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Abstract: This paper presents a novel approach for indoor acoustic source localization
using sensor arrays. The proposed solution starts by defining a generative model, designed to
explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An
optimization approach is then proposed to fit the model to real input SRP data and estimate
the position of the acoustic source. Adequately fitting the model to real SRP data, where
noise and other unmodelled effects distort the ideal signal, is the core contribution of the
paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the
parameters of the model are included, enforcing the number of simultaneous active sources
to be limited. Second, subspace analysis is used to filter out portions of the input signal that
cannot be explained by the model. Experimental results on a realistic speech database show
statistically significant localization error reductions of up to 30% when compared with the
SRP-PHAT strategies.

Keywords: acoustic localization; microphone array sensors; sparse modeling; optimization
techniques

1. Introduction

The development and scientific research in perceptual systems has notably grown during the last
decades. The aim of perceptual systems is to automatically analyze complex and rich information taken
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from different sensors. These systems stem from basic sensor technologies, reaching the knowledge
frontier in signal processing and pattern recognition research areas.

On top of perceptual systems, the idea of using sensors to analyze the real world has emerged in
different scientific disciplines such as “ubiquitous computing” [1], “smart rooms” [2] or “intelligent
spaces” [3]. All these disciplines lay stress on the idea of systems with interaction capabilities that can
analyze human activities and provide services.

A basic but important milestone inside these disciplines is the development of sensor technologies
able to localize humans in indoor environments. Localization of humans has a tremendous potential
impact in diverse applied fields, opening new ways in how humans interact with machines. One
important factor in indoor localization is the user awareness of the sensors used. Non-invasive
technologies are preferred in this context, so that no electronic or passive devices are to be carried
by humans for localization. The two non-invasive technologies that have been mainly used in indoor
localization are those based on video systems and acoustic sensors.

Video systems provide very rich information at a low cost on the sensor side. However, video analysis
is a complex problem and needs a lot of effort to build robust and reliable systems. In recent years, there
are many publications focused on video-based indoor localization systems for humans [4,5], robots [6],
and object recognition systems [7].

Acoustic sensors give also very rich information as humans communicate mainly with speech. As in
video, there is also a considerable amount of publications focused on obtaining the exact position of any
active acoustic source in a scene [8,9]. Video and audio technologies are in fact very complementary in
many ways [10].

This paper focuses on audio-based localization in a very general scenario, where unknown wide-band
audio sources (e.g., human voice) are captured by a set of microphone arrays placed in known positions.
The main objective of the paper is to use the signals captured by the microphone arrays to automatically
obtain the position of the acoustic sources detected. Especially relevant in practice are the methods based
on computing the Steered Response Power (SRP) [11] of the signals captured in microphones arrays.
These approaches have proved to be successful for localization in reverberant and noisy scenarios [12].

This paper proposes a simple generative model to explain SRP measurements in environments
equipped with any combination of microphone arrays. The main contribution of the paper is to use an
optimization approach to fit the generative model to noisy SRP data, exploiting the fact that only a few
speakers are expected to be active at the same time. This simple idea is modeled with sparse constraints
in the optimization cost, and combined with subspace filtering. The paper shows that this model-based
approach can be used to notably improve the localization results of the state-of-the-art methods based
on SRP-PHAT. Although this proposal is developed and evaluated for speech signals, the authors believe

that it is general enough to be easily extended to other wideband and narrowband acoustic signals.

1.1. Paper Structure

The paper is structured as follows. In Section 2 we provide an extensive study of the state-of-the-art
in acoustic source localization and optimization methods. Section 3 describes the proposed generative

model and Section 4 deals with the optimization strategy to fit the model to real data. The experimental



Sensors 2012, 12 13783

evaluation is detailed in Section 5, and Section 6 summarizes the main conclusions and contributions of
the paper and gives some ideas for future work.

2. State of the Art

2.1. Acoustic Source Localization

The acoustic source localization methods are the starting point of other techniques like speech
enhancement using beamforming. Therefore, acoustic source localization has received significant
attention lately as a mode of automatic tracking of persons and as a complement to other existing
alternatives of tracking, e.g., the CHIL (Computer in Human Interaction Loop) project [10].

Many approaches exist in literature and all of them use microphone arrays as a non-intrusive method.
These can roughly be divided in three categories [8,9]: time delay based, beamforming based, and
high-resolution spectral-estimation based methods.

The first methods are based on estimating the time delay of signals relative to pairs of spatially
separated microphones. Assuming uncorrelated, stationary Gaussian signal and noise with known
statistics and not multi-path, the maximum likelihood (ML) time-delay estimate is derived from a
SNR-weighted version of the Generalized Cross Correlation (GCC) function [13]. In a second step,
the time-difference of arrival information is combined with knowledge of the microphones’ positions to
generate a ML spatial estimator made from hyperbolas intersected in some optimal sense [8,9].

An accurate estimation of the time delay is essential for a good performance of this time delay
of arrival (TDOA) methods. Since coherent noise and multi-path due to reverberation are the two
major sources of error in time delay estimation, different approaches have been proposed to deal
with them. A basic method consists in making the GCC function more robust, de-emphasizing the
frequency-dependent weighting. The Phase Transform (PHAT) [13] is one example of this procedure
that has received considerable attention as the basis of speech source localization systems due to its
robustness in real world scenarios [14].

Beamforming based techniques [15] attempt to estimate the position of the source, maximizing or
minimizing a spatial statistic associated with each position. For instance, in the Steered Response Power
(SRP) approach, which is the simplest beamforming method, the statistic is based on the signal power
received when the microphone array is steered in the direction of a specific location. Therefore, the
position of the source is supposed to be consistent with the position corresponding to the maximum
estimated signal power

SRP-PHAT is a widely used algorithm for speaker localization based on beamforming. It was first
proposed in [11] and is a beamforming based method that combines the robustness of the steered
beamforming methods with the insensitivity to signal conditions afforded by the Phase Transform
(PHAT). The classical delay-and-sum beamformer used in SRP is replaced in SRP-PHAT by a
filter-and-sum beamformer using PHAT filtering to weight the incoming signals. In this paper, the term
SRP will be used interchangeably with SRP-PHAT.

The advantage of using PHAT is that no assumptions are made about the signal or room
conditions [16], and this is the reason for the robustness of the SRP-PHAT method in reverberant

scenarios, where the source is unknown. SRP-PHAT is usually defined as a reference standard for
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source localization, because of its simplicity and robustness in reverberant and noisy environments,
being a widely used algorithm for speaker localization [17-21].

The Minimum Variance Distortionless Response (MVDR), also called Capon’s method, is another
beamforming based approach which takes advantage of the estimated signal and noise parameters. These
parameters are used to carry out optimal beamforming techniques in order to minimize the measured
power from noise and sources located in other positions. However, MVDR has a poor performance in
the presence of reverberation, because it introduces a new trade-off between de-reverberation and noise
reduction [22] .

In [23,24], a unified maximum likelihood framework is presented, which is equivalent to forming
multiple MVDR beamformers along multiple hypothesis directions and picking the output direction
which results in the highest SNR [24]. Apparently, it outperforms SRP-PHAT in reverberant real
scenarios.

