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Abstract: The work reported on this paper describes a new methodology implementation 

for active structural health monitoring of recent aircraft parts made from carbon-fiber-

reinforced polymer. This diagnosis is based on a new embedded method that is capable  

of measuring the local high frequency impedance spectrum of the structure through  

the calculation of the electro-mechanical impedance of a piezoelectric patch pasted  

non-permanently onto its surface. This paper involves both the laboratory based E/M 

impedance method development, its implementation into a CPU with limited resources as 

well as a comparison with experimental testing data needed to demonstrate the feasibility 

of flaw detection on composite materials and answer the question of the method reliability. 

The different development steps are presented and the integration issues are discussed. 

Furthermore, we present the unique advantages that the reconfigurable electronics through 

System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end 

of this article, we demonstrate the capability of a basic network of sensors mounted onto a 

real composite aircraft part specimen to capture its local impedance spectrum signature and 

to diagnosis different delamination sizes using a comparison with a baseline.  
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1. Introduction 

The constant integration of composite materials into aircraft structures [1] makes maintenance and 

flaw detection more crucial than ever before for safety reasons and failure prognostics. Unlike metallic 

alloys, composite structures show after energetic impacts delamination defects without any external 

visible signs [2], which makes the traditional visual inspection method totally inappropriate. Moreover, 

the fact those carbon composite materials are dielectric makes widespread inspection techniques  

based on eddy current useless. The complex intrinsic nature of these materials makes conventional 

ultrasound nondestructive inspection techniques time consuming and thus very expensive to set on 

large scale areas [3]. 

Therefore, in order to monitor these kinds of structures, we have implemented a promising 

technique called electromechanical impedance measurement into a real-time reconfigurable electronics 

platform [4]. The aim is to detect and localize delaminations and disbonds in large areas using 

piezoelectric patches pasted onto the structure’s surface. The proposed technique is non-intrusive and 

is easy to setup. By analyzing the electromechanical impedance of the PZTs we are able to measure the 

high-frequency local impedance spectrum of the structure, which is highly sensitive to incipient 

damage [5]. By comparing this measure to a baseline value we are capable to detect any delamination 

and disbond flaws.  

2. Methodology  

Most of the techniques used in structural health monitoring are based on guided elastic waves. 

When generated in a host structure, some guided elastic waves such as Lamb waves present the unique 

advantage of being able to travel long distances with a minimal energy loss [6]. Lamb waves are also 

called plate waves because they have the ability to probe all the medium thickness surfaces where they 

propagate. This is only possible when their wavelengths are comparable to the host structure thickness. 

By knowing the time of flight (TOF) of theses waves and by a temporal identification of the 

unexpected echoes that are generated by flaws, we are capable to calculate and localize its position. 

Thus, the combination of three nodes is enough to locate the defect [2].  

However, because of the high propagation speed of these waves and their high frequency, these 

methods need a lot of data processing which makes them time consuming on a CPU with limited 

resources. In addition, experience shows that some areas such as ribs and stiffeners (cf. Figure 7(a)) are 

very difficult to probe using a rational number of sensors [7]. 

Vibration sensors and strain sensors are widely used in aviation industries to monitor vibration levels 

and frequency spectra at critical areas. Eurocopter, one of the main helicopter manufacturers has been 

using accelerometers for a long time to monitor the main rotor rotation and the blades’ integrity [8]. The 

presence of incipient damage or rotation anomalies may be inferred from changes in the vibration 

signature. Based on the same technique, a data logger system permanently attached to an Airbus 
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A400M rotating blade was developed by Ratier-Figeac, an aircraft components manufacturer 

associated to the French CNRS [9,10], to perform a real time modal analysis in order to monitor 

eventual damages in the blades. However, this method is only efficient in the case where dominant 

harmonics are always present during normal operation, as the damage diagnosis is based on the 

appearance of new harmonics or shifts of the existing ones, which indicates that changes occurred in 

the structure. In addition, the main disadvantage of vibration analysis is its incapability to localize 

precisely an eventual damage. 

