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Abstract: This paper presents an adaptive information fusion method to improve the 

accuracy and reliability of the altitude measurement information for small unmanned aerial 

rotorcraft during the landing process. Focusing on the low measurement performance of 

sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a  

pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to 

improve altitude information, an adaptive extended Kalman filter based on a maximum a 

posteriori criterion is proposed to estimate measurement noise covariance matrix in real 

time. Finally, the effectiveness of the proposed method is proved by static tests, hovering 

flight and autonomous landing flight tests. 

Keywords: small unmanned aerial rotorcraft; wavelet filter; altitude information fusion; 

adaptive extended Kalman filter 

 

1. Introduction 

With the ability to land vertically, small unmanned aerial rotorcraft (SUAR) have an irreplaceable 

role in civil applications [1]. Thus, they have been widely used in many areas, including road traffic 

monitoring, city building surveillance and power line inspection, etc. [2,3].  

SUAR is a complex multi-input and multi-output (MIMO) system. Compared with the hovering and 

straight flight processes, there exists land disturbance in the landing process [4]. High performance 
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altitude information is the basis factor for SUARs to realize stable landing control [5]. Due to the 

constraints of weight and size, sensors with low size and low performance are often used by SUARs, 

including micro-electronic mechanic system (MEMS) accelerometers and gyroscopes, barometers, the 

global positioning system (GPS) and ultrasonic sensors.  

Integrated by the Euler equations, or quaternions, SUAR can get the corresponding aircraft attitude 

angles and position information, however, inertial sensors, especially gyroscopes, have fixed bias, drift 

bias, asymmetric scale factor errors and temperature-varying biases, causing the integration results to 

drift from true attitude [6]. GPS can provide absolute position and velocity information [7], but GPS 

information is easily affected by sources of interference [8]. Furthermore, GPS has low data frequency 

to get position and velocity information for a SUAR system [9]. Based on the relationship between the 

air pressure and the altitude, barometers can provide altitude information [10], but they are easily 

affected by wind disturbances, air fluctuations, and temperature [11]. Ultrasonic sensors are also often 

used in SUAR systems. Although they can provide high performance altitude measurements, they have 

measurement region limitations. When the altitude of SUAR surpasses the upper bound of ultrasound, 

the measurement results will have errors, therefore all the current sensors have limitation for SUAR to 

realize stable landing control. 

Using filter methods, system can get high performance information based on different sensors. The 

most used filtering method is the extended Kalman filter (EKF) [12]. With the predict and update 

theory, Beard has used EKF to realize attitude acquisition for a unmanned aerial vehicle [13]. 

Nevertheless, poor performance or even divergence arising from the linearization implicit in EKF has 

led to the development of other filters [14]. The unscented Kalman filter (UKF) is also used in UAV 

systems [15]. Based on second or higher-order approximations of nonlinear functions, UKF can 

estimate the mean and covariance of state vectors [16]. With UKF, Seung realized target relative 

position and velocity determinations for follower UAV systems [17]. However, UKF is sensitive to the 

statistical distribution of the stochastic processes [18]. Based on the concept of sequential sampling 

and Bayesian theory, particle filtering (PF) is also used in dealing with nonlinear and non-Gaussian 

noise in SUAR systems. Kamrani used PF for efficient path planning of a UAV [19], but its 

computational demands are too complex. Wavelet analysis has also been widely used for its time and 

frequency domain convenience and it can effectively eliminate high frequency noise. Tsiotras used a 

wavelet transform to construct an approximation of the environment at different levels for small  

UAVs [20].  

Inspired by the discussion above, an adaptive extended Kalman filter (AEKF) method based on the 

wavelet filter is proposed to get high performance altitude information for a SUAR during the 

autonomous landing process. The wavelet decomposition and reconstruction method is used to restrain 

the high frequency noise in the barometer, ultrasonic and GPS sensor information. Since the 

measurement noise is greatly changed after wavelet filtering, an AEKF based on a maximum a 

posteriori criterion is proposed to estimate the measurement noise matrix in real time to get high 

performance altitude information. 

