
Sensors2012, 12, 15088-15118; doi:10.3390/s121115088
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Power Impact of Loop Buffer Schemes for Biomedical Wireless
Sensor Nodes

Antonio Artes 1,⋆, Jose L. Ayala 1 and Francky Catthoor 2

1 Computers Architecture and Automation Department, Complutense University of Madrid,

C/ Profesor Jose Garcia Santesmases s/n, 28040 Madrid, Spain; E-Mail: jayala@fdi.ucm.es
2 Smart Systems and Energy Technology Department, IMEC, Kapeldreef 75, 3001 Leuven, Belgium;

E-Mail: catthoor@imec.be

* Author to whom correspondence should be addressed; E-Mail:a.artes@fdi.ucm.es;

Tel.: +34-913-947-541.

Received: 13 August 2012; in revised form: 15 October 2012 / Accepted: 25 October 2012 /

Published: 6 November 2012

Abstract: Instruction memory organisations are pointed out as one of the major sources of

energy consumption in embedded systems. As these systems are characterised by restrictive

resources and a low-energy budget, any enhancement in this component allows not only to

decrease the energy consumption but also to have a better distribution of the energy budget

throughout the system. Loop buffering is an effective scheme to reduce energy consumption

in instruction memory organisations. In this paper, the loop buffer concept is applied in

real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes,

to show which scheme of loop buffer is more suitable for applications with certain behaviour.

Post-layout simulations demonstrate that a trade-off exists between the complexity of the

loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop

buffer architectures in order to optimise the instruction memory organisation from the energy

efficiency point of view should be evaluated carefully, taking into account two factors:

(1) the percentage of the execution time of the application that is related to the execution

of the loops, and (2) the distribution of the execution time percentage over each one of the

loops that form the application.

Keywords: power impact; loop buffer; instruction memory organisation; biomedical;

wireless sensor node

Sensors2012, 12 15089

1. Introduction

Embedded systems have different characteristics comparedwith general-purpose systems. On the

one hand, embedded systems combine software and hardware torun a specific and fixed set of

applications. However, they differ greatly in their characteristics, because they demand different

hardware architectures ranging from multimedia consumer devices to industry control systems. On

the other hand, unlike general-purpose systems, embedded systems have restricted resources and a

low-energy budget. In addition to these restrictions, embedded systems often have to provide high

computation capability, meet real-time constraints, and satisfy varied, tight, and time conflicting

constraints in order to make themselves reliable and predictable.

The combination of these requirements, and the fact that thewell-known problem of the memory wall

becomes even greater in embedded systems, make the decreaseof the total energy consumption of the

system a big challenge for designers, who not only have to consider the performance of the system but

also its energy consumption. Works like [1–3] demonstrate that the Instruction Memory Organisation

(IMO) and the Data Memory Hierarchy (DMH) take portions of chip area and energy consumption that

are not negligible. In fact, both memory architectures now account for nearly 50%–70% of the total

energy budget of an embedded instruction-set processor platform. Therefore, the optimisation in energy

consumption of both memory architectures becomes extremely important.

Villarreal et al. [4] show that77% of the total execution time of an application is spent in loops

of 32 instructions or less. This fact demonstrates that in applications of signal and image processing, a

significant amount of the total execution time is spent in small program segments. If these small program

segments can be stored in smaller memory banks (e.g., in the form of loop buffers), the dynamic energy

consumption of the system can be reduced significantly. The energy-saving features of the loop buffer

concept can be obtained in Figure1, where it is shown that accesses in a small memory have lower energy

consumption than in a large memory. This observation is the base of the loop buffer concept, which is a

scheme to reduce the dynamic energy consumption in the IMO. Furthermore, banking is identified as an

effective method to reduce the leakage energy consumption in memories [5]. Apart from the possibility

of using multiple low-power operating modes, the use of memory banks reduces the effective capacitance

as compared with a single monolithic memory.

Embedded systems constitute the digital domain of WirelessSensor Nodes (WSNs). They are

widely deployed in several types of systems ranging from industrial monitoring to medical applications.

Particularly, for the biomedical domain, the information that is processed and transmitted is confidential

or requires authentication in the majority of the cases. Dueto this fact, it is not unusual that two

applications like a Heart Beat Detection (HBD) algorithm and a cryptographic algorithm such as

Advanced Encryption Standard (AES) algorithm can be found in biomedical WSNs. These two real-life

embedded applications are used in this paper as case studiesto evaluate the energy reduction achieved

by the use of IMOs that are based on the loop buffer concept.

In this paper, the loop buffer concept is applied in the two real-life embedded applications described

in the previous paragraph. The loop buffer architectures that are analysed in this paper are the Single

Central Loop Buffer and the Banked Central Loop Buffer architecture. The contributions of this paper

include:

Sensors2012, 12 15090

• An analysis of real-life embedded applications that is usedto show which type of loop buffer

scheme is more suitable for applications with certain behaviour.

• The use of post-layout simulations to evaluate the power impact of the loop buffer architectures in

the experimental evaluation in a strict method in order to have an accurate estimation of parasitics

and switching activity.

• Gate-level simulations demonstrate that a trade-off exists between the complexity of the loop buffer

architecture and the power benefits of utilising it. The use of loop buffer architectures in order to

optimise the IMO from the energy efficiency point of view should be evaluated carefully. Two

factors have to be taken into account in order to implement anenergy efficient IMO based on a

loop buffer architecture: (1) the percentage of the execution time of the application that is related

to the execution of the loops included in the application, and (2) the distribution of the execution

time percentage, which is related to the execution of the loops, over each one of the loops that

form the application.

Figure 1. Power consumption per access in 16-bit instruction word SRAM memories

designed by Virage Logic Corporation tools [6] using TSMC 90 nm process.

16 32 64 128 256 512 1024 2048 4096 8192 16384
Memory size [Instsruction words]

0

10

20

30

40

50

60

70

P
o
w

e
r

co
n
su

m
p
ti

o
n
 [

u
W

/M
H

z]

Measurement
Trendline

The rest of the paper is organised as follows. Section2 presents the related work regarding

the loop buffer concept. Section3 describes the applications that are used as case studies, while

Section4 describes the experimental framework. Section5 shows and analyses the results of the

simulations. Finally, in Section6 the conclusions are presented.

2. Related Work

During the last 10 years, researchers have demonstrated that the IMO can contribute to a large

percentage of the total energy consumption of the system (e.g., [3]). Most of the architectural

enhancements that have been used to reduce this energy consumption have made use of the loop

buffer concept. Works [7–15] present the most traditional use of the loop buffer concept: the Single

Central Loop Buffer (SCLB) architecture. Work [7] analysed three hardware techniques to improve

direct-mapped cache performance: miss caching, victim caching, and stream buffers prefetch. Work [8]

proposed a configurable instruction cache, which could be tailored for a particular application in order

Sensors2012, 12 15091

to utilise the sets efficiently, without any increase in the cache size, associativity, or cache access time.

Work [9] proposed an alternative approach to detect and remove unnecessary tag-checks at run-time.

Using execution footprints, which were recorded previously in a branch target buffer, it was possible

to omit the tag-checks for all instructions in a fetched block. If loops could be identified, fetched, and

decoded only once, work [10] proposed an architectural enhancement that could switch off the fetch

and decode logic. The instructions of the loop were decoded and stored locally, from where they were

executed. The energy savings came from the reduction in memory accesses as well as the lesser use

of the decode logic. In order to avoid any performance degradation, work [11] implemented a small

instruction buffer that was based on the definition, detection and utilisation of special branch instructions.