The spectral estimation based methods, like the popular multiple signal classification algorithm
(MUSIC) [25], exploit the spectral decomposition of the covariance matrix of the incoming signals for
improving the spatial resolution of the algorithm in a multiple sources context. These methods tend to
be less robust than beamforming methods [9], and are very sensitive to small modeling errors.

Unlike SRP and its derivatives, incoherent signals are assumed by MUSIC, but in real scenarios
with speech sources and reverberation effects, the incoherence condition is not fulfilled, making the
subspace-based techniques problematic in practice.

The work presented in this paper uses SRP-PHAT as the base to develop a generative model to explain
real data, and the experimental results are compared against SRP-PHAT.

2.2. Sparse Representation of Signals

Many areas of science share the principle of parsimony as the central criterion: the simplest
explanation of a given phenomenon is preferred over more complicated ones. This brilliant idea has
been recently applied to the representation of signals using overcomplete basis sets, sometimes called
dictionaries in the machine learning discipline. As a difference with respect to traditional basis functions
(e.g., Fourier basis functions), overcomplete dictionaries have more degrees of freedom than those
necessary to represent the signal. The mathematical tool to impose parsimony in the representation of
a signal, when several choices are available, is given by imposing the so-called sparse constraints. The
basic idea is to use the least amount of coefficients to represent a signal with the basis functions. Sparse
constraints, if they are applicable, allow to beat up several theoretical barriers in signal compression and
representation [26,27].

The sparsity is imposed mainly by using optimization approaches, where the [y norm (defined as the
number of non-zero elements in the vector) is the usual way to impose sparsity to vectors [27].

Most of the problems in which sparsity is included using the [, norm are very difficult to solve. Several
methods have been proposed to find sparse representations, including brute force approaches as well as
more computationally efficient approximate methods such as “nonlinear programming” [28], and greedy
pursuit [29-31]. Among all approximate solutions, /; norm based convex relaxations have flourished in

the literature. The Basis Pursuit method [32,33], originally introduced by [34] almost 40 years ago but
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revisited with a profound theoretical study in the past decade, can be highlighted due to its intensive
use in the modern compressive sensing techniques [26,27]. These methods provide very effective
polynomial time algorithms that, under certain circumstances, are even equivalent to the original [, based
problems [27,33].

2.3. Sparse Source Localization

In the last few years, sparse techniques explained above have been applied to the source localization
problem in very different fashions.

In [35] a localization approach based on sensor arrays is proposed. The signal obtained in each sensor
is expressed as a linear combination of an attenuated and phase shifted version of the original and known
signals emitted by the source. This conditions form an overcomplete linear model, where the position
of the sources is given thanks to the sparse constraints. Also in [35] they propose to use singular value
decomposition (SVD) to reduce problem size and filter noise in problems using multiple time samples.

The work presented in this paper includes sparse and SVD decompositions for acoustic source
localization but the objectives (unknown source signals) and the way these techniques are applied are
very different to those of [35]. Our proposal works in the SRP-PHAT acoustic power maps, while [35]
operates at the sensor signal level.

Numerous modifications of the ideas proposed in [35] has been further developed. For example,
in [36] an adaptive algorithm to dynamically adjust both the overcomplete basis and the sparse solution
is proposed. Also, the concept of Compressive Sensing [27] has been used in order to perform a
distributed localization reducing the information transmitted between sensors. Nevertheless, the sparse
source localization algorithms discussed above do not perform well and are not properly tested in real
acoustic reverberant environments due to input signals coherence caused by multipath.

In acoustic environments, sparse [; relaxations are employed to model the room acoustically using
only a reduced number of microphones in [37]. However, only simple rooms (four walls and ceiling)
can be modeled, and a loudspeaker emitting a known sound pattern is required. Using this technique in
a previous training step has been proved to be useful to improve source localization [38].

Recently, a novel technique for source localization in reverberant environments using wavefield sparse
decomposition has been proposed in [39]. However, although it shows promising performance, the
experimental results are only based on simulations and narrowband signals, which makes their approach

not applicable to speech signals, which is our target scenario.

3. Model Proposal

3.1. Notation

Real scalar values are represented by lowercase letters (e.g., 6). Upper-case letters are reserved
to define vector and set sizes (e.g., vector x = (x1,---,xy)' is of size N ). Vectors are by
default arranged column-wise and are represented by lowercase bold letters (e.g., x). Matrices are
represented by uppercase bold letters (e.g., M). The [, norm (p > 0) of a vector is depicted as
I.lps €8 Xl = (Jza|P +--- + ]xN]p)%, where |.| is reserved to represent absolute values of scalars.
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Special cases are the [y norm, written ||.||o and defined as the number of non-zero elements in the vector,

and the /,, norm, written ||.

|o and defined as the maximum value of the vector components. The [y
norm ||.||2 will be written by default as ||.|| for simplicity. Calligraphic fonts are reserved to represent

sets (e.g., R for real or generic sets G).

3.2. Interpretation of the SRP-PHAT Estimations

Assume we have equipped a certain indoor environment with a set of /V different microphone pairs
distributed in some fashion in three-dimensional known positions. All pairs of microphones are described
aselementsinaset? = {py,ps,...,pn}, where p; = (m;, m’;) is composed of two three-dimensional
vectors, m; and m';, describing the spatial location of the microphones in pair j.

The three-dimensional space where acoustic sources are to be localized is discretized using a
finite set of () spatial locations Q@ = {qi,q2,...,qq}, where q; is a three-dimensional vector
A = (G oy Tz -

The classical SRP-PHAT method constructs a statistic srp(qx),qr € Q based on the steered
power received by all pairs of microphones from each spatial location. Simplifying the mathematical
description of the SRP-PHAT formulation of [11] and applying the summation over all microphone
pairs, we can write

srp(ar) =27 Y ¢;(AT(pj, ax)) (D
Vp,EP
where ¢;(AT(p;, qx)) is the generalized cross-correlation (generally applying a PHAT weighting) of the
signals acquired by each microphone in the pair p;, and

1
AT(pj, qr) = - ([fmy — qill — [[m’; — aqil|) (2)

is the difference in arrival times of the audio signal to reach microphones m; and m’;, that is, the required
delay to steer the microphone pair p; to the location q. In Equation (2) ¢ is the sound velocity in air.
Note than in the SRP-PHAT formulation we do not make any assumption regarding near-field/far-field
conditions.

So, Equation (1) shows how the SRP-PHAT power estimation for every location srp(qy) can be
calculated as the sum of the cross-correlation functions for all microphone pairs, evaluated at the
adequate steering delays (full implementation details of SRP-PHAT can be found in [11]). It is thus
expected to see high values of srp(qy) in regions in which active acoustic sources exist.