The paper is organized as follows: the dynamic model of the SUAR system is described in Section 2. 

The wavelet decomposition and reconstruction method is presented in Section 3. In Section 4, an 

AEKF based on a maximum a posteriori criterion is proposed to improve altitude information. The 
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simulation and test results confirm the effectiveness of the proposed method in Section 5. Finally, 

conclusions are drawn in Section 6. 

2. The Dynamic Model of SUAR  

2.1. The State Model 

For SUAR, altitude information is mainly controlled by the main rotor speed and longitudinal cyclic 

input. Therefore, the simple altitude dynamic model for SUAR can be defined as: 

 
 
 

 
 
                                                                                                   

                   
                      

 

                                 
                  

                                                                                                    

                         
                         

 

 

(1)  

where                 
 
        . The term   is the estimated altitude measured by barometer, 

GPS, and ultrasonic sensors,   is rotor speed of main rotor,   is the longitudinal angle of rotor blade 

speed,          
  is the corresponding input,    and    are throttle and collective input respectively, 

playing an important role in longitudinal cyclic input, lateral cyclic input and blade speed.  

               are unknown identification parameters, obtained by the adaptive genetic method [21]. 

Therefore, the altitude state model of SUAR can be defined as follows: 

               (2)  

2.2. The Measurement Model 

The output accuracy of a barometer is mainly affected by the high frequency noise and constant 

error which is related to air pressure and temperature. The high frequency noise can be restrained 

largely by a wavelet filter. Thus, the barometer output    mainly includes a constant error    and 

measurement noise   . The function of the    can be defined as follows: 

           (3)  

where   is the altitude of the SUAR system. 

With the location method of the ranging interchange theory, DGPS can provide position information 

for SUAR systems with sub-meter performance. The output of DGPS can be defined as follows: 

        (4)  

where    is the output of DGPS, and    is measurement noise 

Ultrasonic sensors can provide high performance altitude information from 0.15 m to 6.05 m, and the 

error is less than 1 millimeter. When the altitude surpasses the upper limitation, the output of ultrasonic 

sensor fluctuates greatly. Therefore, the output of the ultrasonic sensor can be defined as follows: 

    
                               
                         

   (5)  
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where    is the output of ultrasonic sensor,   is the random error within the bounds and      is 

random error without bounds. 

When a SUAR finishes a certain task at low altitude, there exists land disturbance causing  

an increase of barometer error. Ultrasonic sensors can provide high precision altitude information  

for SUARs at low altitude, therefore the measurement matrix can be constructed with inputs from 

different sensors.  

Case 1: 

If the integrated navigation altitude is larger than 6 m, the SUAR is beyond the range of the 

ultrasonic sensor. The output of barometer and DGPS are fused. Thus, the constant error of barometer 

sensor can be revised by the DGPS. The measurement equation can be defined as:  

 
  
  

   
  
  

  
 
  
   

  
  
  (6)  

Case 2: 

If the integrated navigation altitude is less than 6 m, the barometer is easily affected by land 

disturbance. The output of DGPS and ultrasonic sensor are used to construct the measurement vector. 

The measurement equation can be defined as follows: 

 
  
  

     
  
  

  (7)  

Therefore, the measurement equation can be expressed as: 

           (8)  

where    is the state vector,    is the measurement vector,    is the measurement matrix and    is the 

measurement noise vector. With the wavelet filter, the high frequency noises can be largely eliminated. 

Then, using the AEKF based on maximum a posteriori criterion, the altitude   and the constant error 

   can be estimated unbiasedly. The whole procedure is shown in Figure 1. 