This architectural enhancement had neither an address tag store nor valid bit associated with each loop

cache entry. Work [12] evaluated the Filter Cache. This enhancement was an unusually small first-level

cache that sacrificed a portion of performance in order to save energy. The program memory was only

required when a miss occurs in the Filter Cache, otherwise itremained in standby mode. Based on this

special loop buffer enhancement, work [13] presented an architectural enhancement that detected the

opportunity to use the Filter Cache, and enabled or disabledit dynamically. Also, work [14] introduced

a Decoder Filter Cache in the IMO to provide directly decodedinstructions to the processor, reducing

the use of the instruction fetch and decode logic. Furthermore, work [15] proposed a scheme, where the

compiler generated code in order to reduce the possibility of a miss in the loop buffer cache. However,

the drawback of this work was the trade-off between the performance degradation and the power savings,

which was created by the selection of the basic blocks.

Parallelism is a well-known solution for increasing performance efficiency. Because loops

form the most important part of an application [4], loop transformation techniques are applied to

exploit parallelism within loops on single-threaded architectures. Centralised resources and global

communication make these architectures less energy efficient. In order to reduce these bottlenecks,

several solutions that used multiple loop buffers were proposed in literature. Works [16–18] are examples

of the work done in this field: the Multiple Central Loop Buffer (MCLB) architecture. On the one

hand, work [16] presented a distributed control-path architecture for Distributed Very Long Instruction

Word (DVLIW) processors, which overcame the scalability problem of Very Long Instruction Word

(VLIW) control-paths. The main idea was to distribute the fetch and decode logic in the same way

that the register file was distributed in a multi-cluster data-path. On the other hand, work [17] proposed

a multi-core architecture that extended traditional multi-core systems in two ways. First, it provided

a dual-mode scalar operand network to enable efficient inter-core communication without using the

memory. Second, it could organise the cores for execution ineither coupled or decoupled mode

through the compiler. In coupled mode, the cores executed multiple instructions streams in lock-step

to collectively work as a wide-issue VLIW. In decoupled mode, the cores executed independently

a set of fine-grain communicating threads extracted by the compiler. These two modes created a

trade-off between communication latency and flexibility, which should be optimised depending on

the required parallelism. Work [18] analysed a set of architectures for efficient delivery of VLIW

instructions. A baseline cache implementation was compared with a variety of organisations, where the

evaluation included the cost of the memory accesses and the wires that were necessary to distribute the

instruction bits.

Sensors2012, 12 15092

The SCLB architecture and the MCLB architecture can be implemented based on memory banks

or without them. Power management of banked memories has been investigated from different

angles including hardware, OS and compiler. Using memory access patterns in embedded systems,

Benini et al. [19] proposed an algorithm to partition on-chip SRAM into multi-banks that could be

accessed independently. Fanet al. [20] presented memory controller policies for memory architectures

with low-power operating modes. Lyuhet al. [21] used a compiler directed approach to determine

the operating modes of memory banks after scheduling the memory operations. As we can see from

previous approaches, the drawback of using multiple buffers is usually to increase the logic that controls

the banks, which has the benefit of further decreasing the leakage energy consumption. This fact leads to

the increase of the interconnect capacitances, as well as the reduction of possible dynamic energy savings

that are related to the access to smaller memories. Most approaches that are related to caches assume

that automated tuning is done statically, meaning that the tuning is done once during application design

time. Ghoshet al. [22] presented a heuristic that, through an analytical model, directly determined,

based on the designer’s performance constraints and application characteristics, the configuration

of the cache. Other cache tuning approaches could be used dynamically, while an application was

executed [23].

In this paper, an experimental framework is developed in order to evaluate the SCLB architecture and

the Banked Central Loop Buffer (BCLB) architecture from energy consumption point of view.

3. Experimental Applications

Two real-life embedded applications that can be found in biomedical WSNs are used as case studies

in this paper. Both applications are described in the following Subsections.

3.1. HBD Algorithm

The Heart Beat Detection (HBD) algorithm is a biomedical application based on a previous algorithm

that was developed by [24]. This algorithm uses the Continuous Wavelet Transform (CWT) [25] to

detect heartbeats automatically. The QRS complex is the part of an Electrocardiogram (ECG) signal

that represents the greatest deflection from the baseline ofthe signal, and is where this algorithm tries to

detect the R-peak. Figure2 shows the P, Q, R, S, and T waves on an ECG signal.

The algorithm that is used in this paper is an optimised C-language version for biomedical WSNs.

It does not require pre-filtering and is robust against interfering signals under ambulatory monitoring

conditions. The algorithm works with an input frame of 3 seconds, which includes 2 overlaps of

0.5 seconds between consecutive frames in order to not lose data between frames. Figure3 shows the

flowchart of this algorithm. The algorithm performs the following steps to process an input data frame:

1. The ECG signal is analysed within a window of 3 seconds, wherethe CWT is calculated over this

interval and a mask is applied to remove edge components.

2. The square of the modulus maxima of the CWT is taken in order toemphasise the differences

between coefficients. Values above a chosen threshold are selected as possible R-peaks.

Sensors2012, 12 15093

3. In order to separate the different peaks, all modulus maximapoints within intervals of 0.25 seconds

are analysed in turn as search intervals. In every search interval, the point with the maximum

coefficient value is selected as R-peak.

4. The algorithm finds the exact location of the R-peak in the time-domain.

Figure 2. P, Q, R, S and T waves on an ECG signal.

Figure 3. Flowchart of the HBD algorithm.

ECG (3 seconds)

Compute CWT

Mask

Extract Modulus

Maxima

Square

> Threshold

Find higher

coefficient within

0.25 seconds

Find further value

from the mean withing

0.20 seconds

QRS

Ignore
No

Yes

C
W

T
M

O
D

U
L
U

S
 M

A
X

IM
A

T
IM

E

Sensors2012, 12 15094

The input of this algorithm is an ECG signal from MIT/BIH database [26]. The output is the positions

in time-domain of the heartbeats that are included in the input frame. The testing of this optimised

algorithm results in a sensitivity of 99.68% and a positive predictivity of 99.75% on the MIT/BIH

database.

3.2. AES Algorithm

The Advanced Encryption Standard (AES) algorithm is a cryptographic application. The algorithm

used in this paper is the security operation mode AES-CCM-32. This mode of operation provides

confidentiality, data integrity, data authentication, andreplay protection. In the next paragraphs, AES

and CCM are explained.

Figure 4. Flowchart of the AES algorithm. Encryption process.

Plaintext

SubBytes

128

XORroundkey(0)
128

ShiftRows

MixColumns

XOR
128

roundkey(i)

SubBytes

ShiftRows

XOR
128

Ciphertext

roundkey(Nr)

For i=1 to

Nr-1

Final

Round

AES [27] is a symmetric-key encryption standard in which both the sender and the receiver use a

single key for encryption and decryption. The data block length that is used by this algorithm is fixed

to 128 bits, while the length of the cipher key can be 128, 192 or 256 bits. The AES algorithm is an

iterative algorithm in which the iterations are called rounds, and the total number of rounds can be 10,

12 or 14, depending on whether the key length is 128, 192, or 256 bits, respectively. The data block that

is processed during the rounds is called State. In the encryption process, each round, except for the final

round, consists of four transformations:

• SubBytes is a byte substitution transformation that can be implemented in software in two ways:

based on finite fields digital logic or as a look-up table (S-Box lut).