In the other hand, electromechanical (E/M) impedance-based structural health monitoring has 

shown quick success for detecting incipient damage using relatively cheap sensors. The concept was 

primarily used for non-destructive inspection [11–13] and these studies highlighted the differences 

between the electromechanical impedance technique and the modal analysis technique. Since that time 

many studies applied to airplanes [14,15], military helicopters [16] and other structures showed the 

accuracy of this technique. Generally used at high frequencies (hundreds of kHz and less of MHz) [17,18] 

to extract a relevant signature, the electromechanical impedance technique is therefore sensitive 

enough to detect minor damages.  

2.1. Principle of the Electromechanical Impedance Inspection Technique 

According to the piezoelectricity equations, the 1D piezoelectric patch admittance model  

(Equation (1)) is directly linked to the stiffness of the host structure where the sensor is pasted [19,20]. 

Therefore, the electromechanical impedance of the PZT patch could be considered as the indicator of 

the structure integrity: 

  

       
            

  
             

                     
   (1) 

where k31 is the electro-mechanical coupling factor of the PZT, C0 is the capacitance of the sensor; 

Kstructure and KPZT are respectively the stiffness of the host structure and the stiffness of the sensor itself. 

Because the high frequency spectrum is much more sensitive to small damages than lower frequencies, 

small PZT patches with a high resonance first mode are more suited to E/M impedance techniques.  

2.2. Conventional Realization of the Method 

The electromechanical (E/M) impedance method is an emerging and powerful technique that is 

based on the measurement of the complex impedance ZPZT (jω) of a piezoelectric patch pasted onto a 

host structure to detect mechanical flaws.  

The feasibility and the strength of this method was proven in the literature for concrete  

structures [21,22] and for different alloys [23] using a piece of laboratory impedance measurement 

equipment called an impedances analyzer (cf. Figure 1). The results presented in Figure 2 were saved 

using an Agilent 4294A impedance analyzer. The sensors are made from PZT-5H material and are 

pasted onto a plate of 175 cm × 80 cm × 3 mm dimensions, made from Al2024 aeronautics aluminum 

certified material. The results show the different responses recorded for the same structure when it was 

healthy and when the different cracks were introduced. We can easily observe the spike amplitude 

differences between the plate with one crack and with two cracks.  
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Figure 1. (a) Experimental measurement test bench based on an impedance analyzer 

Agilent 4294A. (b) Measurement method principle. (c) Photo of the piezoelectric patch, 

PZT 5H material, 10 mm diameter, 1 mm thickness.  

  

(a) (b) (c) 

Figure 2. Experimental measurement results recorded using the Agilent 4294A for the 

same specimen (baseline, and after the introduction of one crack and two cracks). The 

specimen used for the test is made from an Al2024 certified aeronautics material.  

 

The impedance analyzer uses pure tone excitation sine waves of different frequencies with fixed 

numbers of cycles and then measures the sensor response signal. Using a complex sine correlation 

algorithm implemented in an analog circuit, the impedance analyzer identifies the real and imaginary 

parts of the probed sensor [24]. This method is time consuming, needs an expensive investment and is 

unsuitable for an embedded application such as implementation on an airplane.  

3. Implementation of the EMI Inspection Technique Using a Novel Method  

3.1. Test Bench  

To make this promising technique implementable, we propose a novel method based on the 

measurement of the current and voltage sensor response in the time domain to a wideband linear chirp 
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excitation signal and then apply a fast Fourier transform to obtain the complex impedance. The 

calculation of this impedance is based on the schematic of Figure 3(a).  

Figure 3. (a) Experimental measurement circuit. Rc = 10 Ω. (b) Test bench setup: An 

Agilent 33220A arbitrary waveform generator monitored by a central computer over an 

USB VISA protocol, a PCI National instrument acquisition card of 2.5 Msps. 

 

(a) (b) 

For the excitation signal, we use a waveform generator (Figure 3(b)) a special linear chirp 

developed by Giurgiutiu and al [25] that can be synthesized using this general equation: 

 
          

         
  

  
   

  

 
   

   With       (2) 

A = 10 V is the amplitude of the signal; it sweeps the bandwidth Δf equal to 1.2 MHz centered at f0 

equal to 600 kHz during the time delay T of 5 s. 

Using the simple circuit presented in Figure 3(a) we apply the excitation signal to the PZT patch 

presented in Figure 4 and measure its current response through the resistance Rc. This should be small 

(~Ω) to not influence the resonance quality factor of the sensor. 

Figure 4. (a) Chirp: zoom on temporal signal (b) Chirp: Spectral response [0–1.2 MHz].  

