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Abstract: The opto-fluidic ring resonator (OFRR) biosensor is numerically characterized 
in whispering gallery mode (WGM). The ring resonator includes a ring, a waveguide and a 
gap separating the ring and the waveguide. Dependence of the resonance characteristics on 
the resonator size parameters such as the ring diameter, the ring thickness, the waveguide 
width, and the gap width between the ring and the waveguide are investigated. For this 
purpose, we use the finite element method with COMSOL Multiphysics software to solve 
the Maxwell’s equations. The resonance frequencies, the free spectral ranges (FSR), the 
full width at half-maximum (FWHM), finesse (F), and quality factor of the resonances (Q) 
are examined. The resonant frequencies are dominantly affected by the resonator diameter 
while the gap width, the ring thickness and the waveguide width have negligible effects on 
the resonant frequencies. FWHM, the quality factor Q and the finesse F are most strongly 
affected by the gap width and moderately influenced by the ring diameter, the waveguide 
width and the ring thickness. In addition, our simulation demonstrates that there is  
an optimum range of the waveguide width for a given ring resonator and this value is  
between ~2.25 μm and ~2.75 μm in our case. 
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1. Introduction 

The opto-fluidic ring resonator sensing platform has recently emerged as a new solution for highly 
sensitive detection of biological and chemical analytes [1–3]. Here, an analyte means a substance or 
chemical constituent that is of interest in an analytical procedure. The OFRR, which is a glass  
capillary-based cavity, integrates microfluidics with photonics. In a ring resonator, light propagates in 
the whispering gallery mode (WGM), which allows for a great miniaturization of the sensors while 
maintaining a longer effective interaction period. The capillary nature of the ring resonator also 
enables the convenient sample delivery [4,5]. The 2-dimensional array arrangement enables high 
efficiency detection and multiple-analyte detection, as shown in Figure 1(a). The OFRR can achieve a 
greatly improved detection limit, lower sample consumption, and larger integration density than 
possible with traditional optical sensors [6].  

Figure 1. The schematic of (a) the multi-channel OFRR and (b) a section view. 

 

A high quality OFRR configuration design is essential to optimize the sensitivity of specific 
biomolecule detection. However, because the experimental approach to this task is expensive and  
time-consuming, theoretical models have been utilized to describe the WGMs of the OFRR using  
Mie theory by considering a three-layer radial structure. Using this model, the radial distribution of the 
WGMs electrical field is derived and the resonant wavelength can be obtained numerically by 
matching the boundary conditions. Furthermore, the WGM spectral position can be obtained as a 
function of wall thickness, the resonator size, operating wavelength, etc., which allow us to calculate 
the sensitivity to refractive index change and to optimize the OFRR design.  

The binding of analytes to the resonator inner surface results in a modification of the effective 
refractive index and the ring thickness experienced by the WGM, leading to change in the  
WGM spectral position. A number of analytical studies have been conducted to understand the 
evanescent coupling for various resonator designs [7–13]. Though these studies have provided valuable 
information on the resonance characteristics of resonators and helpful guides for experimental works, 
we can get a more realistic picture of the resonator system through a numerical simulation. The Mie theory 
is, for example, not enough to explain the coupling of the evanescent fields in the nanoscale gap. As a 
matter of fact, the electromagnetic (EM) field in the resonator has a high sensitivity to the gap through 
which tunneling of photons occurs. Accordingly, it is highly desirable to model the EM field of the 
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whole WGM system and investigate numerical characterization which is essential in developing an 
efficient and optimized structure of an OFRR sensor. 

In this study, the finite element method is used for solving the Helmholtz equation of 
electromagnetic waves reduced from Maxwell’s equations. The commercial COMSOL Multiphysics 
package (version 4.1) is applied to perform a finite element analysis in the OFRR simulation. We mainly 
investigate the resonance characteristics associated with the ring diameter, the ring thickness, the gap 
width, and the waveguide width. We also discuss in detail the effects of these parameters.  