• ShiftRows shifts cyclically the rows of the State, over a different number of bytes.

Sensors2012, 12 15095

• MixColumns multiplies the columns of the State with a fixed polynomial.

• AddRoundKey applies a XOR operation between the State and a Round key.

The final round does not have the MixColumns transformation.Figure4 shows the flowchart of this

algorithm when it is working in encryption mode.

The CCM (CTR-CBC-MAC), which is presented in the NIST Special Publication 800-38C [28],

encrypts and authenticates the message and the associated data. Depending on the size of the message

authentication code that it produces (4, 8, or 16 bytes), three different variations of AES-CCM exist:

AES-CCM-32, AES-CCM-64, and AES-CCM-128.

Because biomedical WSNs have ultra-low power requirements, the proposed algorithm supports only

128-bit key. In addition, only the encryption mode of the AESalgorithm is supported. However, with

a very small change in the design, both encryption and decryption can be supported. In this algorithm,

the input data frame is fixed to 1,460 bytes of information, whereas the output is a data packet where the

information is encrypted.

4. Experimental Framework

This Section describes all the components of the system thatform the experimental framework. On

the one hand, Subsections4.1, 4.2, and4.3 describe the processor architectures that are used in this

paper. On the other hand, Subsection4.4presents the rest of the components that form the experimental

framework and explains how the experimental framework is built based on a platform that can contain

any processor.

4.1. General-Purpose Processor

The general-purpose processor architecture is designed using the tools from Target Compiler

Technologies [29]. The Instruction-Set Architecture (ISA) of this processor is composed of integer

arithmetic, bitwise logical, compare, shift, control, andindirect addressing I/O instructions. Apart from

support for interrupts and on-chip debugging, this processor supports zero-overhead looping control

hardware, which allows fast looping over a block of instructions. Once the loop is set using a special

instruction, additional instructions are not needed in order to control the loop, because the loop is

executed a pre-specified number of iterations (known at compile time). This loop buffer implementation

supports branches, and in cases where the compiler cannot derive the loop count, it is possible to inform

the compiler through source code annotations that the corresponding loop will be executed at least N

times, and at most M times, such that no initial test is neededto check whether the loop has to be

skipped. The special instruction that controls the loops introduces only one cycle delay. The status of

this dedicated hardware is stored in the following set of special registers:

Loop Start address register (LS) It stores the address of the first instruction of the loop.

Loop End address register (LE) It stores the address of the last instruction of the loop.

Loop Count register (LC) It stores the remaining number of loop iterations.

Loop Flag register (LF) It keeps track of the hardware loop activity. Its value represents the number of

nested loops that are active.

Sensors2012, 12 15096

The experimental framework uses an I/O interface to providethe capability of receiving and sending

data in real-time. This interface is implemented in the processor architecture by FIFOs that are directly

connected to the register file. The data memory that is required by this processor architecture in order to

be a general-purpose processor is a memory with a capacity of16k words/16 bits, whereas the required

program memory is a memory with a capacity of 2 k words/16 bits.

Figure 5. Data-path of the general-purpose processor.

DM

16-bit
/

dmLdBus

dmStBus

dmAddr
/

/
16-bit

16-bit

(BSR)

(RTS)
R [8]

PH

PL

LR

SP

ALU
CND

CB SH MUL

AG1

+1 nint9

-1 sbyte

word

Figure5 presents the data-path of this processor, where the main blocks are Data Memory (DM),

Register File (R), Arithmetic Logic Unit (ALU), Shift Unit (SH), Multiplication Unit (MUL), and

Address Generation unit (AG1). The address generation unitspecifies the next address as normal word

instruction in the case of word label, as negative offsets tothe stack pointer register in the case of the

nint9 label, and as relative offset of short jump instructions in the case of the sbyte label.

4.2. Optimised Processor for the HBD Algorithm

The processor that is optimised for the HBD algorithm is based on the processor architecture that

is presented in Subsection4.1. This Subsection presents the modifications and optimisations that are

performed in order to build this optimised processor.

From the deep analysis that has to be performed to design the Application-Specific Instruction-set

Processor (ASIP) for the HBD algorithm, a loop is pointed outas the performance bottleneck in this

specific algorithm. This loop performs the convolution operation, which is the core of the CWT. A

signed multiplication, whose result is accumulated in a temporally variable, is performed inside of this

critical loop. The execution of this instruction is 72% of the execution time of the algorithm according

to profiling information. Therefore, in order to improve theperformance, the MUL unit is modified

to multiply two signed integers and accumulate, without shifting, the result of the multiplication. This

optimisation saves energy and at the same time reduces both the complexity of the MUL unit and the

execution time of the application.

The load operations that are related with the previous MUL operation are combined in a customised

instruction in order to be executed in parallel. However, inthe general-purpose processor, it is only

Sensors2012, 12 15097

possible to load and store data from the same memory once per stage of the pipeline. To solve this

bottleneck, the main data memory is split in two identical data memories: Data Memory (DM) and

Constant Memory (CM). In order to access two memories in parallel, another address generator (AG2)

is created such that the load and store operations from the DMand CM can be performed at the same

stage of the pipeline.

As the input registers of the MUL unit can be loaded directly,a new modification can be performed.

The parallel load and MUL instruction are combined, by adding another stage in the pipeline and creating

a custom instruction that integrates both instructions. The MUL instruction is then executed in the second

stage of the pipeline, while the parallel load instruction is executed in the first stage of the pipeline. After

this last modification, the MUL operation that is included inthe main critical loop of this algorithm is

performed using only one assembly instruction.

In a similar way as the MUL operation, another critical loop is optimised by combining load,

select, and equal instructions in order to be executed in parallel. This instruction is created adding

the functionality of the equal and select instructions, andcombining both of them with a normal load

operation. The functional unit ALU 2 is created for this specific operation.

It is necessary to remark that, apart from the specialised instructions that are described in previous

paragraphs, custom techniques like source code transformations (e.g., function combination, loop

unrolling) and mapping optimisations (e.g., use of look-uptables, elimination of divisions and

multiplications, instruction set extensions) are appliedto generate a more efficient code.

Figure 6. Data-path of the processor that is optimised for the HBD algorithm.

32-bit
/

dmLdBus

dmStBus

dmAddr
/

/
32-bit

20-bit

DM
(BSR)

(RTS)
R [8]

PH

PL

LR

SP

SH MUL

AG1

+1 nint9

-1 sbyte

word

ALU
CND

CB

CM

AG2

+1 nint9

-1 sbyte

word

ALU 2
CND 2

CB 2

All the optimisations and modifications that are described in this Subsection result in a new processor

architecture shown in Figure6. Basically, an address generator (AG2) and a second ALU (ALU2) are

added, in addition to some pipes and ports. Apart from that, the Program Counter (PC) is modified to

handle instruction words that use 32-bit immediate values.In order to handle ECG signals sampled at

1,000 Hz, the memories that are required by this processor architecture are a DM with a capacity of

8 k words/32 bits, and a CM with a capacity of 8 k words/32 bits.Besides, the program memory that is

required by this processor architecture is a memory with a capacity of 1 k words/20 bits. This optimised

processor is an implementation that is based on the work presented in Reference [30].