  

(a) (b) 

The measurements with the acquisition card (cf. Figure 3(b)) of the excitation voltage applied to the 

piezoelectric patch VPZT (t) and measurement of the current IPZT (t) through the resistance Rc allow 

after a fast Fourier transform the calculation of the complex electro-mechanical impedance of the 

sensor (Equation (5)): 
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(4) 

 

 
(5) 

3.2. Validation of the Method: Detection of Delamination in Composite Structure Skins 

Using the data presented in Figure 5, we plot the modulus of the complex sensor’s impedance by 

applying Equation (6) and we compare it to the measured |ZPZT (jω)| using a calibrated impedance 

analyzer Agilent 4294A (cf. Figure 1(a)):  

 
          

            
             

 

            
             

 
 

(6) 

Figure 5. (a) VPZT (t): Voltage response of the PZT patch to a chirp of 5 s going from 0 Hz 

to 1.2 MHz (b) IPZT (t): current response of the PZT patch to a chirp of 5 s going from 0 Hz 

to 1.2 MHz (c) VPZT (f) = FFT[VPZT (t)] Voltage spectral response of the PZT to the chirp 

(d) IPZT (f) = FFT[IPZT (t)] current spectral response of the PZT to the chirp. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Compared to the data acquired using the Agilent 4294A, the calculated impedance represented in 

Figure 6 shows many ripples at the edges of the acquisition interval. Theses ripples fortunately appear 

above 1.2 MHz, which has no consequence for the impedance calculation.  
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Figure 6. Comparison between the calculated impedance using our experimental setup and 

the measured one using an Agilent 4294A impedance analyzer. Notice the typical 

piezoelectric responses at 200 kHz and 240 kHz. It characterizes respectively the resonance 

and anti-resonance. The unwanted ripples are due to the nature of the spectral response of 

the applied chirp. 

 

To demonstrate the feasibility of delamination detection in composite aircraft structures using our 

developed method, we artificially introduced three defects located at different zones using a calibrated 

impact machine. The impacts were applied from the upper face of the structure. The sensors presented 

in Figure 1(c) were pasted after the impact tests onto the upper side using a phenyl salicylate 

(C13H10O3) polymer that offers the unique advantage of polymerizing at 40 °C and depolymerizing at 

60 °C, which is lower than the PZT material’s Curie temperature. In other words, we can stick and 

remove our sensors without affecting their piezoelectric proprieties. Moreover, measurements  

(Figure 7(b)) show that the phenyl salicylate polymer offers the same coupling between the sensor and 

the structure as cyanoacrylate glue. As presented in Figure 7(a), an aircraft specimen of 49.5 cm × 46 cm 

was extracted from the right wing panel of an ATR72.  

Figure 7. (a) Specimen of real aircraft structure part extracted from a right wing panel of 

an ATR72. (b) Influence of the pasting method on the PZT impedance response. The tests 

were done using cyanoacrylate glue and phenyl salicylate, respectively.  
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A C-scan using a commercial NDT tool was performed to check the integrity of the structure and to 

quantify the artificially introduced damages’ sizes. The damage D4 is situated deep inside the structure 

and is totally invisible from the upper or bottom side. The damages D3 and D2 are visible from the 

bottom side, while still totally invisible from the upper side. For high energy impacts, this phenomenon 

is typical behavior of composite structures (cf. Figure 8).  

Figure 8. C-scan of the introduced delaminations, D2 area = 505 mm², D3 = 420 mm²,  

D4 = 302 mm² and photos of the upper and bottom face of the structure with mounted sensors.  

 

Figure 9. (a) Real part of the impedance measurement for each sensor. (b) Zoom onto 

lower frequencies [10 kHz–100 kHz]. (c) Zoom onto the sensors resonance frequency  

[100 kHz–300 kHz].  

 

(a) 
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Figure 9. Cont. 

  
(b) (c) 

As shown in the literature [17,26,27] the electromechanical impedance technique is, contrary to 

modal analysis, efficient at higher frequencies (10 kHz–600 kHz). In this range, the wavelength of the 

excitation is very small, which allows for an accurate detection. The real part impedance spectra of the 

PZT sensors show different responses at many intervals. These differences seem to be more significant 

at lower frequencies but also around the first resonance and anti-resonance first mode of the 

piezoelectric sensor (cf. Figure 9). In this interval, we can clearly notice a peak shift and amplitude 

change. It is also interesting to see that for the reference signature and for the D4 response the signals 

have two main spikes between [100 kHz, 300 kHz] while the others have only one. 

