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Abstract: Visible and near infrared (Vis/NIR) spectroscopy were employed for the fast and 

nondestructive estimation of the total amino acid (TAA) content in barley (Hordeum vulgare L.) 

leaves. The calibration set was composed of 50 samples; and the remaining 25 samples were 

used for the validation set. Seven different spectral preprocessing methods and six different 

calibration methods (linear and nonlinear) were applied for a comprehensive prediction 

performance comparison. Successive projections algorithm (SPA) and regression 

coefficients (RC) were applied to select effective wavelengths (EWs). The results indicated 

that the latent variables-least-squares-support vector machine (LV-LS-SVM) model 

achieved the optimal performance. The prediction results by LV-LS-SVM with raw spectra 

were achieved with a correlation coefficients (r) = 0.937 and root mean squares error of 

prediction (RMSEP) = 0.530. The overall results showed that the NIR spectroscopy could be 

used for determination of TAA content in barley leaves with an excellent prediction 

precision; and the results were also helpful for on-field monitoring of barley growing status 

under herbicide stress during different growth stages. 
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1. Introduction  

Barley is one of the earliest cultivated cereal grains in the World, which is attracting renewed interest 

for its use in food and as a bioethanol feedstock [1]. It is a preferred grain for cultivation in many areas in 

the World due to its resistance to drought and ability to mature in climates with a short growing  

season [2]. Amino acid content is a very important physiological indicator which has a close  

relationship with the influence of environment stress during plant growing season. Recently, propyl  

4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), a newly developed herbicide, 

has been applied to remove and control the weeds in barley fields. ZJ0273 is an ALS (acetolactate 

synthase)-inhibiting herbicide, which is considered to influence the formation of branch-chain amino 

acids (like aspartic acid, valine and proline) [3]. Hence, total amino acids (TAA) are basic physiological 

data and important parameters to understand the mechanism of herbicide effects on barley growth. 

The traditional amino acid detection method uses an automatic amino acid analyzer, which is laborious, 

time consuming, destructive and expensive. This method is not convenient for the fast and 

nondestructive detection of amino acids for field monitoring of plant growth information. Therefore, a 

rapid and practical method was necessary for the fast and accurate detection of amino acids. 

Near infrared (NIR) spectroscopy is a common alternative analysis tool to traditional analytical 

methods. The NIR spectroscopy technique is rapid, and does not require labor-intensive sample 

processing, allowing for large-scale sampling [4]. It has developed rapidly in the past decades. In the 

agriculture field, NIR can be used to predict the neutral detergent fiber (NDF) and acid detergent fiber 

(ADF) of cereal residues from dryland cropping systems and is a useful tool to estimate residue 

decomposition potential [5]. Some researchers had shown the possibility of using NIR spectroscopy to 

analyze the β-glucan content in barley [6]. It is also possible to predict ergosterol content in whole barley 

samples using NIR [7]. The application of herbicides is an efficient and effective chemical weed  

control method to achieve optimal crop production [8], but herbicides also cause crop damage. Some 

physiological indicators are useful in evaluating the effect of herbicides [9]. This study was mainly 

focused on the feasibility of developing a rapid and effective method for the quantification of TAA in 

barley leaves using NIR spectroscopy to provide a new monitoring method for herbicide injury. 

2. Material and Methods 

2.1. Samples Preparation and Reflectance Measurements 

Barley (Hordeum vulgare L.) used in our research was planted at the farm of Zhejiang University, 

Hangzhou (30°10'N, 120°12'E), China. The samples included 75 barley leaves, 50 for calibration and 25 

for validation, and no single sample was used in both the calibration set and validation set at the same 

time. The calibration and validation set were randomly repeated several times in order to obtain a stable 

model. A new herbicide called ZJ0273 was applied during the seeding stage, the herbicide 
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concentrations were 0, 50, 100, 500 and 1,000 mg/L, which are normally used for herbicide stress 

studies and practical field applications.  