2. Theory  

The sketch of a conceptual OFRR is shown in Figure 1(b). The electromagnetic field in the WGM 
of the OFRR can be described by time-dependent Maxwell’s equations. In source-free non-conducting 
media, the wave equation can be written as: 
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where n is the refractive index of the media and c is the speed of light in free space. For time-harmonic 
fields such as tierEtrE ω−= )(),( , Equation (1) is rewritten as:  
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When the resonance ring is placed in the (x, y) plane as shown in Figure 1(b) and the electric field 
is polarized along the z direction, the transverse electric (TE) field is given by zyxErE ),()( = . In this 
case, the Equation (2) becomes a scalar Helmholtz equation: 
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where ko is the free-space wave number.  
For simplicity, the resonance ring is placed on the same plane as the waveguide, as shown in  

Figure 1(b). Thus, WGM can be treated in a two-dimensional model. For outside boundaries,  
the scattering boundary condition is applied with initial amplitude of .00 =E  For laser excitation 
source, the scattering boundary condition is also used with input amplitude of ./10 mVE =  The scattering 
boundary condition is commonly used to specify a boundary which is transparent for a scattered wave 
and for an incoming plane wave. 

3. Simulation 

The finite difference method (FDM) has been commonly used for numerical studies in 
electromagnetics. However, the finite element method (FEM) has an advantage in dealing with irregular 
configurations or system analysis. In this study, the FEM is used to solve the Helmholtz equation. 
COMSOL Multiphysics with RF module (version 4.1, COMSOL Inc., Burlington, MA, USA) is 
employed for numerical analysis and post processing. 

A glass capillary and an optical fiber are used as the ring resonator and the waveguide, respectively. 
Figure 2 shows a photograph of a fabricated OFRR system under construction. A simulation domain is 
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typically a 140 μm × 140 μm rectangular area. A ring resonator is centrally located and a waveguide is 
positioned below the resonator. Separation distance between the resonator and the waveguide can be 
adjusted by varying a small gap. The waveguide length is the same as the width of the simulation 
domain. The outer diameter and the thickness of the ring resonator are 100 μm and 3 μm respectively, 
and the width of the waveguide is 2 μm. The surrounding material for the ring and the waveguide is 
assumed as air and the material inside the ring is regarded as water. The refractive indices of the 
resonator and the waveguide are set to be 1.52 (glass) and 1.4682 (SiO2), respectively. The refractive 
indices for air and water are 1.0 and 1.333, respectively. A tunable laser beam for resonance excitation 
is directed straight from the left end of the waveguide. The frequency of the incident laser ranges 
between 192.31 THz (1,560 nm) and 196.80 THz (1,530 nm). It is noted that the wavelength λ and 
frequency f are the values in free space, unless otherwise specified. 

Figure 2. A photograph of a fabricated OFRR. 

 

A mesh is a discretization of the geometry model into small simple shapes, and in this work the 
computational domain is meshed by triangle elements. The normal mesh size predefined in COMSOL 
is selected. All domains are meshed in two steps; the free triangular step followed by the refine step. 
The free triangular step is taken once to all domains. The refine step is taken thrice for the domains of 
the resonator and the waveguide. For the remaining domains of air and the sample, two refine steps are 
taken. The ratio of average mesh size in the domains for air and the sample to that in the domains for 
the resonator and the waveguide is about 58.3 to 1. Though the computational resolution of the laser 
wavelength is basically 0.5 nm, a 0.01 nm resolution is chosen in the vicinity of the resonance 
frequency for accuracy. The detailed simulation procedure using the COMSOL Multiphysics package 
is described elsewhere [14]. 

The distributions for electric fields and radiation energy density were examined under two WGM 
resonances (1st and 2nd order) and off resonance, respectively. We compared the experimental results 
for three operating conditions. The diameter and the thickness of the resonator ring were 100 μm  
and 3 μm, respectively. The waveguide thickness was 2 μm and the gap width between the resonator 
and the waveguide was 0 nm. 