To provide an easier geometric interpretation, we now restrict the result of the srp(qy) estimations
when only one omnidirectional acoustic source is active at position s = (s, S, s.)", and only one
microphone pair, e.g., pair pj, is located in the environment. The SRP-PHAT power estimation at s can
be calculated as:

srp(s) = 2mc;(AT(pj,s)) (3)

From Equation (3), if we define q; as the locations in Q for which A7(p;,q,) = A7(p,,s), the
corresponding cross-correlation values c;(A7(p;, qp)) will be identical to ¢;(A7(p;, s)), consequently:

srp(qn) = srp(s) if A7T(pj,qn) = A1(p;,s) 4)
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For a microphone pair, it can be easily demonstrated that the geometric place of points q;,, for which
the difference in time delays of arrival to the position of two microphones (A7(p,, q,) in our case) is
equal to a given fixed value (A7(p;, s) in our case), is one of the sheets of a two-sheeted hyperboloid of
revolution, whose foci are located at the microphone locations, as shown in Figure 1(a). If we define H
as all the points q; in Q that belong to the hyperboloid that passes through the acoustic source location
s, the ideal SRP-PHAT power estimation for all points in Q will be:

srp(s)  Vqr € H
0 otherwise

srp(qe) = &)

Equation (5) is correct if we assume that the environment is not reverberant and the array directivity
pattern is perfect (i.e., maximum gain in the steered direction and perfect cancellation in all other
directions). We will address the effect of these simplifications in Section 3.3.

Figure 1. Geometric places with equal srp(qy,) generated for a microphone pair and a single
acoustic source (a) 3D hyperboloid; (b) 3D hyperboloid cut by a plane; (c) Resulting 2D
hyperbola (cutting hyperboloid by a plane).

()

Further simplifying, if we restrict the q; positions to be located in a plane at a given height in the
environment (qx, = zo Vqr € Q), then srp(qs) can be easily represented as an image that can be
interpreted as the scene acoustic power map. In this situation, the place of points q; with power equal
to srp(s) will be the result of intersecting the proper sheet of the hyperboloid of revolution with a plane
parallel to the environment floor at 2, and the generated geometric figure obtained will be a hyperbola.

As an example, if we consider the case of microphone pair p;, composed of
microphones m; = (—f,0,0) and m’; =(f,0,0), and given a time difference of arrival
A7(pj,s) =+ (|lm; — s|| — |m’; — s||) for a speaker position s, the feasible acoustic source locations
an = (z,y, z) € Q are those which satisfy the following expression (from Equations (2)—(4)):

1
AT(pj,qn) = - ([my — qpl| — [lm’; — qul]) = A7(p;,8) (6)
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Condition (6) defines the place of feasible locations qj to be located in one sheet of the following
two-sheeted hyperboloid of revolution (shown in Figure 1(a)):

-G —5=1 @

where a and b are related to the corresponding time difference of arrival A7(p;, s) and the microphones
position through the following expressions:

a = cAT(pj,s)/2 (8a)
b= f? —a? (8b)

Figure 1(c) shows the hyperbola that results from intersecting the hyperboloid with a plane, as shown
in Figure 1(b).

If we add additional microphone pairs, each of them will generate a new hyperboloid/hyperbola, all
passing through the geometric location of the active acoustic source, as shown in Figure 2(a) for the
3D case and Figure 2(c) for the 2D case (cutting the hyperboloids by a plane as shown in Figure 2(b)).
Using additional microphone pairs will allow us to disambiguate the actual position of the acoustic
source, searching in the intersection of all hyperboloids/hyperbolas.

Figure 2. Geometric places generated for two microphone pairs and a single acoustic source
(a) 3D hyperboloids; (b) 3D hyperboloids cut by a plane; (c) Resulting 2D hyperbolas
(cutting hyperboloids by a plane).

(b) (c)

The final conclusion of this section is that, given some simplifications, for every active acoustic source
and every microphone pair, we will see hyperbolic regions of constant acoustic power values in the
acoustic power map generated by the ideal SRP-PHAT estimations. All the contributions for every
acoustic source and every microphone pair will sum up to build the complete acoustic power map for the
given situation.
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3.3. Considerations in Real-World Scenarios

The simplifications established in this discussion (namely, only one omnidirectional acoustic active
source, an ideal directivity pattern for the acoustic sensor array, and a non-reverberant environment) are
far from being admissible in a real world scenario and deserve an additional comment:

e Non-omnidirectionality of the acoustic active source: Previous studies such as [40] and [41]
show that human speakers do not radiate speech uniformly in all directions. The impact of this
assumption in our SRP-PHAT interpretation would lead to hyperbolic regions with different power
estimations, but this effect is also present in the current formulation, as the distance between
the acoustic source and the microphone varies with the source position. The use of the PHAT
transform that whitens the correlation of the input signals alleviates this problem, as the module is
not taken into account.

e Reverberant environments: If the localization system operates in a reverberant environment,
new hyperbolic regions, not initially predicted by just the position of the acoustic source, will
appear. Room acoustic simulation techniques could help in improving the ability to also take
into account these regions [42,43]. These false active regions actually complicate the accurate
location estimation, but the problem is alleviated as more microphone pairs are taken into account:
locations that are not consistent for all microphone pairs will tend to attenuate. As we will see in
Section 5, our proposal is actually efficient in denoising the original SRP-PHAT power map, thus

leading to better results.

e Non-ideal directivity patterns: The microphone array geometry has a profound impact in the
estimation of the cross-correlation functions, as the steered response will perceive energy coming
from locations different from the actual acoustic source [44]. This implies that the acoustic power
map will not be composed of plain hyperboloids/hyperbolas, but of hyperbolic regions spreading
from the ideal hyperbolic trajectories, as will be shown in Figure 3(a), described in the next section.
There are additional considerations that contribute to this spreading effect, related to the fact
that the spatial uncertainty in the correlation evaluation increases as we move further from the
microphone pairs. This will be addressed also in the next section.

To give a real world example, Figure 3(a) shows a real SRP-PHAT image generated by two
microphone pairs (blue and green dots in the center of the image) and a single active speaker located
at the red circle (the higher the power, the darker the color in the map). Analyzing this image, we
can clearly see two high energy, intersecting hyperbolic areas passing trough the speaker location, each
one corresponding to each microphone pair. Obviously, the speaker’s position corresponds to the place
where those hyperbolic areas intersect, as the maximum of the power map is found at this intersection.
In general, the higher the number of microphone pairs used, the better the localization performance, as
more hyperbolic regions contribute to the power map estimation. In Figure 3(b) the ideal hyperbolas
corresponding to each of the microphone pairs have been superimposed to the SRP-PHAT map. The
power map has been calculated at a plane located 61 cm above the microphone locations, which is why

the hyperbolas do not pass between the hyperbola’s foci—the microphone locations.
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Figure 3. Real SRP-PHAT power map generated for a single speaker located in the red circle
with two microphone pairs (blue and green dots). (a) Plain power map; (b) Superimposing
ideal hyperbolas that should be generated by the single speaker.

This example shows us that in real acoustic power maps, the ideal hyperbolic functions are spread
out and blurred, leading to these hyperbolic areas, and that additional hyperbolic areas appear, not
explainable by just the position of the active acoustic source.

Summarizing, all these non-idealities will generate additional artifacts, additional hyperbolic regions
and variations on the standard behavior of these regions in the acoustic power map that are not predicted
by the ideal formulation. These non-idealities should be taken into account if we want our model to be
as precise as possible. Our thesis is that our proposal, even when no developing a fully realistic model,
is powerful enough to extract relevant information given realistic data, as will be shown in Section 5.