Sensors2012, 12 15098

4.3. Optimised Processor for the AES Algorithm

The processor that is optimised for the AES algorithm is based also on the processor architecture that

is presented in Subsection4.1. This Subsection presents the modifications and optimisations that are

performed in order to build this optimised processor.

Analysing this algorithm, the critical functions are identified and optimised in order to improve

performance in terms of clock cycles and memory accesses. Custom techniques like source code

transformations (e.g., function combination, loop unrolling) and mapping optimisations (e.g., use of

look-up tables, elimination of divisions and multiplications, instruction set extensions) are applied to

generate a more efficient code.

In the design of this optimised processor, the structure of the general-purpose architecture is kept

intact (16-bit data-path), and an extra 128-bit data-path is added. This last data-path is connected with

a vector memory, a vector register file, and a vector unit. Thevector unit includes the AES accelerating

operations, as well as the logic and arithmetic instructions that this algorithm requires. In this processor,

the ISA was also extended with one AES accelerating instruction that has two inputs: a 128-bit input,

which can be the State or a Round key, and an integer input, which indicates the behaviour of the

instruction itself. Depending on the input, the output contains the State or a Round key. One of the

advantages of this design is the ability to use the larger vector units only when they are required.

Figure 7. Data-path of the processor that is optimised for the AES algorithm.

DM

16-bit
/

dmLdBus

dmStBus

dmAddr
/

/
16-bit

16-bit

(BSR)

(RTS)
R [8]

PH

PL

LR

SP

ALU
CND

CB SH MUL

AG1

+1 nint9

-1 sbyte

word

VM

V [8]

Functional

Vector Unit

Vector Data Bus128-bit

/

All the optimisations and modifications that are presented in this Subsection result in the new

processor architecture shown in Figure7. Basically, an extra 128-bit data-path is added. This extra

data-path includes a Vector Memory (VM), a Vector register file (V), and a Vector Unit (Functional

Vector Unit). In order to handle an input signal of 1,460 bytes, the data memory required by this

processor architecture is a memory with a capacity of 1 k words/16 bits, and the VM is a memory

with a capacity of 64 words/128 bits. On the other hand, the required program memory is a memory

with a capacity of 1 k words/16 bits. This optimised processor is an implementation that is based on the

work presented in [31].

Sensors2012, 12 15099

4.4. Experimental Platform

The experimental platform is automatically generated for any of the processors described in

Subsections4.1, 4.2, and 4.3. The experimental platform is composed of a DMH, an IMO, an I/O

interface, and a processor that is used as core of the platform. On the one hand, the program memory

and the data memory are SRAM memories designed by Virage Logic Corporation tools [6]. On the other

hand, the I/O interface that provides the capability to receive and send data in real-time is connected with

the I/O interface that is described in Subsection4.1.

The interface between a processor architecture and an IMO isdepicted in Figure8. The

interconnections of the processor architecture, the program memory, the loop buffer memory and the

loop buffer controller are included in this figure. Every component that forms the IMO is explained in

the next paragraphs. In our experimental platform, the loopbuffer architecture, which is composed of

the loop buffer memory and the loop buffer controller, can beconfigurable to be used as an SCLB or

BCLB architecture. For simplicity, the SCLB architecture is used in the next paragraphs to explain the

loop buffer concept operation.

Figure 8. IMO interface for a SCLB architecture.

Loop Buffer

memory

Loop Buffer

controller

Fetch Block

ME

CE
Program Memory

ME

CE

LF LC LS LE

S

CE ME

A Q D A Q

LF LC LS LEA Q

In essence, the operation of the loop buffer concept is as follows. During the first iteration of the loop,

the instructions are fetched from the program memory to bothloop buffer architecture and processor. In

this iteration, the loop buffer architecture records the instructions of the loop. Once the loop is stored,

for the rest of iterations, the instructions are fetched from the loop buffer architecture instead of the

program memory. In the last iteration, the connection between the processor and program memory is

restored, such that subsequent instructions are fetched from the program memory. During the execution

of non-loop parts of the application code, instructions arefetched directly from the program memory.

Sensors2012, 12 15100

Figure 9. State-machine diagram of the loop buffer controller.

S0

S5

S4

S1

S2

S3

LF != 0

LE - LS < Loop body th

LF = 0

LF = 0

LF = 0

LF = 0

LF = 0

TAG = 1

A

ii

E

TAG != 1ii

LC = 1

The loop buffer controller monitors the operation of the loop buffer architecture based on a state-

machine. This state-machine is shown in Figure9. The six states of the state-machine are:

s0 Initial state.

s1 Transition state betweens0ands2.

s2 State where the loop buffer is recording the instructions that the program memory supplies to

the processor.

s3 Transition state betweens2ands4.

s4 State where the loop buffer is providing the instructions tothe processor.

s5 Transition state betweens4ands0.

The transition statess1, s3, ands5are necessary in order to give the control of the instructionsupply

from the program memory to the loop buffer architecture and vice-versa. The transition betweens4

ands1 is necessary because the body size of a loop can change in real-time (i.e., in a loop body with

if-statements or function calls). In order to check in real-time whether the loop body size changes or not,

a 1-bit tag is used. This tag is associated with each address that is stored in the loop buffer. The loop

buffer controller checks this tag to know if the address is already stored in the loop buffer or not.

Figure10 shows how the BCLB architecture is composed of different loop buffer memories. In a

BCLB architecture, every memory is connected to the processor architecture and the program memory

through multiplexers. The loop buffer controller, based onthe loop body size of the loop that is on

execution, decides which of the available loop buffer memories is connected directly with the program

memory and the processor. The logic circuit that decides if the loop buffer architecture is activated is

the same as the one used in the SCLB architecture. In order to make all the decisions that are described

previously, the complexity of the state-machine is incremented. However, Figure10 shows that this

modification allows the design of the loop buffer architecture to be scalable.

Sensors2012, 12 15101

Figure 10. IMO interface for a BCLB architecture.

Loop Buffer

memory N
ME

CE

A Q_N D

Loop Buffer

memory 0

Loop Buffer

controller

Fetch Block

ME

CE
Program MemoryME

CE

LF LC LS LE

S

CE ME

A Q_0 D A Q

LF LC LS LEA Q

...
......
...

5. Experimental Evaluation

This section shows the results of the experimental evaluation of the SCLB and the BCLB architecture.

Firstly, Subsection5.1 describes the methodology that is used in our energy simulations. Secondly,

Subsection5.2analyses the experimental applications that are describedin Section3 based on profiling

information. Finally, Subsection5.3shows and discusses the results of the power simulations.

5.1. Simulation Methodology

The simulation methodology that is used in our experimentalevaluation is described by the following

steps:

Application mapping The selected application is mapped to the system architecture that we want to

simulate. The I/O data connections of the system are used by the embedded systems designer to

corroborate the correct functionality of the system.

Behaviour simulation The mapped application is simulated on the system architecture in order to check

its correct functionality. For that purpose, an Instruction-Set Simulator (ISS) from Target Compiler

Technologies [29] is used.

RTL implementation The RTL language description files of the processor are automatically generated

using the HDL generation tool from Target Compiler Technologies [29]. The design of the

interfaces between the DMH and the IMO has to be added in orderto have a complete description

of the whole system in RTL language.

RTL synthesis When every component of the system has its own RTL language description file, the

design is synthesised. In our RTL synthesis, a 90 nm Low PowerTSMC library is used for a

system frequency of 100 MHz. During synthesis, clock gatingis used whenever possible.