3.3. Limits of the Proposed Method  

Using the test bench presented in Figure 4(b) we demonstrated the feasibility of PZT impedance 

reconstruction through the measurement of the consumed current and its voltage response. Although, 

the cost is low, the presented test bench setup it still heavy and unsuitable for a real integration. The 

method is also time-consuming because of the FFT that we used to perform the complex impedance 

calculations. A more integrated system should therefore be developed to avoid the use of laboratory 

instruments. 

4. Toward a System on Chip (SoC) EMI integration  

4.1. Implementation of the Method into the Embedded System  

After we demonstrated the feasibility of E/M impedance calculation using a linear chirp excitation 

signal, we propose to miniaturize the test bench presented in Figure 3(b) using an embedded system. 

The the Agilent 33220A laboratory instrument was replaced by a programmable single scan waveform 

generator chip, the AD5932 manufactured by Analog Devices capable of providing a pure sine wave 

output signal with a linear frequency sweep increment up to 25 MHz [28].  

The PCI NI acquisition card plus a part of the algorithm that runs to the computer of Figure 4(b) is 

replaced by a reconfigurable system-on-chip (PSoC 5) provided by Cypress © to perform the signal 

conditioning, the acquisition and finally the impedance calculation (cf. Figure 10). The PSoC5 actually 

includes a reconfigurable analog part composed of comparators, operational amplifiers, mixers, 

transimpedance amplifiers two SAR and one sigma delta analog two digital converter plus other 
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analog parts. It also includes an ARM CORTEX 32 bits CPU and a complex programmable logic 

device unit that could be programmed in Verilog [29]. Many communication modules and protocols 

like the USB full speed are also provided. The programming of the chip includes C language,  

Verilog [29] as well as analog schematic drawing.  

Figure 10. Synoptic of the developed E/M impedance calculation technique. Note that R is 

equal to 10 Ω; ΔT is the time delay between the excitation signal and the sensor response. 

 

Some integration methodologies were already described in the literature [26]. They generally use a 

very powerful solution based on Digital Signal Processing (DSP) to perform the impedance 

calculation. However, this solution is not optimal for embedded applications because of the high power 

consumption of DSPs and the scaling of the system which should remain low. The integration of the 

EM impedance was initially performed using the hardware presented in Figure 11(a). The complete 

system has a size of 15 cm–10 cm. After a miniaturization step the system scaling was further reduced 

to 7 cm × 4 cm. 

4.1.1. Waveform Stimulus Generation  

As presented in Figures 10 and 11, the applied stimulus voltage signal is generated by the AD5932, 

which was programmed using an SPI protocol to output a sine wave signal going from 1 kHz to  

400 kHz with a step size of 1 kHz. The frequency increase is automatic and occurs after each 5.1 ms. 

Finally, the excitation signal lasts 2.05 s. In opposed to the chirp generated using the Agilent 33220 

presented in Figure 5, the excitation signal generated by the AD5932 presents a non-continuous 

frequency variation (cf. Figure 12(a)). Because of the implemented incrementation of 1 kHz, the 

spectral response has a spiked shape (cf. Figure 12(c)).  
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Figure 11. (a) Photo of the implemented hardware. (b) and (c) are respectively the PSoC5 

card and the analog conditioning card that includes an AD5932, a charge amplifier, an 

analog filter and switching circuits. The two cards present the miniaturization of the 

complete hardware presented in (a). 

 

(a) 

 

(b) 

 

(c) 

Figure 12. (a) Zoom onto the excitation signal. Notice that we can distinguish after each  

5 ms the incrimination of the frequency. (b) Spectral response of the excitation frequency. 

(c) Zoom onto the spectral response of the excitation signal between 186 kHz and 198 kHz. 