3.4. Proposal of a SRP-PHAT Based Generative Model

Taking into account the previous discussion and results, this section proposes a generative model that
is able to explain the acoustic power map generated by SRP-PHAT as a sum of basis functions.

Let us define the set of scalar functions F = {f(s;,,pj,ar)}, Vs; € Q, Vp; € P, with
f : R3*6*3 s R, From this, the general formulation of the proposal can be written as:

stplag) = Y w(si) > f(si,pj ) ©)

Vs;€Q Vp;EP

where sip(qy,) is the model estimation of srp(qy), and the weights w(s;) will be non-zero if there is an
acoustic source in the given position s;, or 0 if otherwise.

The basis functions f(s;, pj, q;) must be designed so that they provide accurate estimations of the
behavior of the real SRP-PHAT value at location q, taking into account that there is an active source at
position s; and that the signal is acquired by the microphone pair p;. This generic formulation allows for
models (basis functions) as complex as required, in principle able to include any of the considerations
described in Section 3.3.

In the experimental work described in Section 5, we are using a relatively simple model that is able
to clearly outperform standard SRP-PHAT results. In our experiments, the basis functions f(s;, p;, qx)
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describe if point q; belongs to the hyperbolic region generated by an acoustic source s; and a given pair

of microphones p;:

1 if [AT(pj,si) — AT(pjyar)| <€ €20

) (10)
0 otherwise

f(si, Py ar) = {
where threshold e accounts for the fact that in real-world scenarios there are uncertainties in measuring
time delays as discussed in Section 3.3. Using € > 0, the width of the hyperbolic region is not constant,
modeling the effect that can be clearly seen in Figure 3(a). In fact, the width increases with distance to
the microphone pair, partly because for a given uncertainty (error) in the time delay estimation (due to the
fact that we are using sampled signals), the spatial uncertainty (error in precisely assigning a correlation
value to a given spacial location) increases as we consider positions further away from the microphone
pair generating the hyperbolic region.

The model described by Equations (9) and (10) is valid to reproduce SRP-PHAT measurements,
as the hyperbolic regions of the power maps are related to the high values of the Generalized Cross
Correlation function of each pair of microphones [9]. Consequently the position of the hyperbolic regions
is consistent with the time difference of arrival for each microphone pair given a certain speaker position.

3.5. Description of a Linear Model of SRP-PHAT

Using the model previously proposed in Equation (9) over all positions inside Q the following vector
y is defined: .
y = (sf“p(ql) Sf”p(qcz)> qi € Q (11)
This section shows that vector y can be represented as a linear combination of vectors of size (). Each
vector is only representative of a specific spatial location where an acoustic source can be active. As was
described in previous sections, this model accounts for the fact that single acoustic sources are viewed
in SRP-PHAT data as the intersection of multiple hyperbolic regions.

For each position q € Q, define the following vector v(s):

v(s) = (v(s,ql),~-- ,U(s,qQ))T with v(s,q;) = % Z f(s,pj i), a4€Q (12
Vp,EP

where NN is the number of microphone pairs, () is the size of Q and f(s,p;,q;) € F are the basis
functions defined in Equation (10).

Vector v(s) can be intuitively seen as the ideal SRP-PHAT measurements that would be obtained for
a single acoustic source located at position s. If Q contains points with constant height, v(s) can be
visualized as an image, composed as the sum of hyperbolic areas (one for each pair of microphones),
intersecting at point s (see Figure 4). It must be remarked that v is normalized by definition, i.e.,
max(v(s)) = 1.

The proposed generative model consists of the following linear system:

y = Mx with M = (v(sl) V(SQ)> s; € Q (13)

where x = (z1,--- ,2¢)" is a vector of size (), representing a numerical weight associated to each

position considered in set Q, where an acoustic source could be active. In fact, weight z; corresponds
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exactly to weight w(s;) defined in Equation (9) up to a scale factor. In this case, x are the unknown

parameters of the model.

Figure 4. Model content defined for a single active speaker located in the position of the

red circle.

Matrix M is a () x ) matrix whose columns are obtained using vector v defined at every s € Q.
Vector y can be seen as the SRP-PHAT data synthesized by the proposed model as a function of weight

vector x. Figure 5 shows a graphical diagram of the proposed linear model.

Figure 5. Explicit matrix layout for the model proposal given by Equation (13).
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Expanding the terms in Equation (13), vector y is obtained as the following weighted sum of vectors:

y=x1v(sy)+ -+ $QV(SQ) (14)

where it is explicitly seen that weight z; directly affects the influence of vector v(s;) in the output
vector y. Therefore, if vector x has high values around a single position s;, the resulting vector y
will have a maximum at s;, producing a SRP-PHAT image consistent with the model presented in the
previous section. Nevertheless, as it was discussed in Section 3.3, it must be recalled that the hyperbolic
model defined by Equation (10) is only a rough simplification of the real phenomenon, where noise,
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reverberation and array directivity issues produce artifacts in the SRP-PHAT approximation that are not
considered in the model. The consideration of these additional effects in the formulation of the basis

functions can lead to improvements in the modeling ability of the proposed solution.

4. Model Fitting

This section explains how to use the linear model proposed in the previous section to fit real
SRP-PHAT data. One of the main contribution of the paper is to show that as a result of model fitting,
the performance of SRP-PHAT based localization techniques can be remarkably improved.

Suppose that vector y contains SRP-PHAT measurements (arranged in a column vector) obtained in
a real scenario:

.
y = (srp(ql) srp(qcz)) g € Q (15)

with srp(q;) defined in Equation (1).

Our aim is finding a vector x capable of explaining y using model M. It is expected that y includes
modeling errors, reverberation, array directivity effects, and noise, thus making the proposed model
invalid for an exact representation of y. Instead, the goal will be finding a vector x capable to better
explain y. The notion of which vector x is better at modeling y can be answered using optimization
techniques.

The basic approach is then to solve the following optimization problem:

min p(y, §) = min p(y, Mx) (16)

where p is a metric measuring how different are the measurements y and the vector y generated by the
model (i.e., Mx from Equation (13)). A straightforward and somehow natural choice for p is to use the
Euclidean distance as a metric:

min |y — Mx|} (1

which yields to a linear least squares problem. If matrix M has full rank, the minimum of Equation (17)
is unique and can be obtained in closed-form. Otherwise a regularized problem can be solved instead
using Tikhonov regularization [45]. In either case, solving problem (17) represents a weak approach
when the model M is not accurate enough to fit the data y, which contains noise and effects that cannot
be reproduced by the model.

The approach of this paper, and one of the basis of our contribution, is to include additional constraints
into Equation (17) able to give meaningful answers for x with noisy measurements, and for relatively
simple basis functions in the generative model. Two basic improvements of problem (17) are proposed
and detailed next.

