalse alarm. It is evident from
Figure 10 that the hit accuracy of the proposed approacltisased to 100% when the KLD increases,
but the K-Means algorithm fails to achieve such high hit.raiéne proposed approach attains 100%
accuracy at KLB=14 for the clustering data points as shown in Figure 10.

7.8. Convergence

From the simulation results, it is apparent that the propes#iapsed Gibbs sampler converges to a
stable state after a few iterations. Figredemonstrates the convergence rate of the collapsed Gibbs
sampler. The plot of the random variables are generatethdédog probability of training data under the
model and the distribution over the Dirichlet hyper-partane, in Figurell. The two graphs are useful
in diagnosing the convergence of the Gibbs sampler. Evargtinthe Gibbs sampler converg&d]; it
is difficult to diagnose the convergence of Gibbs sampleraciice; therefore, visual graphs can help
to decide on the convergence. It is clear that the conveegisrattained after 30 iterations for the given
data set as shown in Figuid.

Figure 11. Convergence characteristics of the collapsed Gibbs sample
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8. Conclusions

In this study, we proposed a non-parametric Bayesian appruwa detecting and clustering various
human motions. The proposed work exploits the motion-dépetsignal features to model an available
data set using the infinite Gaussian mixture model. The psdd Gibbs sampler is utilized to classify
the available data set into various human motions. The @rpetal results show that the proposed
human motion recognition approach significantly outpen®methods including the Fuzzy-C Means,
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K-Means, and mean-shift approaches. The unsuperviserradtine proposed scheme relaxes the upper
bound for the number of human motions under consideratiberéfore, the proposed approach can be
extended to many other applications in which the number dedging clusters is unknown.
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