Notice that the spikes are equidistant and have the same amplitude. 
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4.1.2. Impedance Calculation Using the System on Chip  

Unlike for the previous method presented in the Figure 4(b) that is based on laboratory instruments 

and on a computer with a powerful CPU, the calculation of the impedance in this case should not be 

based on a fast Fourier transform to meet the specifications of embedded systems. Because of the 

limited resources of the CORTEX M3 CPU included in the PSoC, the impedance is calculated using 

the polar representation of the current and the voltage for each incremented frequency:  

 
                       

            

                       
          

            
          

           
  

(7) 

 

(8) 

(9) 

 

Using the same circuit presented in Figure 4(a), we measure           using a synchronous peak 

detector presented in Figure 13 to identify for each frequency increment the maximum amplitude 

         of sensor response. When the output of the peak detector reaches a low state (cf. Figure 14), 

it triggers an ADC that acquires the value of the signal peak amplitude. Finally, the current response 

modulus is calculated for each frequency using this equation: 

           
       

  
 (10) 

where          is the maximum amplitude of the acquired signal and Rc = 10 Ω the value of the 

measurement resistance presented in Figure 4(a). According to circuit mesh method, the sensor voltage 

response           is calculated by a simple subtraction for each MSB OUT front (triggered when the 

excitation voltage is high) between the excitation signal that is delivered by the AD5932 and the 

measured        . 

The synchronous peak detector comprises a down-mixer acting as a sample and hold block 

followed by a comparator with approximately 10 mV of hysteresis. The sample and hold induces a 

time delay on the input signal. This signal is afterwards compared using the hysteresis comparator to 

the original signal. As presented in Figure 13, the time delay created by the down-mixer is fixed using 

a selected sample clock. Its value is critical because it fixes the resolution of the detection. A clock that 

is too fast will create erroneous triggers due to oscillations at the comparator output (cf. Figure 14(a)). 

However, the peaks are missed when the sampling clock is too slow (cf. Figure 14(b)).  

Figure 13. Schematic of the synchronous peak detector. 
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Figure 14. Experimental results acquired using an oscilloscope for the implemented peak 

detector. Notice that the clock is fixed to 4MHz for the three experimentations. (a) The 

frequency of the injected signal is too slow (8 kHz) for the used clock. Notice the 

oscillations of the comparator. (b) The injected signal is too fast. Notice that its frequency 

(2 MHz) is half the used clock frequency. The detection is totally erroneous. (c) Correct 

detection due to a ratio of 50 between the injected signal and the master clock. 

 

(a) 

 

(b) 

 

(c) 

The correct clock should be fixed according to the frequency of the measured signal. As presented 

in Figure 14(c), the correct ratio was fixed at 50f, where f is the frequency of the input signal. The  

10 mV hysteresis of the comparator is needed to ensure that noisy signals will not cause an oscillation 

in the comparator output.  

Even if it is not used, the phase shift between the voltage and the current is calculated easily. For 

each frequency increment, the AD5932 signal generator emits a square signal through its MSB OUT 

pin that is synchronized with the generated signal and which has the same period of the pure sine 

generated wave. Therefore, to determine the phase of the current IPZT we only have to apply an XOR 

operation between the square signal generated by the peak detector and the MSB OUT signal  

(cf. Figure 15(c)). The XOR allows the determination of the ΔT between the excitation signal and the 

sensor response. It is presented in Figure 15(c). The phase is calculated using this simple relation: 
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Figure 15. (a) Amplitude measurement stage: the peak detector output triggers the ADC 

acquisition. (b) Frequency measurement feedback stage measures the period of the MSB 

OUT signal that is generated by the AD5932. It allows a period precision control of  

0.66 ns. (c) Phase calculation using XOR gate. The minimum measurable ΔT between the 

excitation signal and the measured one is equal to 0.25 ns. 

 

(a) 

 

(b) 

 

(c) 

To have a feedback of the AD5932 applied frequency, we used a 24 bits resolution counter 

triggered by the bus clock of the chip (48 MHz) which gives a resolution of 2Hz (cf. Figure 15(b)). The 

acquired data is afterward stored into a dynamic array situated in the flash memory of the PSoC5 and 

transferred to a computer using an USB connection where Matlab is installed.  