4.1. Adding Sparse Constraints

In this paper it is assumed that there is only a small number of simultaneous active acoustic sources
inside the space defined by O, which is a reasonable assumption in the majority of scenarios considered.
Given that values of x represent positions in which there is an active acoustic source, it is thus sensible
to force x to have as many zeroes as possible. In the mathematical language that means to force the
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vector x to be a sparse vector, in which the number of non-zero elements is limited. In the optimization
scheme, making the x vector to be as sparse as possible is equivalent to forcing the [, norm of x to be
minimum.

Finding the vector x that simultaneously reduces the error between the input data and the model and
forces x to be as sparse as possible can be mathematically expressed as follows:

min [[x[l, sty — Mx|; <7 (18)

where 7) is a real value that bounds the amount of error and model mismatch that is admissible.
Minimizing (18) is very difficult as the /[, norm makes the problem highly non-linear, NP-Hard and
non-convex. No practical method guarantees the global convergence in this case.

Sparse optimization methods have received remarkable attention from the scientific community.
Despite its theoretical complexity, several methods and approximations have been proposed so far, and
of special relevance are those methods based on using the /; norm as a convex relaxation of the [

norm [33,46]. This relaxation transforms (18) into the following:
min x|, st [ly - Mx]|* <~y (19)

where « is an hyperparameter closely related to 7 in (18). Equivalently, problem (19) can be expressed
in its Lagrangian form:
min ||y — Mx]|3 + x|, (20)

where ) is the Lagrange multiplier and has a direct relationship with ~.

Both Equations (19) and (20) are equivalent convex problems, in which convergence is guaranteed
and can be solved in polynomial time.

The problem of finding a least squares estimation subject to a [, restriction has been independently
presented and popularized under the names of Least Absolute Shrinkage Selection Operator
(LASSO) [47] and Basis Pursuit Denoising [32], being object of intensive study. In the past few years
numerous optimization methods have been proposed, some of them adapted to specific problems.

Additionally, several generic libraries and toolboxes implementing those methods have been
developed and are being extensively used. The results shown in the paper have been generated using
one of these libraries [48], using a truncated Newton interior-point method, described in [49].

Solving the relaxed problem (20) does not necessary imply finding the solution to the original [
problem. The closeness and validity of /; relaxations have been extensively studied [33]. In some
problems, the structure of matrix M and the expected degree of sparsity in the solution can make [,
relaxations to be exact. For general linear systems, as it is the case in this paper, where matrix M has
no apparent structure, [, relaxation empirically tends to impose only approximate sparse solutions. This
paper provides strong experimental evidence of the improvements obtained by imposing /; penalties,
effectively making the solution x more sparse. Sparsity is a strong “prior’ that helps to bias the solution
x so that the effect of noise and model mismatches are properly attenuated.
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4.2. Adding Subspace Filtering

Although sparsity is a well founded constraint and the /; relaxations are effective, the experimental
results in Section 5 show that, given the current model, sparsity is not strong enough to cope with errors
and model mismatches in real SRP-PHAT measurements so that additional strategies must be used to
improve model fitting.

This section introduces a new constraint on the problem based on filtering out the part of the input
signal y that is not reproducible using model M.

First decompose y into two parts:
y=y+y=Mx+y (21)

where y is a term that can be explained exactly by the generative model (i.e., there exists a vector x such
that y = Mx) and y represents the non-reproducible part of the signal (i.e., y # Mx for any vector
x). This section proposes to use subspace filtering to remove the non-reproducible part y from the input
vector y.

First, matrix M is expressed using singular value decomposition (SVD) as follows:
M =UXV* (22)

where U and V are unitary matrices of dimensions () x () and X is a semidefinite positive diagonal
matrix of dimension () x (). The diagonal elements of 3 are the singular values, sorted in descending
order. Using singular values it is possible to know the amount of degrees of freedom available in the
model by just looking how many non-zero singular values it has.

By identifying the number of zero singular values of M, namely /V,, the SVD decomposition shown

in Equation (22) can be expressed using the following sub-matrices:

2 0\ (Vs
M=(U; U =U,3, V] 23
(U, 0)(0 0)(\/3) TV (23)

where Uy and Vj are (Q X N, matrices, U; and V are of size ) x () — N,) and X is a diagonal
(Q — N,) x (Q — N,) matrix.

U, and U are subspace projection matrices. Any nonzero vector z such that Uz = 0 is a vector
that cannot be obtained using the model M, i.e., z # Mx for any possible x.

So, recalling that U*U = UU* = I, both sides of the equality (21) can be multiplied by U* with the

following result:
U3 XvVi Uy =0
iy _ V1) oy 1}"*~ (24)
Ugy 0 Upy

By definition, if y cannot be expressed by the model, then its projection using matrix U] must be
zero. Contrary, the projection into the kernel subspace represented by Uy is nonzero.

Therefore, in order to remove the dependence of y, only the Mahalanobis distance of the upper part
of system (24) is optimized, regularized with the /; term, and resulting into the problem (20) to become:

. _ N2
min || 37Uy — Vil + Allx]), (25)
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In practice, a small threshold ) is used to decide if a singular value can be considered zero.
Experiments are carried out in Section 5.5 to learn the value of parameter ) from real SRP-PHAT data,
which turns out to be an important parameter in practice. In order to give meaningful discrete values to

1 this paper uses the following ratio:

. ZAJ' >7ﬂ A]
Z?:l Ai

where diag(X) = (M1, -,\g)" are the singular values of M. The meaning of Equation (26) is

() 100 (26)

basically the percentage of Frobenius norm that M has lost after filtering out small singular values
using 7). By bounding the ratio with an energy threshold, namely e,, € [0%, 100%], which can be chosen
easily with independence of scale factors (e.g., e, = 50% means half of the energy in the model), the
value of ¢ can be chosen adequately as:

mwin s.t. r(Y) < ey (27)

In Section 5, the value of v is chosen by giving values to e,, using (27) afterwards.

After setting to zero all the N singular values below threshold v, we can build new matrices U’
and V'o (Q x N!), U’y and V'; (Q X (Q — N.)) and ¥'; ((Q — N.) x (@ — N.)), for which the SVD
decomposition (23) becomes:

¥ 0\ (V] *
M/ - <U/1 U,0> ( 01 O) <V/i> - U'12’1V'1 (28)
0

and the optimization problem (25) becomes:

. - . 2
min |2 Uy — VVix, + Allx]|, (29)
4.3. Improving SRP-PHAT with Model Fitting

The main objective of the paper is to show that, as a result of the optimization methods proposed
before, the solution x can be used to improve source localization, comparing with traditional approaches
directly using SRP-PHAT measurements. The detection of local maxima in SRP-PHAT acoustic power
maps is the standard way to retrieve the position of the acoustic source. This technique yields good
results but is still prone to errors due to reverberation and noise and when the number of microphones is
limited.

Our approach consists of replacing the original SRP-PHAT measurements y with those generated by
the model solving the optimization (29), i.e., y' = M’'x’, where M’ is obtained from Equation (28) and
x’ is the solution of Equation (29). Vector y' can also be interpreted as a filtered/denoised version of
y that is consistent with the proposed model. Figure 6 shows the acoustic power map described by the
denoised vector y' (Figure 6(a)) and the original SRP-PHAT acoustic power map y (Figure 6(b)). From
the figure, it seems clear that the denoising effectively reduces the number of artifacts and unwanted
effects exhibited by the original map, and the assumption is that this denoised version y’, if properly
constrained during the optimization, is a better place to find local maxima truly representing active

acoustic sources. In Section 5 the paper gives strong experimental indicators to support this idea.
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Figure 6. Comparison between real SRP-PHAT power map and its denoised version.