Place and route After the synthesis, place and route is performed using Encounter [32].

Recording Activity It is necessary to generate a Value Change Dump (VCD) file for the desired

time interval of the netlist simulation. If the selected time interval is the execution time of the

application, the VCD file will contain the information of theactivity of every net and every

component of the whole system when an input data frame is processed.

Sensors2012, 12 15102

Extraction of power consumption As a final step, the information of the average power consumption

is extracted with the help of Primetime [33].

Figure11shows the inputs and outcomes of each step described above.

Figure 11. Simulation Methodology.

.

5.2. Analysis of the Experimental Applications

The total energy consumption of the systems that are presented in this paper is strongly influenced

by the consumption of the IMO. Following the steps that are described in Subsection5.1, Figures12,

13, 14, and15 present the first outcome from the experimental evaluation.Figures12 and 13 show

the power breakdowns that are related with the HBD algorithm, whereas Figures14 and15 show the

power breakdowns that are related with the AES algorithm. Inthese figures, the components of the

processor core are grouped. Apart from seeing how the power distribution changes from a design

based on a general-purpose processor to an ASIP design, these figures demonstrate that the total energy

consumption of these systems is strongly influenced by the consumption of the IMO.

Loops dominate the total energy consumption of the IMO. Figures16, 17, 18, and19 show profiling

information based on the accesses that are done in the program address space. Figures16 and17 show

the profiles based on the number of cycles per program counterthat are related with the HBD algorithm,

whereas Figures18 and19 show the profiles based on the number of cycles per program counter that

are related with the AES algorithm. We can see from these Figures that there are regions that are more

frequently accessed than others. This situation implies the existence of loops. Apart from this fact, it

is possible to see from these figures that the application execution time of the selected applications is

dominated by only a few loops.

Sensors2012, 12 15103

Figure 12. Power breakdown in the general-purpose processor running the HBD algorithm.

Figure 13. Power breakdown in the optimised processor running the HBD algorithm.

Figure 14. Power breakdown in the general-purpose processor running the AES algorithm.

Sensors2012, 12 15104

Figure 15. Power breakdown in the optimised processor running the AES algorithm.

Figure 16. Number of cycles per PC in the general-purpose processor running the HBD

algorithm.

N
u

m
b

e
r
 o

f
e
x
e
c
u

te
d

 c
y
c
le

s

PC value

30000

25000

20000

15000

10000

5000

0

6002001000 300 400 500 700

Figure 17. Number of cycles per PC in the optimised processor running the HBD algorithm.

N
u

m
b

e
r
 o

f
e
x
e
c
u

te
d

 c
y
c
le

s

PC value

18000

16000

10000

2000

0

300100500 150 200 250 350

4000

6000

8000

12000

14000

Sensors2012, 12 15105

Figure 18. Number of cycles per PC in the general-purpose processor running the AES

algorithm.

N
u

m
b

e
r
 o

f
e
x
e
c
u

te
d

 c
y
c
le

s

PC value

35000

30000

25000

20000

15000

10000

5000

0

12004002000 600 800 1000

Figure 19. Number of cycles per PC in the optimised processor running the AES algorithm.

N
u

m
b

e
r
 o

f
e
x
e
c
u

te
d

 c
y
c
le

s

PC value

200

150

100

50

0

4002000 600 800 1000

In order to implement energy efficient IMOs based on loop buffer architectures, more detail

information related with loops is needed. Tables1, 2, 3, and4 provide this information. Tables1

and2 present the loop profiling information of the systems that are related with the HBD algorithm,

whereas Tables3 and4 present the loop profiling information of the systems that are related with the AES

algorithm. In these tables, loops are numbered in the staticorder that they appear in the assembly code

of the algorithm. A nested loop creates another level of numbering. Thus, a loop named2 corresponds to

the second loop encountered, while a loop named2.1corresponds to the first sub-loop encountered in the

loop named2. These tables corroborate the fact that the execution time of the loops dominates the total

execution time of the application. For instance, the execution time of the loops represents approximately

79% of the total execution time of the HBD algorithm in the case of the general-purpose processor, and

81% in the processor that is optimised for this algorithm. Incontrast, in the AES algorithm, the execution

time of the loops represents 77% of the total execution time in the case of the general-purpose processor,

and 90% in the processor that is optimised for this algorithm. It is necessary to remark that differences

Sensors2012, 12 15106

exist between algorithms of the same application due to the source code transformations and mapping

optimisations that are applied in the optimised algorithmsin order to generate efficient codes.

The configurations of the SCLB and BCLB architectures that are analysed in this paper are based

on the loop profiling presented in Tables1, 2, 3, and4. On the one hand, the selection of the SCLB

configurations is based on the small size of the loops that have bigger percentage of execution time.

With this strategy, we assume that these configurations are the most energy efficient. This assumption

is based on the fact that these configurations provide the highest energy savings among all the possible

configurations. These major energy savings help to reduce the penalty related with the introduction of

the loop buffer architecture in the system. On the other hand, the selection of the BCLB configurations

is based on the strategy of taking the maximum loop body size of the application, and chop it by the

granularity of the smaller loop body size that the applications contains. This strategy is used in these

architectures, because the exact energy consumption of theextra logic that has to be added in the loop

buffer controller is unknown. Table5 presents the initial configurations that are evaluated.

In order to conclude the analysis of the experimental applications, it is necessary to remark that

due to time requirements, a system frequency of 100 MHz is fixed. At this frequency, the HBD

algorithm running on the general-purpose processor spends462 cycles in order to process an input

sample contained in the data frame. However, if this algorithm is running on the processor that is

optimised for this algorithm, the number of cycles in order to process an input sample contained in the

data frame is 11 cycles. On the other hand, the AES algorithm running on the general-purpose processor

spends 484 cycles in order to process an input sample contained in the data frame. If this algorithm is

running on the processor that is optimised for this algorithm, the number of cycles in order to process an

input sample contained in the data frame is only 3 cycles.

Table 1. Loop profiling of the HBD algorithm on the general-purpose processor.

Start End Loop body Number of Execution

address address size iterations time [%]

Loop 1 33 34 2 4 0

Loop 2 44 45 2 594 0

Loop 3 54 57 4 594 1

Loop 4 72 75 4 594 1

Loop 5 92 103 12 132 1

Loop 6 124 136 13 594 3

Loop 7 160 160 1 15 0

Loop 8 236 242 7 32,625 71

Loop 9 417 427 11 594 2

Loop 10 569 590 22 64 0

5.3. Power Analysis

Tables6, 7, and8 present the power results for each system that is evaluated.These tables show the

dynamic power, the leakage power, and the total power for allthe configurations that are presented in

Table5. As it can be seen, the power consumption of the IMO is the sum of the power that is consumed

Sensors2012, 12 15107

Table 2. Loop profiling of the HBD algorithm on the optimised processor.

Start End Loop body Number of Execution

address address size iterations time [%]

Loop 1 192 244 53 1,380 70

Loop 1.1 200 205 6 1 0

Loop 2 266 271 6 350 2

Loop 3 209 302 13 768 9

Table 3. Loop profiling of the AES algorithm on the general-purpose processor.