Figure 1. The scheme of altitude fusion. 
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3. The Wavelet Decomposition and Reconstruction Method 

To get high precision altitude information, it is necessary to use a data filter to deal with high 

frequency noises in the output of barometer sensor, DGPS, and ultrasonic sensor. Wavelet analysis is a 

time and frequency domain method, having good representation for partial signal characteristics, 

therefore, a wavelet filter is used here as a tool to reduce high frequency noises in the sensor 

information. Lifting-based wavelet transform implementation has shown high potential in reducing the 

number of computations, so it is used to reduce computation burden in real tasks. It includes three steps: 

(1) Split: splitting the original signal                  into even and odd ones. That is: 

 
                                                                

                                         
  (9)  

(2) Predict: defining the detailed representation characteristics by choosing a predictor: 

              (10)  

(3) Update: averaging the signal of rough representation against original signal: 

              (11)  

The basic principle of lifting scheme is to factorize the polyphase matrix of a wavelet filter into a 

sequence of alternating upper, lower triangular matrices and a diagonal matrix with constants. The 

factorization is obtained by using an extension of the Euclidean algorithm. The resulting formulation 

can be implemented by means of banded matrix multiplications.  

Suppose that the z-transform of wavelet filter            can be defined as     . Let       and 

      be the low and high pass analysis filters, and     ,      be the low and high pass synthesis 

filters.      ,      ,      and      are biorthogonal filters. The filters can be divided into even and odd 

parts as: 
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The polyphase matrices are then defined as: 

 
 

        
            

            
 

      
          

          
 

  (13)  

If the          is a complementary filter pair, then       can be factored as follows: 

       
      
  

  
  

      
  
  
     

 

   

 (14)  

where   is a constant value. 
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Therefore, the low pass samples are multiplied by the time domain equivalent of      , and are 

added to the high pass samples. Then, the updated high-pass samples are multiplied by the time 

domain equivalent of       and are added to the low-pass samples. If a diagonal matrix is present in the 

factorization, the low pass coefficients are multiplied by   and the high-pass coefficients are 

multiplied by    . The polyphase-based wavelet transform in lifting scheme is shown in Figure 2. 

Figure 2. The polyphase-based wavelet transform in lifting scheme. (a) The wavelet 

analysis process. (b) The wavelet reconstruction process. 

  

(a) (b) 

In this paper, the wavelet “db4” is utilized to construct the wavelet method. The coefficients of the 

filter are shown in Table 1. 

Table 1. The coefficients of the “db4” filter. 

    0.48296291314453     0.12940952255126 

    0.83651630373780     0.22414386804201 

    0.22414386804201    −0.83651630373780 

   −0.12940952255126     0.48296291314453 

The comparisons of original data and the wavelet filtered data of barometer and DGPS are shown in 

Figure 3. Obviously, the wavelet method can filter out the high frequency noise effectively. 

Figure 3. (a) The comparison between the original barometer data and the wavelet filtered 

data. (b) The comparison between the original DGPS data and the wavelet filtered data. 
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4. The Adaptive Extended Kalman Filter 

Since the measurement noise structure has changed greatly after wavelet filtering, experiential value 

or the statistics of partial noise cannot be used to provide a good description of measurement noise 
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covariance, therefore, an AEKF is proposed to estimate the measurement noise covariance in real time 

to improve altitude information.  

Since the nonlinear dynamic equation of SUAR is continuous and the measurements are a discrete 

series, a continuous-discrete EKF is proposed to fuse altitude sensor information. In EKF, the state 

equation and measurement equation can be expressed as: 

 
                             
                                                  

  (15)  

where,   is the number of time step.       and    are the state vector and measurement vector 

respectively.           is nonlinear ordinary differential equations, and    is the measurement matrix. 

     is the input matrix,      is the input vector,     ,    are the system noise and measurement 

noise vector respectively. Besides, the system noise and the measurement noise are uncorrelated, and 

the system noise can be treated as Gaussian white noise.  