(a) Denoised acoustic power map described by ¥'; (b) Real SRP-PHAT acoustic power map
described by y.

(a)

5. Experiments and Discussion

5.1. Experimental Setup

We have evaluated our proposal using the audio recordings of the AV16.3 database [S0], an
audio-visual corpus recorded in the Smart Meeting Room of the IDIAP research institute, in Switzerland.

Figure 7. Idiap Smart Meeting Room for AV16.3 recordings (a) Room layout showing the
microphone positions in two circular arrays (MA1 and MA?2), three cameras (C1, C2 and

C3), and the L-shaped area for speaker locations in the recordings. (b) Sample of recorded
video frame.

(a)
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The IDIAP Meeting Room consists on a 8.2 m X 3.6 m X 2.4 m rectangular room containing a
centrally located 4.8 m x 1.2 m rectangular table, on top of which two circular microphone arrays of
0.1 m radius are located, each composed by 8 microphones. The centers of the two arrays are separated
by 0.8 m and the origin of coordinates is located in the middle point between the two arrays. Possible
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speakers’ locations are distributed along a L-shaped area around the table as seen in Figure 7(a). A
detailed description of the meeting room can be found in [51].

The audio recordings are synchronously sampled at 16 KHz, and the complete database along
with the corresponding annotation files containing the recordings ground truth is fully accessible
on-line at [52]. It is composed by several sequences or recordings which range in the number of speakers
involved and their activity. In this paper we will just focus on the single static speakers sequences, whose
main characteristics are shown in Table 1. We will refer to the sequences as seq01, seq02 and seq03 for
brevity.

Table 1. Characteristics of the audio sequences used in the experimental results.

Sequence name speaker Average speaker height* (m) duration(s) number of ground truth frames

seq01-1p-0000  male 04.3 208 2,248
seq02-1p-0000  female 62.5 171 2,411
seq03-1p-0000  male 70.3 220 2,636

* In the reference coordinate system.

Every audio sequence is assigned a corresponding annotation file containing the real ground truth
positions (3D coordinates) of the speaker’s mouth at every time frame in which that speaker was talking.
The segmentation of acoustic frames with speech activity was first checked manually at certain time
instances by a human operator in order to ensure its correctness, and later extended to cover the rest
of recording time by means of interpolation techniques. The frame shift resolution was defined to
be 40 ms.

5.2. Evaluation Metrics

Our localization algorithm yields a set of spatial coordinates q(t) = (x,y,2)' that are estimations
of the actual speaker position, for every time frame ¢. These position estimates will be compared, by
means of the Euclidean distance, to the ones labeled in a transcription file containing the real positions
s(t) (ground truth), of the speaker.

We have decided to use the metrics developed under the CHIL project and described in their
Evaluation Plan [53]. A complete description of the CHIL Evaluation strategies can be found at [53],
but in this work we will only refer to the Multiple Object Tracking Precision (M OT P), calculated

as the average localization error for all (/Ny) acoustically active frames in the data set: MOTP =

ST la) —s()]
Nt :

5.3. Evaluation Plan

We are evaluating our model in a 2D scenario, considering the acoustic power maps generated by
SRP-PHAT at locations Q belonging to a plane 61 cm above the microphone array positions (this height
roughly corresponds to the average height of the speaker positions in the AV16.3 sequences). Locations
for SRP-PHAT data are calculated uniformly sampling Q ina 10 cm x 10 cm grid.
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The procedure to generate the position estimations q() consists of searching for maximum values in
vector y’ (calculated as described in Section 4.3) that could be seen as a denoised version of the original
SRP-PHAT acoustic power map.

In the experimental results shown below, we are assessing the performance of our proposal in
terms of:

e Optimization parameters: We will provide results depending on the two main tunable parameters

of the optimization algorithms used, namely A and e,.

The estimation of the optimal values for this parameters will be done on an independent data set

(training set) and applied to unseen data in the evaluation stage (test set).

e Sensor array configuration: In this work, we are using a simple microphone array configuration,
aimed at evaluating our proposal in a resource-restricted environment. In order to do so, we
are using 4 or 8 microphones (out of the 16 available in the AV16.3 data set), grouped in
two or four microphone pairs to generate the baseline SRP-PHAT acoustic maps. The selected
microphone pairs configurations are shown in Figure 8, in which microphones with the same color
are considered as belonging to the same microphone pair. Given that the microphone separation
for each microphone pair is 20 cm, we will violate spatial aliasing requirements, considering the
signal bandwidth. Fortunately, when using SRP-PHAT, the use of more than one microphone pair
alleviates this problem, as side lobes are different for each pair, and thus their effects are partially

compensated.

e Acoustic frame size: We will provide results depending on the length of the acoustic frame, for 80,
160 and 320 ms, to precisely assess to what extent the improvements are consistent with varying
acoustic time resolutions.

Figure 8. Microphone pairs setups used in the experiments (microphones with the same
color belong to the same pair).
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The baseline we are comparing with will be the results of directly searching the maximum of the
SRP-PHAT acoustic power map. The position of this maximum will correspond to the most probable
source location.

Comparisons will specifically consider the relative improvement in MOTP, defined as

AMOTP — MOTPbasclinc_MOTPproposal
r MOTPbaseline ’
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Our main interest is assessing whether the results and improvements are consistent across different
conditions. After describing the baseline results (in Section 5.4) and in order to evaluate the
generalization capability of the proposed methods, we will address an initial study using sequence
seq0l as the training set (in Section 5.5). From this study, we will decide on the optimal values of
the tunable parameters used in the optimization process (those leading to the best results), and then use
them to provide final performance and improvement results on the zest sets, namely seq02 and seq03 (in
Section 5.6). This evaluation plan ensures adequate independence and variability between train and test
sets, with different speakers in all sequences (also differing in gender and height).

In all cases were appropriate, we will include references to statistical confidence values for a 95%

confidence level, to adequately assess whether the improvements are statistically significant.

5.4. Baseline Results

Tables 2 and 3 show the baseline results using the standard SRP-PHAT algorithm for all sequences
and different frame sizes, and the two microphone setups of Figure 8.

Table 2.

microphone setup A.

Baseline M OT P(m) results for all sequences, different frame sizes and

80 ms 160 ms 320 ms
seq01 MOTP | 1.02+£0.03 | 0.91 +0.03 | 0.83 £0.03
seq02 MOTP | 0.96 £0.03 | 0.84 +0.03 | 0.77 £ 0.02
seq03 MOTP | 0.90+0.03 | 0.77 £ 0.03 | 0.69 £ 0.03

Table 3.
microphone setup B.