Start End Loop body Number of Execution

address address size iterations time [%]

Loop 1 307 309 3 8 0

Loop 2 324 327 4 2 0

Loop 3 340 342 3 16 0

Loop 4 360 362 3 1,460 3

Loop 5 383 387 5 1,600 7

Loop 6 409 411 3 4 0

Loop 7 419 421 3 8 0

Loop 8 426 428 3 16 0

Loop 9 436 458 23 92 2

Loop 10 472 474 3 1,392 3

Loop 11 489 491 3 1,392 3

Loop 12 506 510 5 1,460 6

Loop 13 519 523 5 4 0

Loop 14 926 930 5 6,016 25

Loop 15 942 1,000 59 40 2

Loop 16 1,019 1,034 16 1,692 26

Table 4. Loop profiling of the AES algorithm on the optimised processor.

Start End Loop body Number of Execution

address address size iterations time [%]

Loop 1 519 524 6 36 5

Loop 2 544 560 17 2 1

Loop 2.1 550 555 6 0 0

Loop 3 806 837 32 91 84

by the components that the IMO contains (i.e., the loop buffer controller, the loop buffer memory and

the program memory).

We can see from these tables that the systems that are optimised for the experimental applications

always consume less power than the general-purpose systems. Therefore, the introduction of the SCLB

and BCLB architectures does not affect this energy consumption trend.

Analysing Table7, it is possible to see that there is a decrease on the dynamic power of these systems

in relation with the baseline architectures. This is because the majority of the instructions are fetched

Sensors2012, 12 15108

Table 5. Configurations of the experimental framework.

Baseline architecture SCLB BCLB

HBD algorithm No loop buffer 8 words 8 banks of

General-purpose processor architecture 8 words

HBD algorithm No loop buffer 64 words 8 banks of

Optimised processor architecture 8 words

AES algorithm No loop buffer 8 words 4 banks of

General-purpose processor architecture 8 words

AES algorithm No loop buffer 32 words 4 banks of

Optimised processor architecture 8 words

Table 6. Power consumption [W] of the baseline architecture.

Component Dynamic power Leakage power Total power

HBD algorithm IMO 4.44× 10
−6

0.91× 10
−9

4.44× 10
−6

- LB Controller 0 0 0

General-purpose LB Memory 0 0 0

processor PM 4.44× 10
−6

0.91× 10
−9

4.44× 10
−6

HBD algorithm IMO 3.57× 10
−7

8.46× 10
−11

3.57× 10
−7

- LB Controller 0 0 0

Optimised LB Memory 0 0 0

processor PM 3.57× 10
−7

8.46× 10
−11

3.57× 10
−7

AES algorithm IMO 1.81× 10
−6

4.32× 10
−10

1.82× 10
−6

- LB Controller 0 0 0

General-purpose LB Memory 0 0 0

processor PM 1.81× 10
−6

4.32× 10
−10

1.82× 10
−6

AES algorithm IMO 1.20× 10
−6

2.11× 10
−10

1.20× 10
−6

- LB Controller 0 0 0

Optimised LB Memory 0 0 0

processor PM 1.20× 10
−6

2.11× 10
−10

1.20× 10
−6

from a small memory instead of the large memory that forms theprogram memory. On the other hand,

the SCLB architectures have an increase in the leakage powerconsumption in relation with the baseline

architectures, due to the introduction of the loop buffer architecture. We can see also the importance

of the loop buffer controller in the IMO, which accounts fromthe 5% of the power consumption of the

IMO in the system where the AES algorithm is running on the general-purpose processor, to 30% in the

system where the AES algorithm is running on the processor that is optimised for this algorithm.

Using the profiling information presented in Tables1, 2, 3, and4, and the power results obtained from

the simulations of the systems presented in Table5, we can evaluate if our initial configurations for the

SCLB architecture are selected correctly from the energy consumption point of view.

For the HBD algorithm running on the general-purpose processor, Figure20 shows the power

reductions that we can achieve for all the possible configurations. In the configuration of eight words,

Sensors2012, 12 15109

Table 7. Power consumption [W] of the IMO based on an SCLB architecture.

Component Dynamic power Leakage power Total power

HBD algorithm IMO 1.74× 10
−6

1.14× 10
−9

1.74× 10
−6

- LB Controller 2.55× 10
−7

1.60× 10
−10

2.55× 10
−7

General-purpose LB Memory 6.97× 10
−8

6.60× 10
−11

6.97× 10
−8

processor PM 1.41× 10
−6

9.16× 10
−10

1.41× 10
−6

HBD algorithm IMO 1.40× 10
−7

1.77× 10
−10

1.40× 10
−7

- LB Controller 3.71× 10
−8

2.66× 10
−11

3.71× 10
−8

Optimised LB Memory 5.76× 10
−8

6.56× 10
−11

5.76× 10
−8

processor PM 4.50× 10
−8

8.46× 10
−11

4.51× 10
−8

AES algorithm IMO 1.76× 10
−6

5.25× 10
−10

1.76× 10
−6

- LB Controller 1.03× 10
−7

7.39× 10
−11

1.03× 10
−7

General-purpose LB Memory 9.54× 10
−9

2.68× 10
−11

9.54× 10
−9

processor PM 1.65× 10
−6

4.25× 10
−10

1.65× 10
−6

AES algorithm IMO 8.32× 10
−7

4.12× 10
−10

8.36× 10
−7

- LB Controller 2.43× 10
−7

7.53× 10
−11

2.47× 10
−7

Optimised LB Memory 1.79× 10
−7

1.29× 10
−10

1.79× 10
−7

processor PM 4.10× 10
−7

2.13× 10
−10

4.10× 10
−7

Table 8. Power consumption [W] of the IMO based on a BCLB architecture.

Component Dynamic power Leakage power Total power

HBD algorithm IMO 1.97× 10
−6

1.47× 10
−9

1.97× 10
−6

- LB Controller 4.72× 10
−7

3.95× 10
−10

4.72× 10
−7

General-purpose LB Memory 8.73× 10
−8

1.59× 10
−10

8.73× 10
−8

processor PM 1.41× 10
−6

9.16× 10
−10

1.41× 10
−6

HBD algorithm IMO 1.64× 10
−7

3.83× 10
−10

1.65× 10
−7

- LB Controller 5.51× 10
−8

1.40× 10
−10

5.51× 10
−8

Optimised LB Memory 6.39× 10
−8

1.58× 10
−10

6.39× 10
−8

processor PM 4.50× 10
−8

8.46× 10
−11

4.51× 10
−8

AES algorithm IMO 1.90× 10
−6

7.40× 10
−10

1.90× 10
−6

- LB Controller 2.35× 10
−7

2.72× 10
−10

2.35× 10
−7

General-purpose LB Memory 1.46× 10
−8

4.29× 10
−11

1.46× 10
−8

processor PM 1.65× 10
−6

4.25× 10
−10

1.65× 10
−6

AES algorithm IMO 6.60× 10
−7

4.30× 10
−10

6.60× 10
−7

- LB Controller 5.20× 10
−8

1.10× 10
−11

5.20× 10
−8

Optimised LB Memory 1.98× 10
−7

2.06× 10
−10

1.98× 10
−7

processor PM 4.10× 10
−7

2.13× 10
−10

4.10× 10
−7

the 73% of the execution time of the application is on loops, while in the rest of the configurations this

percentage is 79%. We can see that in this scenario, the best configuration is a loop buffer memory of

16 words, because the increase of use of the loop buffer memory compensates the penalty introduced by

using a bigger loop buffer architecture.