A Handheld FieldSpec spectrometer (Analytical Spectral Device, Boulder, CO, USA) was used 

within the 325–1,075 nm wavelength region for the reflectance spectral acquisition of all barley leaf 

samples. The resolution of this instrument is 1.5 nm. The reflectance mode was applied to obtain the 

spectra data of fresh barley leaves. The field-of-view (FOV) of the spectroradiometer is 25°. The 

distance between leaf sample and detector was 20 cm. Three replicate spectra were collected for each 

leaf sample, and the averaged spectrum obtained by averaging 30 scans per spectrum was used as the 

spectral data of each leaf sample. All spectra data were processed using the RS3 software for 

Windows (Analytical Spectral Devices, Boulder, CO, USA) with a Graphical User Interface. The 

software used in this study included ASD View Spec Pro, Unscrambler V9.8 (CAMO AS, Oslo, 

Norway) and MATLAB V7.0 (The Math Works, Natick, MA, USA). The pretreatment of leaf samples 

and the protocol for amino acid extraction was based on the Lisiewska method [10]. The content of TAA 

in barley leaves was determined using a Hitachi automatic amino acid analyzer L-8900 (Hitachi 

High-Technologies Corporation, Tokyo, Japan) under common detection conditions. 

2.2. Data Pre-Treatment 

Previous studies showed that pre-treatment of measured spectral data was an important strategy to 

improve prediction performance [11]. In order to achieve the optimal spectral preprocessing method to 

predict TAA in barley, several different spectral preprocessing methods were compared. Seven different 

preprocessing methods were applied, including Savitzky-Golay smoothing (SG), standard normal 

variate (SNV), multiplicative scatter correction (MSC), first-derivative (1-Der), second-derivative 

(2-Der), de-trending and direct orthogonal signal correction (DOSC). SG smoothing, SNV, and MSC 

can be used for de-noising, light scatter correction, and light pathlength correction [12,13]. Derivatives 

were applied to correct the baseline shift [11]. De-trending seeks to remove nonlinear trends in spectral 

data [14]. DOSC corrected the major variance sources such as temperature effects, time influences and 

instrumental differences in spectral data [15]. The performance was determined by the prediction results 

in the later calibration stage.  

2.3. Multivariate Analysis 

Partial least squares (PLS) is a chemometrics method which is widely applied in NIR spectroscopic 

techniques. It is a bilinear modeling method. Latent variables (LVs) were used as the direct inputs of the 

PLS models to develop a relationship between the spectral data and TAA in barley leaves. A full 

cross-validation procedure was performed to test the model development. 

In order to compare different modeling methods, a least squares-support vector machine (LS-SVM) 

model was built in this study. It is a powerful calibration method to handle linear and nonlinear 

problems with a good statistical basis [16]. The details of LS-SVM can be found in the literature [17,18]. 

Herein, the PLS and LS-SVM methods were compared to obtain the optimal prediction model of TAA 

in barley. PLS model can develop a linear relationship between the spectra data and TAA in barley. 

However, there is some useful nonlinear information in the spectra data which could be helpful to 

improve prediction performance. Therefore, LS-SVM was investigated to develop a model using both 
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linear and nonlinear information in spectra data. LS-SVM applies linear equations using support 

vectors instead of quadratic programming problems to reduce the complexity of the optimization 

processes, which has advantages for multivariate analysis. 

There are several indicators relating to the quality of developed models. Correlation coefficients (r) 

and root mean squares error of prediction (RMSEP) were considered as the main evaluation standards 

in this study. An ideal model should have a high r value closing to 1 and a low RMSEP value. 

2.4. Selection of the Effective Wavelengths (EWs) 

Normally, the full spectra might contain hundreds of variables, therefore, removing uninformative 

variables was an effective strategy to get better prediction and simpler models. The research by Wold 

has shown that using optimum wavelengths might be equally or more efficient than using full 

wavelengths in multivariate analysis [19]. Regression coefficients (RC) analysis and successive 

projections algorithm (SPA) were employed to select the effective wavelengths in this study. Regression 

coefficient (RC) by performing PLS could be used as a way to select the effective wavelengths (EWs) [20]. 

The RC in the PLS model was used to calculate the response Y-variable from the X-variables. The 

coefficients gave an indication of which variables having the important impact on the response variables 

(Y). Large absolute values indicated the importance and the significance of the effect on the prediction of 

Y-variable. Successive projections algorithm (SPA) was a forward selection method which comprises 

three phases [21]. It starts with one wavelength, then incorporates a new one at each iteration, until a 

specified number of wavelengths is reached. With SPA, the informative variables with the least 

collinearity and redundancies could be selected. The selected EWs could be used as the direct input of 

the PLS and LS-SVM models. 