Baseline M OT P(m) results for

all sequences, different frame sizes and

80 ms 160 ms 320 ms
seq01 MOTP | 0.87+0.03 | 0.74 4+ 0.03 | 0.62 £ 0.02
seq02 MOTP | 0.73+£0.02 | 0.62+0.02 | 0.56 £ 0.02
seq03 MOTP | 0.71 £0.02 | 0.59 +0.02 | 0.50 £ 0.01

The main conclusions for the baseline results are:

e The performance obtained is reasonable if we take into account that only two or four microphone

pairs are used. Best M/ OT'P values are around 50 cm.

e Performance improves as the frame size increases, as expected, given that longer frames lead to

better estimations of the correlation functions.

e Adding an additional microphone pair in setup B as compared with setup A also leads to

performance improvements as expected.
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5.5. Evaluation of the Sensitivity to X and e,, Values

The proposed model fitting strategies heavily depend on the estimation of adequate values for both A
and ey, (as they are the parameters controlling the optimization process), so that a detailed study on the
sensitivity of the performance with variations in these parameter values is mandatory.

A expresses the relative importance of the sparse constraints applied in the optimization problems
(20), (25) and (29), so that the higher its value becomes, the sparser the solution will be. In the [;
optimization software used [48], it is required that A < A, being \,,., dependent on both the model
and the input data [49]. In the results shown, the hyperparameter is represented normalized with respect
to the calculated A\uz: Anorm = A/ Amaz» s described in [49].

The energy threshold e, used in the subspace filtering strategy described by Equation (27) decides
the size of the model that is not able to adequately explain the input signal.

To decide on the optimal \,,,,,,, and e, to be used, we will select the values that achieve the best result
in terms of M OT' P, for every microphone setup and frame size.

In the upper part of Figure 9, we show the evolution of the M OT P quality metric as a function of
Anorm and the energy value ey, for both microphone setups, evaluating the training sequence seq01,
with a frame size of 160 ms, as an example. The horizontal black trace show the baseline results for
the SRP-PHAT algorithm (obviously independent of \,,,,, and e;). In the lower part of Figure 9 the
evolution of the relative improvements in M OT'P are shown.

Additionally, and in order to evaluate the effectiveness of the subspace filtering step, we ran an
experiment in which only the optimization with sparse constraints described in Equation (20) is applied
(i.e., our proposal without using subspace filtering). The results are shown in the “W/o SVD” trace of
Figure 9.

Figure 9. Optimization results for M/ OT' P and relative improvements as a function of A,
and e, for microphone setups A and B on sequence seq01. The black trace is the baseline
SRP-PHAT system.
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In Figure 10 we show the best M OT P results for sequence seq0I for both microphone setups and
all frame sizes, with 95% confidence intervals. Data includes results for the baseline SRP-PHAT results
(“SRP” in the legend, blue bars), for our proposal (“Proposal” in the legend, yellow bars), and for our
proposal without applying the SVD step (‘“Proposal w/o SVD” in the legend, green bars) (the orange bar
(“SVD+SRP” in the legend) refers to results that will be discussed later).

Figure 10. Best M OT P results for sequence seq01 for both microphone setups (A, B) and
all frame sizes (80, 160 and 320 ms.), with 95% confidence intervals.
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From this, we can conclude that, for adequate values of the optimization tuning parameters:

e Our proposal is able to improve the SRP-PHAT results with statistically significant relative
improvements of up to almost 25%, with consistent improvements for a wide range of \,orm
values.

e Microphone setups have a similar impact in the relative performance improvements. The
improvements for setups A and B are 24.6% and 25.6%, respectively.

e In what respect to the dependency of the best results with \,,,,,, (once selected the optimal e,),
both microphone setups show a desirable behavior, achieving a reasonably clear optimal area for

a wide range of parameter values.

e Using either the model with sparse constraints (i.e., “Proposal w/o SVD”’) or SVD without actually
filtering (i.e., e, = 100%) is giving worse localization results than the SRP-PHAT baseline
algorithm. It thus seems that fitting the complete model to data is not making any progress even
if sparse constraints are included. The explanation of this phenomenon was partially advanced in
Section 4.2 but it needs some additional justification. The model that is proposed in this paper is
not able to explain every SRP-PHAT map (i.e., matrix M is rank-deficient). When using any of
the optimization strategies proposed in the paper, the position of speakers is the result of looking
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at local maxima in the SRP-PHAT map reproduced through the model. Therefore, in theory,
the results must not be necessarily equal to the baseline algorithm, even if subspace filtering is
removed, or the /; term is not having strong influence. Empirical data tell us that in these cases,
localization results can be in fact worse than the baseline. The main result of the paper is to show
through experiments that statistically significant improvements can be reached using a specific
combination of subspace filtering and sparse constraints. In these cases the model is able to
adequately filter the effects of noise and reverberation in the SRP-PHAT map, giving a cleaner

image about the real position of the speaker.

Table 4. Relative improvements of M OT P(m) for sequence seq01, including the values of

the optimal parameters, estimated per microphone setup and per frame size.

80 ms | 160 ms | 320 ms

AMOTP 1 921% | 24.6% | 29.1%
setup A | agplimel 0.1 0.1 0.1
egptimal 99% 99% 99%

AMOTP 1 92.9% | 25.6% | 27.6%
setup B | agpiimet 0.04 0.08 0.1
optimal 97% 97% 97%

Table 4 shows the highest relative improvements obtained for sequence seq0I and the optimal values
of the parameters found to achieve these best results (namely A% and e} timaly The table shows how
the maximum improvement is high and consistent along different frame sizes and microphone setups.

Improvements in M OT P clearly increase as the frame size increases.

Table 5. Relative improvements of M/ OT P(m) for sequence seq0] and microphone setup

B, using different values for the optimization parameters.

80ms | 160ms | 320ms
setup B AMOTE | 92.9% | 24.2% | 26.7%
ecptimal=B _ g79, Anorm 0.04 0.04 0.04
setup B AMOTP 192 1% | 25.6% | 27.2%
eoptimal=F — 97% Anorm 0.08 0.08 0.08
setup B AMOTP 199 2% | 25.3% | 27.6%
egptimal=B — 979 Anorm 0.1 0.1 0.1
- scupB AMOTP | 91 4% | 22.6% | 24.3%
Agptimal=A — 0.1 goptimal=A — 999

Interestingly, the optimal values for the parameters controlling the optimization process are identical
0.1 and esz timal=A _ 999%). This seems not to be the
= 97% in all cases, but \°P*™al=B yalyes varies for different frame

optimal—A _

for all frame sizes in the setup A (A2

. . timal—B
case for setup B, in which eip vma

sizes. However, even in this case, the improvements are stable for a wide range of parameter values as

norm
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can be seen in the first three rows of Table 5, where the relative improvements have been calculated for
different values of Apopm (0.04, 0.08 and 0.1), setting e,, = eff timal=B _ 97%.
From Table 4 it also seems that the optimal values of the parameters are dependent on the microphone

optimal

setup used, as both \Ptimal and € are different for setups A and B. A more detailed evaluation

shows that, again, the improvements are stable even when we use the optimal values estimated for setup
A (\gptimal=4 — (.1 and e} timal=4 _ 999%), in the optimization process for setup B data, as it can be
seen in the last row of Table 5.