Figure21 shows the energy reductions we can achieve for all the possible configurations when the

HBD algorithm is running on the processor that is optimised for this algorithm. In the configuration

of eight words, the 2% of the execution time of the application is on loops. This percentage is 11% in

the configuration of 16 and 32 words, whereas in the configuration of 64 words this percentage is 81%.

We can see that in this scenario, the only configuration that brings energy savings is the loop buffer of

Sensors2012, 12 15110

64 words. The percentages of the execution time of the rest ofconfigurations do not compensate the

penalty introduced by using a loop buffer architecture.

Figure 20. HBD algorithm running on the general-purpose processor using different

configurations for the SCLB architecture.

Figure 21. HBD algorithm running on the optimised processor using different configurations

for the SCLB architecture.

For the AES algorithm running on the general-purpose processor, Figure22 shows the energy

reductions we can achieve for all the possible configurations. In the configuration of eight words, the

47% of the execution time of this application is on loops; in the configuration of 16 words this percentage

is 70%; in the configuration of 32 words this percentage is 75%, whereas in the configuration of 64

words this percentage is 77%. We can see that in this scenario, the best configuration is a loop buffer of

32 words, because the increase of use of the loop buffer architecture compensates the penalty introduced

by using a bigger loop buffer memory. On the other hand, the small increase in the percentage of

execution time from the configuration of 32 words to 64 words does not compensate the increase in

leakage consumption that this last loop buffer architecture has.

Sensors2012, 12 15111

Figure 22. AES algorithm running on the general-purpose processor using different

configurations for the SCLB architecture.

Figure23 shows the energy reductions we can achieve for all the possible configurations when the

AES algorithm is running on the processor that is optimised for this algorithm. In the configuration of

8 words, the 5% of the execution time of the application is on loops; in the configuration of 16 words

this percentage is 6%, whereas in the configuration of 32 and 64 words this percentage 90%. We can see

that in this scenario, the best configuration is a loop bufferof 32 words. The percentages of execution

time for the 8 and 16 words configurations do not compensate the penalty introduced by using a loop

buffer architecture. Also in this scenario, the small increase in the execution time percentage from the

configuration of 32 words to 64 words does not compensate the increase in leakage power consumption

that this last loop buffer architecture has.

Figure 23. AES algorithm running on the optimised processor using different configurations

for the SCLB architecture.

Sensors2012, 12 15112

Analysing Table8, it is possible to see that also in these architectures, there is a decrease in the

dynamic power of these systems in relation with the baselinearchitectures. However, we can see

that these architectures sometimes do not offer as good energy savings as the SCLB architectures

offer, because the system suffers an increase in both dynamic and leakage power consumption with

the introduction of these loop buffer architectures. Firstly, in the dynamic power consumption, the

loop buffer controller of the BCLB architecture has higher complexity than in the SCLB architecture.

Secondly, in the leakage power consumption, apart from the higher complexity of the loop buffer

controller, there is more loop buffer memories. In these architectures, the importance of the loop buffer

controller is increased in the IMO, which now accounts for 10% of the power consumption of the IMO in

the AES algorithm when it is running on the general-purpose,and for 32% in the HDB algorithm running

on the processor that is optimised for this algorithm. Usingthe same information and methodology as in

the analysis of the SCLB architectures, we can analyse if ourconfigurations for the BCLB architectures

are power efficient.

For the HBD algorithm running on the general-purpose processor, we have to analyse only the

loop buffer configurations of 8 instruction words, because all the loops can fit in a loop buffer of 16

instructions words (see Table1), and every configuration in a BCLB architecture with a loop buffer of

16 instruction words is worse in power consumption than a SCLB architecture of 16 instructions words.

Figure24 shows the possible configurations of two loop buffers, whereone of them has a fixed size of

8 words. From this Figure, we can see that the best configuration is two loop buffers of 8 words. If we

compare the energy savings from the BCLB and the SCLB architecture, we can see that for this specific

scenario, it is better to have the SCLB architecture.

Figure 24. HBD algorithm running on the general-purpose processor using different

configurations for the BCLB architecture.

For the HBD algorithm running on the processor that is optimised for this algorithm, we have to

analyse only the loop buffer configurations of 64 instruction words because any configuration without a

loop buffer of this size will not bring us energy savings (seeFigure21). Figure25shows the configuration

of two loop buffers, where one of them has a fixed size of 64 words. From this Figure, we can see that the

best configuration is a loop buffer of 16 words together with the loop buffer of 64 words. If we compare

Sensors2012, 12 15113

the energy savings from the BCLB and the SCLB architecture, we can see that for this specific scenario

it is also better to have the SCLB architecture.

Figure 25. HBD algorithm running on the optimised processor using different configurations

for the BCLB architecture.

Figure 26. AES algorithm running on the general-purpose processor using different

configurations for the BCLB architecture.

For the AES algorithm running on the general-purpose processor, we have to analyse all the possible

configurations because the execution time of the application is spread (see Table3). The configuration

with two loop buffers of 64 instruction words each is not analysed, because this configuration is worse

in energy efficiency than the SCLB architecture of 64 instructions words, due to the increase in energy

consumption of the loop buffer controller. From Figure26, we can see that the best configuration is a

loop buffer of 8 words together with a loop buffer of 32 words.In this case, if we compare the energy

Sensors2012, 12 15114

savings from the BCLB and the SCLB architecture, we can see that for this specific scenario it is also

better to have the SCLB architecture.

For the AES algorithm running on the processor that is optimised for this algorithm, we have to

analyse only the loop buffer configurations that has 32 instruction words, because all the loops can fit

in a loop buffer of 32 instructions words (see Table4). However, from Figure23, we can see that only

loop buffers of 32 and 64 instruction words bring us energy savings. Therefore, we will analyse only

the loop buffer configurations that has 32 instructions words. Figure27 shows the configuration of two

loop buffers, where one of them has a fixed size of 32 words. From this figure, we can see that the best

configuration is a loop buffer of 8 words together with the loop buffer of 32 words. If we compare the

energy savings from the BCLB and the SCLB architecture, we can see that for this specific scenario it is

also better to have the SCLB architecture.

Figure 27. AES algorithm running on the optimised processor using different configurations

for the BCLB architecture.

Figure 28. Summary of the best and worst SCLB and BCLB architectures.

Best SCLB

Worst BCLB

Best BCLB

Worst SCLB

Baseline architecture

P
o
w

e
r
 c

o
n

s
u

m
p

ti
o
n

 [
W

]

Optimised

processor

General-purpose

processor

AES algorithm HBD algorithm HBD algorithm AES algorithm

Optimised

processor

General-purpose

processor

0,0040

0

0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

Based on all the previous results and discussions, we can conclude that the use of loop buffer

architectures in order to optimise the IMO from the energy efficiency point of view should be evaluated

Sensors2012, 12 15115

carefully. In the case studies that are presented in this paper, the SCLB architecture is normally more

energy efficient than the BCLB architecture, as can be seen inFigure28. However, the SCLB architecture

is not always more energy efficient than the BCLB architecture. The higher energy efficiency of the

SCLB architecture is because the whole execution time of allbenchmarks is concentrated in a few loops

with similar loop body size. If we can find a benchmark where this percentage is shared between loops

with different loop body sizes, the BCLB architecture will then bring us more energy efficiency than

the SCLB architecture. Therefore, the two factors to take inaccount in order to implement an energy

efficient IMO based on a loop buffer architecture are:

• the percentage of the execution time of the application thatis related to the execution of the loops

included in the application. If this percentage is low, the introduction of a loop buffer architecture

in the IMO cannot offer any energy savings, because the loop buffer architecture is not used enough

to achieve energy savings. In contrast, the higher this percentage, the higher energy savings that

can be achieved.