In EKF, measurement noise covariance matrix   plays an important role in obtaining a converged 

filter result. If the value of   is small, unreliable results will be obtained, and a big value of the 

diagonal elements of   can lead to filter divergence. In traditional EKF, the measurement noise is 

treated as Gaussian white noise, however, the measurement noise structure has changed greatly after 

wavelet filtering. Using traditional experiment values or partial statistics of sampling data as 

measurement noise matrix, the filtering speed will become slow, and filtering performance will 

become bad, therefore, the sub-optimal and unbiased maximum a posteriori method is proposed to 

estimate   in real time. As shown in Equation (21), the current   is updated by the innovation    and 

  at previous time. The filter consists of the following stages: 

(1) The prediction stage: 

                                              (16)  

                       
       

(17)  

                (18)  

(2) The update stage: 

              (19)  
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(23)  

where         is the predicted measurement vector for the next epoch,         and       are the 

predicted measurement vector and the predicted state covariance matrix respectively.        is the 

transition matrix after discretization. The innovation    is the difference between the real observations 

and its estimated values.   is the sampling time.    is the system noise covariance matrix.    is the 



Sensors 2012, 12 13219 

 

 

gain matrix,    is the estimated state covariance matrix, and 
kR  is the covariance matrix of 

measurement noise based on the maximum a posteriori adaptive method. Using   ,           
  and 

initial experiment value   , the measurement noise covariance matrix can be estimated in real time to 

improve filtering performance.  

5. Experiment 

5.1. Hardware System 

Experiments were conducted on a radio-controlled Raptor 90 helicopter, shown in Figure 4. The 

SUAR is 1.3 m length and 1.46 m span. The total weight is 5 kg, including two liter fuels, a light 

weight DGPS receiver, and radio telemeter system. The SUAR is powered by a piston engine running 

on a mixture of methanol and oil. Five servos are used to control the tail, the longitudinal cyclic input, 

the lateral cyclic input, the collective and the throttle. The longitudinal vertical direction can be 

stabilized by using the collective and pitch cyclic. Meanwhile, the lateral direction can be controlled by 

using the roll-cyclic and collective. The heading can be controlled by the tail. 

Figure 4. The Raptor-90 helicopter. 

 

For SUAR, there exist weight and size constraints for onboard control components. Thus, a micro 

guidance navigation control (MGNC) system with little weight was self-developed to realize stable 

control. The MGNC is only 207 g in weight, with a size of 120 mm × 61 mm × 48 mm. It consists of a 

horizontal main board, housing three angular rate sensors, two 2-axis accelerometers and a barometer. 

The barometer, DGPS, and ultrasonic sensor are used to provide altitude information for the SUAR 

system. The MPXA6115 barometer, produced by Freescale Semiconductor Company, has a range of 

15 kPa~115 kPa. The DGPS module employs the Novatel RTK, whose position accuracy is about  

0.02 m, and the range of the Mini-S electrostatic ultrasonic transducer is from 0.15 m to 6.05 m.  

5.2. Static Distance Test  

To test the effectiveness of the proposed information fusion method, a static distance test has been 

done on the stairs. A six-floor building is chosen as the basis for its high precision measurement. Three 

marking points are selected on the stairs. The distances between points and ground have been tested by 

flexible rulers and the distances are 5.12 m (first point), 9.32 m (second point) and 13.52 m (third 

point). The SUAR is stretched to measure the distance between the current point and the ground. 

Besides, the sampling time is 60 s per point.  
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The comparison result of the proposed method and the real altitude, the output of the barometer and 

the real altitude, the output of the DGPS and the real altitude, the output of the ultrasonic sensor and 

the real altitude are shown in Figure 5. The measurement results of each sensor are shown in Table 2. 

It is easy to see that the proposed AEKF method has the best performance. Since there exist barriers 

for GPS in the building, the maximum error reaches to 1.49 m. Without airflow disturbance, the 

barometer can provide good measurement results, and the standard deviation is 26 percent of the 

DGPS after initial alignment. The ultrasonic sensor can provide high performance altitude information 

under 6 m. The mean error at first point is below 0.11 m. When altitude surpasses the 6 m, the 

performance of ultrasonic is decreased greatly. 