Figure 16. (a) VPZT(f): Measurement of PZT voltage amplitude after each frequency 

incrementation. The measurement was performed between 0 and 400 kHz with a step of 

1kHz (b) IPZT(f): Measurement of PZT current response amplitude for each frequency 

incrementation between 0 and 400 kHz. 
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For an excitation signal going from 1 kHz to 400 kHz with a step of 1 kHz (cf. Figure 12), we 

record 399,999 acquisition points that are represented in Figure 16. Using Equation (9) we calculate 

the modulus of the impedance and we plot it in Figure 17, where the result is compared to the one 

measured using the Agilent 4294A impedance analyzer. Notice that our embedded proposed method is 

quite accurate; we register some erroneous points due some unexpected oscillation output of the 

comparator stage into the synchronous peak detector.  

Figure 17. Comparison between the calculated impedance using signals of Figure 9(a,b) 

setup and the one measured using an Agilent 4294A impedance analyzer.  

 

The complete implemented EMI calculation method with the stimulus waveform control code gives 

a total occupation of 36.9 kbytes which corresponds to 14.1% from the total available PSoC Flash 

memory. The total used SRAM is 4.7kbytes, which is only 7.3% of the total available cells.  

4.2. Flaw Detection Using the Embedded EMI on Aircraft Composite Structure Stiffeners  

In order to demonstrate the detectability of mechanical flaws in composite structures stiffeners using 

the E/M impedance method we extracted from a wing front spar a part of 80 cm × 64.5 cm × 0.8 cm size 

that includes two ribs of 4 cm (cf. Figure 18). The idea is to detect damages insides these critical zones 

using sensors pasted onto the external surface of the structure. In other words, the sensors have no 

direct contact with the stiffeners.  

Figure 18. Wing front spar specimen (a) Front side view of the structure with PZT A at  

2 cm from the rib, PZT B pasted onto the rib and PZT C at 3 cm from the rib (b) back side 

of the structure. 
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As before, our diagnosis principle is based on a comparison between a healthy response considered 

as the baseline and other responses captured after damaging events. As seen in Figure 18(a) we used 

three PZT patches pasted onto the front side of the structure at 2 cm above the stiffener, at its position 

and finally at 3 cm under its position. Two damages were artificially introduced using a miniature 

circular saw to simulate cracks. We captured the sensors’ response after and before the introduction of 

each defect. As depicted in Figure 19, the first crack is at 3 cm from the skin and has a size of 2 cm 

and the second one has a size of 3.5 cm and is at 0.5 cm distance from the structure skin. All the 

damages were introduced before the attachment of the sensors. The idea behind this to make a system 

that is easily mountable and removable. Because of certifications issues the idea is to manufacture a 

system cable to probe some critical parts in a plane on the ground after a fixed hours of flights. 

Although, we focus our studies on a narrow band of frequency [230 kHz, 300 kHz] to reduce the 

amount of the processed data and thus makes the inspection time more efficient. The measurements 

were performed 10 times for each sensor. If we compare the responses of each PZT at the interval 

range going from 220 kHz to 300 kHz, we notice that the impedance spectrum responses of the sensors 

A and C stay almost unchanged after and before the introduction of the two damages (Figure 20). 

However, the responses of the PZT B show frequency shift between 250 KHz and 270 KHz. We also 

notice that spectral impedance value of the PZT B is linked with the health of the structure as in the 

case of delaminations.  

Figure 19. (a) Healthy wing front spar. (b) The same structure with one introduced crack 

into the second stiffener. (c) The same stiffener with a second introduced crack.  

 
(a) (b) (c) 

Figure 20. Real part impedance spectrum [220 kHz; 300 kHz] for the healthy signature, 

the response with one flaw and the response with two damages (a) superposed responses 

for PZT A. (b) Superposed responses for PZT C. (c) Superposed responses for PZT B.  
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Figure 20. Cont. 

 

(c) 

5. Conclusions/Outlook  

The work reported in this paper has shown how with a basic PZT sensor we can detect damages in 

aircraft composite materials using an inexpensive method through the E/M impedance spectrum analysis. 

We demonstrate the feasibly of structural health monitoring using non-permanently attached PZT 

patches and we presented the unique advantage and flexibility that the programmable system-on-chip 

technology provides to the E/M impedance method integrability. However, to cover larger areas and 

monitor a complete aircraft wing additional work will need to be carried out in order to reduce the 

system size and make this promising technique suitable for larger sensor networks. The challenges will 

be focused in the efficiency of the method for thicker zones of the planes ~10 cm. The combination of 

the E/M impedance technique with another detection method based on modal frequencies analysis will 

also be considered.  
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