In addition, we conducted four parametric studies. In order to find the effects of each parameter, we 
varied only one parameter at a time with other three parameters fixed. The diameter of the resonator (d) 
was varied between 80 and 120 μm with 10 μm step. The thickness of resonator (t) was controlled 
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between 2.5 and 4.0 μm with 0.5 μm step. The width of the waveguide (w) was changed between 1.5 
and 3.25 μm with varied step size. The gap size between the resonator and the waveguide (g) was 
varied between 0 and 300 nm with 100 nm step. For accuracy, we obtained four sets of scattering 
spectra for each parameter in the frequency range of 192 THz to 196 THz. Then, we extracted the 
resonance characteristics from the scattering spectra to investigate the resonator configuration effects. 
Our study was mainly focused on the resonance characteristics such as the resonant frequency, the full 
width at half-maximum of the resonant frequency band, the quality factor defined by the resonant 
frequency divided by FWHM, the free spectral range, and the finesse of the resonant mode defined by 
FSR divided by FWHM.  

4. Results and Discussion 

4.1. Electric Fields and Radiation Energy Distribution 

The first and second order resonances are found at λ = 1,550.55 nm (193.346 THz) and at  
λ = 1,552.80 nm (193.066 THz) respectively. The off-resonance is chosen at λ = 1,554.45 nm  
(192.861 THz). Figure 3 shows the distributions for electric fields and radiation energy density for the 
three frequencies. In Figure 3, the first row shows regular size plots and the second row shows the 
magnified plots for the coupled region of the ring and the waveguide. 

In Figure 3, it is clearly seen that a weak EM field exists in the resonator, even under the  
off-resonance condition. That is because an evanescent field couples from the waveguide to the 
resonator when the gap width is comparable to or less than one optical wavelength of the field. 
Accordingly, under the off-resonance condition, the EM field is mainly confined in the waveguide and 
its strength in the resonator is very weak. However, on the first-order resonance, a strong EM field is 
formed inside the resonator close to the peripheral boundary. The EM field in the ring becomes much 
stronger than that in the waveguide. More interestingly, when the second-order resonance occurs,  
two different resonance rings composed of strong EM fields are built inside the ring. These two  
low-order resonances, as shown in Section 4.2, are the radial solutions of the Equation (2), and many 
high-order resonances, not discussed here, could also exist when the boundary conditions are satisfied. 
In the case of the second-order resonance, the EM field is observed to be about 1.5 times stronger in 
the inner ring than in the outer ring. The ratio of EM energy stored in the ring to the energy stored in 
the wave guide goes up to 34.13 and 10.84 for the first and the second order resonance, respectively. 
This ratio drops to 0.75 in the case of the off-resonance. In general, the high-order resonances are more 
preferred for the sensor application because they build stronger evanescent EM fields inside the inner 
ring where interaction with the analytes occurs. However, we selected the first-order resonance for this 
numerical study for two reasons. First, study on the first-order resonance is important for comparison 
with the high-order resonance studies in progress. Second, the EM energy confined in the ring is much 
higher for the first-order resonance than for the second-order resonance, as seen in Section 4.2. 
Because the enhanced WGM wave circulates along the ring surface and interacts repeatedly with the 
analytes, it is emerging as a promising sensor device for detecting nanoparticles and viruses as well as 
chemical/biological molecules in the future.  
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Figure 3. Electric fields distributions for the ring-waveguide coupling part (d = 100 μm,  
t = 3 μm, w = 2 μm, g = 0 μm); (a) the regular plots and (b) the magnified plots.  
(Off-resonance (a-1,b-1); first-order resonance (a-2,b-2); second-order resonance (a-3,b-3)).  

(a-1) (b-1) 

(a-2) (b-2) 

(a-3) (b-3) 
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4.2. Effect of the Resonator Diameter on Scattering Spectra and Resonance Characteristics 

Figure 4 shows the EM energy density of the ring (J/m) as a function of the wavelength for the 
OFRR. The ring diameter, the ring thickness, the waveguide width and the gap width were 100 μm,  
3 μm, 2 μm, 0 nm, respectively. In this study, we obtained four sets of adjacent first-order resonance 
data for each resonator diameter and plotted four resonance characteristics corresponding to these 
resonance data using different symbols, as shown in Figure 5. We conducted the same procedure for 
other three parameters unless otherwise specified.  