Figure 5. (a) The comparison between the output of AEKF and the real altitude. (b) The 

comparison between the output of barometer and the real altitude. (c) The comparison 

between the output of ultrasonic and the real altitude. (d) The comparison between the 

output of DGPS and the real altitude. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Table 2. Altitude accuracies for AEKF and each sensor (in meters). 

 AEKF Barometer Ultrasonic DGPS 

Max. absolute error 0.31 0.32 4.94 1.49 

Mean error 0.08 0.14 0.44 0.49 

Standard deviation 0.098 0.16 0.94 0.41 

5.3. Hovering Flight Test  

To test the dynamic performance of the proposed method, a hovering flight test has been done on 

the SUAR system. Under a 3.4 m/s wind disturbance, the SUAR hovers in the air at 10 m altitude. The 
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LQR control method has been used to adjust altitude and position in real time [22]. Since the planned 

altitude surpasses the upper limit of ultrasonic sensor, DGPS and barometer are used to provide 

altitude information for the SUAR system. The altitude generated by the AEKF method, barometer and 

DGPS are shown in Figure 6. The mean error of the adaptive EKF is only 0.214 m, and the standard 

deviation is 0.169 m. With the proposed AEKF, the SAUR can realize stable hovering control. 

Furthermore, it is easy to see that the altitude measured by the barometer fluctuates greatly. Since there 

exists wind disturbance, the fluctuation of barometer surpasses 1 m. Without shelter, the output of 

DGPS can provide high performance measurement in short periods. With the fluctuation of the star 

number, the DGPS output is not so reliable.  

Figure 6. The altitude generated by the AEKF method, barometer and DGPS in a hovering process. 

 

5.4. Autonomous Landing  

To test the effectiveness of the proposed method, a series of autonomous landing tests have been 

done on the SUAR system with the adaptive radial basis function neural network and pilot model. 

When the SUAR received an autonomous landing command, it changed work station, and flew to the 

planned hovering point (0,0,10). To satisfy the criteria for position error, speed error and heading error, 

the SUAR hovered at the planned hovering point. With the constant adjustment for the planned 

hovering altitude, SAUR descends with hovering stations. Finally, the SUAR landed on the ground. 

Ten landing tests were conducted from different altitudes, while the wind velocity was less than 3 m/s. 

The landing results are shown in Figure 7. With the proposed adaptive altitude information fusion 

method, the SUAR can realize stable autonomous landings, and the average Euclidean distance from 

the landing target is about 0.67 m. Compared with the navigation system with camera [23,24], the 

SUAR can get achieve similar landing performance.  

The comparison of landing performance with AEKF and KF [13] which fuses SINS and DGPS is 

shown in Figure 8. Using the AEKF, SUAR realized a stable autonomous landing with 0.75 m and 

0.45 m error in the East and North directions from the planned landing point. Compared with the KF, 

the AEFK has much better performance in the autonomous landing process. The altitude, attitude and 

velocity of the autonomous landing using AEKF are shown in Figure 8(b–d) respectively. 

 

300 310 320 330 340 350 360
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Time/s

A
lt
it
u
d
e
/m

 

 

Altitude of barometer

Altitude of DGPS

Barometer output after wavelet filtering

Fused altitude

Influenced by 

star-number



Sensors 2012, 12 13222 

 

 

Figure 7. The result of autonomous landing tests from different altitudes. 

 

Figure 8. (a) The comparison of 3D trajectory of the SUAR with KF and AEKF method in 

the landing process. (b) The altitude trajectory of SUAR in autonomous landing process. 

(c) The pitch and roll angles in autonomous landing process. (d) The velocities in  

two directions. 
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6. Conclusions 

In this paper, an adaptive information fusion method based on wavelet decomposition and 

reconstruction is proposed to improve the accuracy and reliability of altitude measurement information 

in the landing process for a SUAR. With the proposed method, the high frequency noises in sensors 

can be eliminated greatly, and then high performance altitude information can be fused to provide 
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support for SUAR in the autonomous landing process. The effectiveness of the proposed method has 

been demonstrated by static tests, hovering tests and a series of autonomous landing tests. 
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