An additional way of visually assessing to what extent the results of the optimal values for the
optimization parameters are consistent for different situations is plotting a surface map of MOTP
versus variations on Ao, and e, and making a comparison. For example, Figures 11 and 12 show
this optimization map for microphone setups A and B respectively, using sequence seq01. In these maps,
the optimal points for each evaluation are represented with a circle for seqOl and setup A, and with
a triangle for seq0l and setup A. The maps show a similar structure for the optimal region in both
microphone setups, supporting the idea that the optimal optimization parameters do not heavily depend
on changes of the experimental conditions. Moreover, in the cases for microphone setup B, where the
optimal points (triangles) seem not to be close to the optimal points of setup A (circles), it can be seen
that these positions belong to an area with roughly the same M OT'P level (the area can be recognized
as a flat optimal region).

The main conclusion of these experiments is that, for the given experimental setup, our proposal
is able to clearly outperform the standard SRP-PHAT results. The statistically significant relative
improvements roughly vary between 22% and 30%, and, what is more important, with little sensitivity
to the optimization parameters selected when changing the microphone setup and the frame size used
(once the optimal parameters have been estimated for the training data).

Figure 11. Optimization map for microphone setup A on sequence seq0I. The circle is the
position of the best parameter combination.

80 ms
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Figure 12. Optimization map for microphone setup B on sequence seq0I. The circle is the
position of the best parameter combination in seq0! calculated for setup A and the triangle
is the position of the best parameter combination in seq0! calculated for setup B.

80 ms 160 ms , 320 ms

To further evaluate the contribution of the subspace filtering strategy, we ran an experiment in which
we applied the subspace filtering to the original SRP-PHAT data, that is, projecting the SRP-PHAT
acoustic power map on the span of model M’ obtained from (28). This projection generates a new
filtered power map, calculated as y* = U'U’ 1Ty. The results applying this transformation are given in
the orange bars of Figures 10 and 15, referred to as “SVD+SRP”. In these figures, we can see that
SRP+SVD also outperforms SRP, although the differences are not statistically significant.

5.6. Evaluation on the Test Set

The evaluation carried out in the previous section only addresses the estimation of the optimal
parameters for a single training sequence and the proposal evaluation on this same data set (seq01). We
still need to assess whether the optimal values estimated for the fraining data set are able to achieve good
results when using different sequences. As stated above, we are using seq02 and seq03 as independent
test sets.

Figures 13 and 14 show the optimization maps for all sequences, frame size 160 ms, and microphone
setups A and B, respectively. The cross is located in the optimal point for each sequence and setup A,
and the diamond is located in the optimal point for each sequence and setup B. It can be seen that, again,
the structure of the optimal regions are reasonably similar, thus suggesting that the optimal values for
the optimization parameters estimated in the training set will also achieve good results in the test sets.
The position of the optimal points in each map also belong to the same flat optimal region.

Figure 15 shows the best M OT'P results for sequences seq02 and seq03 for both microphone setups
and all frame sizes, with 95% confidence intervals (using the optimal parameter values estimated for the

training sequence seq01).
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Figure 13. Optimization map for microphone setup A on all sequences, evaluating M OT P
and frame size 160 ms. The circle is the position of the best parameter combination
calculated for sequence seq01I and the cross is the best position calculated for each sequence.

seqO1 seq02 seq03

1070%

Figure 14. Optimization map for microphone setup B on all sequences, evaluating M OT' P
and frame size 160 ms. The circle is the position of the best parameter combination
calculated for sequence seq01 with setup A,the triangle is the position of the best parameter

combination in seq0! with setup B and the diamond is the best position calculated for each
sequence.
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Figure 15. Best M OT P results for both microphone setups (A, B) and all frame sizes (80,
160 and 320 ms), with 95% confidence intervals, (a) for sequence seq02 and (b) for sequence

seq03.
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Table 6. Relative improvements of MOT P(m) for sequence seq02, using the optimal

parameter values estimated for sequence seq01.

80ms | 160 ms | 320 ms
AMOTP 1 10.0% | 9.6% 9.9%
setup A | Aorm 0.1 0.1 0.1
ey 99% 99% 99%
AMOTP 120.7% | 22.9% | 25.1%
setup B Anorm 0.04 0.08 0.1
ey 97% 97% 97%

Table 7. Relative improvements of M OT P(m) for sequence seq03, using the optimal

parameter values estimated for sequence seq01.

80ms | 160 ms | 320 ms

AMOTE 193 8% | 26.9% | 29.9%
setup A | Anorm 0.1 0.1 0.1
ey 99% 99% 99%

AMOTP 1 95 7% | 27.3% | 29.0%
setupB | Aorm 0.04 0.08 0.1
ey 97% 97% 97%

Tables 6 and 7 show the relative improvements achieved when evaluating sequences seq02 and seq03

for both microphone setups, also using the optimal parameter values for sequence seq0I. As expected,

the relative improvements are in the range of those obtained for sequence seq0I, except for sequence
seq02 and microphone setup A (with lower improvements of around 10%). Our hypothesis is that the
fact that this is a female speaker imposes significant differences in the speech signals, thus modifying the
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correlation functions used in the input data, and posing additional difficulties to the optimization process
when only two microphone pairs are used. Nevertheless, this will have to be evaluated in future work.
Apart from the case of seq02 with setup A, the improvements are relevant and statistically significant,
roughly varying between 20% and 30%. These achievements also show little sensitivity to the
optimization parameters selected, in spite of the fact that we are additionally dealing with different

speakers.

6. Conclusions and Future Work

This paper has proposed a novel method to localize active acoustic sources in a room equipped
with sensor arrays. Two main contributions can be highlighted: First, a simple but very promising
generative linear model is proposed to explain SRP-PHAT data taken from any geometrical combination
of microphone arrays. The model simply reflects the geometry of three-dimensional points sharing
common difference of time-of-arrival between each microphone pair. This model is independent of the
spectrum properties of the signals emitted by the source and can be easily computed in practice. Second,
this paper shows, using convincing experiments based on publicly available data, that such a simple
model can be used to fit real SRP-PHAT data that is usually very noisy and has many unmodeled effects
(such as reverberation in the scene). Fitting the model is done by imposing two constraints. The first one
is forcing the model parameters to be sparse, as acoustic sources cannot be densely distributed in a typical
environment. The second constraint simply removes the part of the measurements that is not exactly
reproducible by the model. In the light of the experimental results, these two constraints in combination
are the real key of the paper, notably improving the performance of state-of-the-art localization methods
based on SRP-PHAT. It is also worth mentioning that all algorithms and experiments proposed in the
paper are very easy to reproduce.

In future works the performance of this approach must be thoroughly validated in rooms with multiple
speakers and using the whole three-dimensional set of spatial positions. Immediate improvements should
cover all issues commented in Section 3.3. That means to propose basis functions in the model that
take into account additional factors, such as the spectral content of the acoustic sources, directivity
pattern effects in the microphone arrays, and also adding geometric information that would help to
predict reverberation effects. The authors believe that improvements in the model may yield remarkable
improvements in the localization accuracy in real world scenarios.
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