In the actual simulation process, we solve Maxwell’s equations for a given resonator structure and 
material properties. Therefore, our simulation results naturally include the power loss in the ring as 
well as the coupling power loss between the waveguide and the ring. The resonance characteristics 
determined from this simulation are realistic, and therefore it should be noted that the quality factor Q 
discussed in this work is the total Q, defined by 1/Q = 1/Qexternal + 1/Qinternal. 

In Figure 5, it is interesting to note that FSR monotonically decreases with increasing diameter of 
the ring while FWHM, quality factor and finesse depend irregularly on the resonator diameter. These 
results indicate that only FSR is strongly affected by the resonator size. Furthermore, large finesse 
values make the WGM resonators excellent candidates for detection of various analytes using the 
spectroscopy method. The decreasing dependence of FSR on the ring diameter can be explained by the 
resonant mode of light orbiting in the ring. When a m-th resonant mode is developed in the ring by the 
total internal reflection, frequency of light is given by:  

 (4) 

where c is the speed of light in free space, n is refractive index of the ring, m is the mode number, and r 
is the outer radius of the ring. l is the number of sides of a l-sided polygon formed by light ray 
traveling around the outer boundary of the ring by the total internal reflection. When l is large as in our 
case, the Equation (4) can be approximated as f  mc/2πnr, and FSR = c/2πnr for . Therefore, 
FSR is inversely proportional to r, as observed in Figure 5(b). 

Figure 4. Resonance spectra of the ring for the OFRR (d = 100 μm, t = 3 μm, w = 2 μm,  
g = 0 nm). The large peaks are for the first-order resonances while the small peaks are for 
the second-order resonances.  
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Figure 5. Effects of the ring diameter on the resonance characteristics (t = 3 μm, w = 2 μm,  
g = 0 μm). Displayed four data sets are obtained from adjacent resonance peaks, respectively. 

 

4.3. Effect of the Resonator Thickness on Scattering Spectra and Resonance Characteristics 

In order to study dependence of resonance parameters on ring thickness, we calculated the 
scattering spectra for four different OFRR thicknesses (t = 2.5, 3.0, 3.5 and 4.0 μm). The ring 
diameter, the gap width and the waveguide width were 100 μm, 0 nm and 2 μm, respectively.  
Four first-order resonant frequencies (modes) were found for each of the resonator thickness in the 
frequency range of 192–195 THz. The resonant characteristics obtained from the scattering spectra 
(not shown) are displayed in Figure 6. It is clearly seen from Figure 6 that the ring thickness negligibly 
affects FSR, but it significantly does FWHM, Q and F. In particular, it is interesting to note FWHM 
increases with decreasing ring thickness. As the ring thickness decreases, electromagnetic energy 
confined in the ring more easily leaks out via the evanescent field, as seen in Figure 3. Quality factor is 
defined by Q = 2πEs/Ed = f/FWHM. Here, Es is the stored energy, Ed is the dissipated energy per cycle, 
and f is the resonance frequency. Therefore, the increased dissipation energy through the evanescent 
field naturally brings about increase in FWHM and decrease in Q and F. Negligible change in FSR 
with varying the ring thickness can be explained by Equation (4). As the ring thickness changes, only 
the inner radius of the ring varies while the outer radius of the ring remains fixed. Because the light 
wave is travelling around the outer boundary of the ring in the whispering gallery mode, resonance 
frequency f and FSR are little affected. 
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Figure 6. Effects of the ring thickness on the resonance characteristics (d = 100 μm,  
w = 2 μm, g = 0 μm). Displayed four data sets are obtained from adjacent resonance peaks, 
respectively. 

 

4.4. Effects of the Waveguide Width on Scattering Spectra and Resonance Characteristics 

In order to understand how the resonance parameters are affected by the waveguide width,  
we simulated the scattering spectra for ten different waveguide widths (w = 1.5–3.25 μm). The ring 
diameter, the gap width and the ring thickness were 100 μm, 0 nm and 3 μm, respectively.  
The resonant characteristics obtained from the scattering spectra (not shown) are plotted in Figure 7. 
As shown in Figure 7, FWHM, F and Q markedly changes with increasing the waveguide width 
whereas FSR insignificantly varies. Because the size of the resonance ring has not changed at all, 
negligible change in the resonance wavelength is expected from Equation (4). To be more specific, as 
the waveguide width increases, FWHM first rapidly decreases, then reach a minimum in the range  
of 2.5–2.9 μm, and afterwards sharply increases at 3.0 μm, eventually approaching a value. Both Q and F 
show similar behaviors, but in the opposite direction.  