2.5. Different Calibration Models 

Different calibration methods were used for a better prediction of TAA in barley leaves under 

herbicide stress. Latent variables (LVs) were eigenvectors which were extracted during the building of 

the PLS model. Using LVs as the direct inputs of the PLS and LS-SVM models, the LV-PLS and 

LV-LS-SVM models were built. Based on the variables selected by SPA and RC, additional four 

different calibration models were developed, including SPA-PLS, RC-PLS, SPA-LS-SVM and 

RC-LS-SVM. The best model was achieved according to the prediction performance of the above 

mentioned calibration methods. 

3. Results and Discussion 

3.1. Results of Full-Spectral Models 

Figure 1 shows the original visible/near infrared reflectance spectra of 75 barley leaves. The trends of 

all samples with different herbicide concentrations were quite similar by visual inspection. There 

was a significant absorbance at around 680 nm caused by chlorophyll. The statistics of TAA in 

calibration and validation sets are shown in Table 1. Different PLS models were developed to find 

the optimal preprocessing methods. As the above-mentioned performance indicators, the correlation 
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coefficients (r) and root mean squares error of prediction (RMSEP) were used to decide the quality of 

the calibration model.  

Figure 1. The original Vis/NIR reflectance spectra of barley leaves. 

 

Table 1. Statistics of TAA in calibration and validation sets. 

Sample Set Sample No. Range (mg/g DW) Mean (mg/g DW) Standard deviation (mg/g DW)

Calibration 50 4.720–10.382 6.727 1.521 

Validation 25 4.728–10.250 6.723 1.525 

All 75 4.720–10.382 6.726 1.512 

Table 2 includes the prediction results of TAA in validation set by the PLS models with eight 

preprocessing methods. A full cross-validation was applied during PLS calibration. Different latent 

variables (LVs) were used in PLS models related with different spectral preprocessing methods. 

The optimal PLS model was achieved by Raw spectra with r = 0.879 and RMSEP = 0.751. The next 

best PLS model was the de-trending spectra based model. Raw and de-trending were considered the 

optimal preprocessing methods in this study and were used in the further analysis. 

Table 2. The prediction results of TAA in validation set by the PLS models with full-spectrum. 

Pretreatment LV r RMSEP Bias Slope Offset 

Raw 6 0.879 0.751 −0.098 0.902 0.559 

SG 6 0.868 0.790 −0.144 0.886 0.622 

SNV 4 0.821 0.876 −0.026 0.783 1.432 

MSC 4 0.814 0.893 −0.030 0.776 1.475 

1-Der 6 0.823 0.866 0.031 0.769 1.582 

2-Der 1 0.497 1.306 0.067 0.294 4.815 

De-trending 6 0.875 0.759 −0.141 0.867 0.751 

DOSC 1 0.835 0.909 −0.097 0.906 0.537 

On the other hand, the prediction results by the PLS models with the full-spectrum data were not so 

good, with none of the correlation coefficients of these prediction results exceeding 0.9. A possible 

reason was that the full-spectrum models contained too many variables (601), and some uninformative 

ones inevitably weakened the prediction performance of the models. Hence, further improvement 
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should be done to give a smaller number of variables which carry the useful information to build more 

sensitive models. 

3.2. Selected EWs by SPA and RC 

As mentioned above, SPA and RC were used for the selection of EWs, and the optimal preprocessing 

methods were also taken into consideration. In SPA, the maximum number of selected variables was set 

as 30 according to experience and previous literature [22]. Based on experience and preliminary studies, 

there were two basic principles using RC: (1) the absolute RC value of selected EWs should be larger 

than certain threshold value, and (2) these selected EWs should at certain peaks and valleys of the 

regression coefficient curve plot [20]. Therefore, the threshold value was settled as ±4 in the RC analysis. 

The values of the regression coefficient which indicated the contribution of spectral (400–1,000 nm) to the 

calibration model were shown in Figure 2. Some obvious peaks and valleys could be found at certain 

wavelengths which were selected as the effective wavelengths. Table 3 shows the effective wavelengths 

which were selected by SPA and RC with two preprocessing methods, and the wavelengths selected by 

SPA were ranked in the order of importance. 