The sharp jumps of Q, F and FWHM near 3.0 μm are quite surprising. In order to investigate this 
interesting behavior in more detail, we extended our study for four different ring thicknesses (t = 2.5, 
3.0, 3.5, 4.0 μm). The simulated FWHM values plotted in Figure 8, which are similar to those in 
Figure 7, show several features to discuss here. First, there is an optimum range of the waveguide 
width (w = 2.25–2.75 μm), regardless of the ring thickness. Second, FWHM rapidly changes at  
w  2.25 μm and 3.0 μm. In particular, these changes are most pronounced for the ring thickness  
2.5 μm and become smaller as the ring thickness is increased (except for t = 3 μm case). Third, FWHM 
is hardly affected by the waveguide width in the range of w = 3.0–4.5 μm. 
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Figure 7. Effects of the waveguide width on the resonance characteristics (d = 100 μm,  
t = 3 μm, g = 0 μm). Displayed four data sets are obtained from adjacent resonance peaks, 
respectively. 

 

Figure 8. Effect of the waveguide width on FWHM (d = 100 μm, g = 0 μm).  

 

With increasing waveguide width, the electric field in the waveguide extends less into the ring 
resonator and coupling strength between them decreases. The decreased coupling strength causes Q 
and F to increase and FWHM to decrease in the range of w = 1.5–2.5 μm, as seen in Figure 7. FWHM 
in Figure 8 shows a similar behavior in the range of w = 2.0–2.25 μm. In this region, the thinner the 
ring thickness is, the more FWHM seems to be affected by the waveguide width. Because further 
increase in the waveguide width has no effect on additionally decreasing the coupling strength and 
FWHM, our ring resonator can operate optimally in the range of w = 2.25–2.75 μm. 

The sharp jump of FWHM near 3.0 μm, as displayed in Figure 8, needs another physical 
explanation. We can infer, from the smooth change in FWHM for the resonator with t = 4 μm, that this 
jump is strongly associated with the small size of the ring thickness. One probable explanation is that 
the coupling phase-mismatch considerably decreases for some reason when the waveguide width 
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becomes comparable to 3.0 μm. Decreased phase-mismatch increases the coupling efficiency and 
therefore increases the FWHM values [7]. As shown in Figure 8, FWHM is nearly constant in the 
range of w = 3.0–4.5 μm. It indicates that the critical factor, in this region, is the ring thickness rather 
than the waveguide width. Furthermore, it demonstrates that the resonator with a large ring thickness is 
more suitable for the high Q device.  

4.5. Effect of the Gap Width on Scattering Spectra and Resonance Characteristics 

Finally, we investigated how the resonance parameters are influenced by the gap width. For this 
purpose, we simulated the scattering spectra for four different gap widths (g = 0, 100, 200 and 300 nm). 
The ring diameter, the waveguide width and the ring thickness were 100 μm, 2 μm and 3 μm, 
respectively. Four first-order resonant frequencies (modes) are found for each of the gap width in the 
frequency range between 192 THz and 195 THz. The resonant characteristics obtained from the 
scattering spectra (not shown) are plotted in Figure 9.  

Figure 9. Effects of the gap width on the resonance characteristics (d = 100 μm, t = 3 μm, 
w = 2 μm). Displayed four data sets are obtained from adjacent resonance peaks, 
respectively. 

 

It is clearly seen in Figure 9 that the effect of the gap width on the resonant frequencies and their 
intervals (FSR) is negligible. In contrast, FWHM, F and Q are strongly affected by the gap width.  
For example, with the increase of the gap width from 0 to 300 nm, FWHM decreases by over an order 
of magnitude and Q and F increase by the same factor. Our results are consistent with the simulated 
works reported for a micro-disk resonator by a research group [15]. 

These interesting results can be qualitatively explained by the coupled-mode theory (CMT) [16]. 
Figure 10 shows a schematic diagram of the ring resonator coupled to a waveguide. In Figure 10,  
β1 and β2 are the propagation constants in the waveguide and in the ring, respectively. n0, n1, n2 and n3 
are the refractive indices of air, the wave guide, the ring and water, respectively.  
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Figure 10. Schematic diagram of the ring resonator coupled to a waveguide. 

 

This resonator can be modeled by a coupled system with several physical parameters, as depicted in 
Figure 11. In this model, we take two sources of loss into account. γ is the coupling power loss factor 
between the waveguide and the ring, and α is the amplitude loss coefficient of the electric field in the 
ring. In addition the power splitting ratio K is introduced as illustrated schematically in Figure 11. 
Here, K is defined as the ratio of the power coupled to the ring resonator to the total power input into 
the waveguide and it mainly depends on the geometrical shape of the coupled system. A lengthy 
calculation based on this model gives:  
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In Equation (5), P2 = |E2|2/|E1|2,  = (1 − γ)/K0, and 02
0 )1(1 LeK αγ −−−= . mP2 is the maximum 

value of P2 on resonance and K0 is the power splitting ratio on resonance. K0 is an intrinsic resonance 
parameter related to the power loss of the system. Therefore, it can be shown that 10 2 ≤≤ mP .  
The phase change φ is defined by cav LL ββϕ += 02 . φ relies highly on the refractive index and the 
wavelength of light in the waveguide and in the ring. avβ  is the effective propagation constant in the 
coupling region. cL  is the length of the coupling region and oL  is the length of ring excluding the 
coupling region. They are related to each other by cLrL −= π20 . On resonance, the power coupled to 
the ring must exactly offset the power losses through the coupler and from circulation around the ring. 
Furthermore, phase change is given by πϕ n2=  (n = integer) on resonance. For a given geometrical 
configuration with a fixed K, the power in the ring is determined by the wavelength of light through 
the phase change φ. By plotting Equation (5) as a function of K and φ, it was demonstrated that the 
resonance curve becomes narrower as K0 is smaller [16]. For example, if no power is lost while light is 
travelling around the ring )0( =α , γ=0K . In this case, if we adjust K to γ , we can get the narrowest 
resonance curve. Because resonance occurs at 0KK =  and K generally decreases nearly exponentially 
with increasing the gap width, FWHM is expected to decrease with increasing gap width. Our results 
are in good agreement with CMT, as observed in Figure 9. As K approaches K0, decrease in FWHM 
slows down. It is obvious that increases in Q and F with increasing gap width result from the decreased 
FWHM. However, it should be noted that a large gap width is unfavorable to storing energy in the 
ring, and therefore a trade-off between them is necessary.  
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Figure 11. Model of wave coupling. 

 

5. Conclusions 

WGM resonators with a capillary ring-waveguide coupling arrangement were numerically 
characterized by FEM. By solving Maxwell’s equations, the electric fields and radiation energy 
distributions in the rings were determined. As WGM resonance occurs, a very shining loop with a 
strong electric field and high radiation intensity exists inside the periphery of the ring resonator under 
first-order resonance. There are two glittering loops inside the ring under the second-order resonance 
and the light intensity of the inner loop is higher than that of the outer loop. Thus, the second order 
resonances may be preferred in sensing applications because interesting interactions with analytes 
occur mainly in the vicinity of the inner boundary of the ring through the evanescent field. 

The WGM resonant frequencies are predominantly determined by the resonator diameter. 
Contrastingly, the gap width, the ring thickness and the waveguide width have negligible effects on the 
resonant frequencies.  

FWHM, the quality factor Q and the finesse F are most substantially affected by the gap width and 
moderately influenced by the waveguide width and the ring thickness. For example, with increasing 
the gap width from 0 to 300 nm, Q and F increase tenfold while FWHM decreases by one tenth. 
Contrastingly, FWHM, Q and F vary by a factor of 2 as the ring diameter, the ring thickness and the 
waveguide width change. 

In addition, our simulation demonstrates that there is an optimum range of the waveguide width for 
a given ring resonator and this value is between ~2.25 μm and ~2.75 μm in our case. 
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