Figure 2. Selected effective wavelengths by regression coefficients. 

 

Table 3. The selected EWs by SPA and RC. 

Pretreatment Methods No. Selected EWs/nm 

Raw SPA 6 716, 976, 684, 982, 409, 407 

RC 8 409, 959, 968, 976, 982, 985, 988, 992 

De-trending SPA 7 747, 724, 888, 995, 415, 897, 922 

RC 11 403, 409, 897, 924, 934, 964, 968, 976, 981, 986, 989 

3.3. Comparison of Six Calibration Models 

Four different models were developed using the selected EWs by SPA and RC. Taking the selected 

LVs as direct inputs, two kinds of calibration models were built. In this study, these six linear and 

non-linear calibration models were developed to determine the TAA in barley leaves. Table 4 shows the 

calibration and validation results of the six models.  
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Compared with the above models, the PLS models achieved acceptable results in general. The 

performance of the LV-PLS and LV-LS-SVM models was better than that of other models in this study, 

which demonstrated that latent variables included more useful information for the determination of TAA 

content in barley leaves. The best prediction performance was achieved by the LV-LS-SVM (Raw) 

model, and the correlation coefficient and RMSEP in validation were 0.937 and 0.530. Comparing with 

the SPA-PLS model and the PLS model with full-spectrum, for raw spectral the correlation coefficient 

decreased by 0.02%, but the variables decreased by 99%; for de-trending spectral the correlation 

coefficient increased by 0.65%, while the variables decreased by 98.84% at the same time. The results 

indicated that the selected wavelengths carried most useful information of full-spectral, which was 

important for simplifying the model and developing portable instruments. On the other hand, the 

effective wavelengths selected by SPA performed better than those chosen by RC in this study, probably 

because the effective wavelengths selected by SPA were minimally redundant. 

Table 4. The prediction results of total amino acid (TAA) content in barley leaves by 

different models. 

Models Pretreatment LV/EW/(γ, σ2) 
Calibration Validation 

rc RMSEC rv RMSEP

LV-PLS Raw 5/-/- 0.928 0.562 0.935 0.551 

De-trending 4/-/- 0.935 0.535 0.929 0.558 

SPA-PLS Raw 5/6/- 0.866 0.754 0.879 0.717 

De-trending 5/7/- 0.905 0.642 0.880 0.757 

RC-PLS Raw 3/8/- 0.693 1.085 0.625 1.205 

De-trending 4/11/- 0.880 0.716 0.862 0.779 

LV-LS-SVM Raw 6/-/(68.12, 271.15) 0.935 0.540 0.937 0.530 

De-trending 6/-/(8.91 × 106, 1.21 × 107) 0.936 0.533 0.930 0.309 

SPA-LS-SVM Raw -/6/(1.16 × 106, 4.61 × 105) 0.869 0.744 0.872 0.737 

De-trending -/7/(1.11 × 106, 4.74 × 105) 0.906 0.638 0.877 0.776 

RC-LS-SVM Raw -/8/(2.06 × 106, 1.19 × 104) 0.837 0.827 0.360 1.553 

De-trending -/11/(6.66, 45.84) 0.940 0.528 0.886 0.701 

4. Conclusions 

PLS and LS-SVM models were successfully developed from the Vis/NIR spectra for the fast 

determination of total amino acid (TAA) in barley leaves. This was important as a physiological 

indicator in crops during plant growth and herbicide stress. Raw and de-trending methods were the 

optimal preprocessing methods by the PLS models. The LV-LS-SVM models with Raw spectra 

achieved the best prediction performance for the validation set with r = 0.937 and RMSEP = 0.530. The 

results of this study indicated that NIR spectroscopy could be used for the determination of TAA content 

in barley leaves. The RC and SPA methods provided helpful approaches to determine the effective 

wavelengths, which was useful for the development of portable instrument or sensors for plant growth 

monitoring. Considering the limitation of samples used in this specific study, the results indicated the 

feasibility of using NIR spectroscopy to detect TAA in barley leaves under herbicide stress. More leaf 

samples with different growth stages and barley varieties would be taken into consideration to expand 
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and develop more stable and robust models. This study supplied a new approach for the fast and accurate 

detection method of physiological parameters of barley growth. 
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