• the distribution of the execution time percentage, which isrelated to the execution of the loops,

over each one of the loops that forms the application. For instance, the whole execution time

percentage that is related to loops can belong only to a few loops, or in another case, this percentage

can be spread in each loop homogeneously. If the whole execution time is concentrated in a few

loops, the SCLB architecture will bring more energy savingsthan the BCLB. If this percentage

is distributed homogeneously between loops, the BCLB architecture will then bring more energy

savings than the SCLB. These facts are based on the efficient use of the multi-banks that can form

the loop buffer architecture.

6. Conclusions

In this paper, the loop buffer concept was applied in two real-life embedded applications that are

widely used in biomedical WSNs. The loop buffer architectural organisations that were analysed in this

paper were the Single Central Loop Buffer and the Banked Central Loop Buffer architecture. An analysis

of the experimental applications that were used in this paper was performed to show which type of loop

buffer scheme was more suitable for applications with certain behaviour. To evaluate the power impact, a

post-layout simulation was used to have an accurate estimation of parasitics and switching activity. The

evaluation was performed using TSMC 90 nm Low Power library and commercial memories. From

the experimental evaluation, gate-level simulations demonstrated that a trade-off exists between the

complexity of the loop buffer architecture and the power benefits of utilising it. This confirms our results,

showing that the Central Banked Loop Buffer does not always bring benefits. Therefore, the use of loop

buffer architectures in order to optimise the IMO from the energy efficiency point of view should be

evaluated carefully. Two factors have to be taken into account in order to implement an energy efficient

IMO based on a loop buffer architecture: (1) the percentage of the execution time of the application

that is related with the execution of the loops included in the application, and (2) the distribution of the

execution time percentage, which is related with the execution of the loops, over each one of the loops

that forms the application.

Sensors2012, 12 15116

Acknowledgements

This work is supported by the Spanish Ministry of Science andInnovation, under grant BES-2009-

023681, and the Spanish Ministry of Economy and Competitiveness, under grant TEC2012-33892.

References

1. Hennessy, J.L.; Patterson, D.A. Computer Architecture—A Quantitative Approach;

Penrose, D.E.M., Ed.; Morgan Kaufmann: San Francisco, CA, USA, 2007.

2. Verma, M.; Marwedel, P.Advanced Memory Optimization Techniques for Low-Power Embedded

Processors; Springer: Dordrecht, The Netherlands, 2007.

3. Catthoor, F.; Raghavan, P.; Lambrechts, A.; Jayapala, M.; Kritikakou, A.; Absar, J. Ultra-Low

Energy Domain-Specific Instruction-Set Processors; Springer: Dordrecht, The Netherlands, 2010.

4. Villarreal, J.; Lysecky, R.; Cotterell, S.; Vahid, F.A Study on the Loop Behavior of Embedded

Programs; Technical Report UCR-CSE-01-03; University of California: Riverside, CA, USA,

2001.

5. Kandemir, M.T.; Kolcu, I.; Kadayif, I. Influence of loop optimizations on energy consumption of

multi-bank memory systems. InProceedings of the 11th International Conference on Compiler

Construction, Grenoble, France, April 2002; pp. 276–292.

6. Virage Memories in Synopsys Website. Available online: http://www.synopsys.com/IP/

SRAMandLibraries/Pages/default.aspx (accessd on 18th September 2012).

7. Jouppi, N. Improving direct-mapped cache performance by the addition of a small fully-associative

cache and prefetch buffers. InProceedings of the 17th Annual International Symposium on

Computer Architecture, Seattle, WA, USA, 28–31 May 1990; pp. 364–373.

8. Zhang, C. An efficient direct mapped instruction cache for application-specific embedded systems.

In Proceedings of the Third IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, Jersey City, NJ, USA, 19–21 September 2005; pp. 45–50.

9. Inoue, K.; Moshnyaga, V.; Murakarni, K. A history-based I-cache for low-energy multimedia

applications. InProceedings of the ISLPED, Monterey, CA, USA, 12–14 August 2002;

pp. 148–153.

10. Bajwa, R.; Hiraki, M.; Kojima, H.; Gorny, D.; Nitta, K.; Shridhar, A.; Seki, K.; Sasaki, K.

Instruction buffering to reduce power in processors for signal processing. IEEE Trans. Very

Large Scale Integr. Syst.1997, 5, 417–424.

11. Lee, L.H.; Moyer, B.; Arends, J. Instruction fetch energy reduction using loop caches for embedded

applications with small tight loops. InProceedings of the International Symposium on Low Power

Electronics and Design, San Diego, CA, USA, 16–17 August 1999; pp. 267–269.

12. Kin, J.; Gupta, M.; Mangione-Smith, W. The filter cache: An energy efficient memory structure.

In Proceedings of the International Symposium on Microarchitecture, Research Triangle Park, NC,

USA, 1–3 December 1997; pp. 184–193.

13. Vivekanandarajah, K.; Srikanthan, T.; Bhattacharyya, S. Dynamic filter cache for low power

instruction memory hierarchy. InProceedings of the Euromicro Symposium on Digital System

Design, Rennes, France, 31 August–3 September 2004; pp. 607–610.

Sensors2012, 12 15117

14. Tang, W.; Gupta, R.; Nicolau, A. Power savings in embedded processors through decode filter

cache. InProceedings of the DATE Conference, Paris, France, 4–8 March 2002; pp. 443–448.

15. Bellas, N.; Hajj, I.; Polychronopoulos, C.; Stamoulis, G. Energy and performance improvements

in microprocessor design using a loop cache. InProceedings of the International Conference on

Computer Design, Austin, TX, USA, 10–13 October 1999; pp. 378–383.

16. Zhong, H.; Fan, K.; Mahlke, S.; Schlansker, M. A distributedcontrol path architecture for

VLIW processors. InProceedings of the Conference on Parallel Architectures and Compilation

Techniques, St. Louis, MO, USA, 17–21 September 2005; pp. 197–206.

17. Zhong, H.; Lieberman, S.; Mahlke, S. Extending Multicore Architectures to Exploit Hybrid

Parallelism in Single-thread Applications. InProceedings of the IEEE 13th International

Symposium on High Performance Computer Architecture, Phoenix, AZ, USA, 10–14 February

2007, pp. 25–36.

18. Black-Schaffer, D.; Balfour, J.; Dally, W.; Parikh, V.; Park, J. Hierarchical instruction register

organization.Proc. Comput. Arch. Lett.2008, 7, 41–44.

19. Benini, L.; Macii, A.; Poncino, M. A recursive algorithm forlow-power memory partitioning. In

Proceedings of the ISLPED, Rapallo, Italy, 26–27 July 2000; pp. 78–83.

20. Fan, X.; Ellis, C.; Lebeck, A. Memory controller policies for DRAM power management. In

Proceedings of the ISLPED, Huntington Beach, CA, USA, 6–7 August 2001; pp. 129–134.

21. Lyuh, C.; Kim, T. Memory access scheduling and binding considering energy minimization in

multi-bank memory systems. InProceedings of the DATE, San Diego, CA, USA, 7–11 June 2004;

pp. 81–86.

22. Ghosh, A.; Givargis, T. Cache optimization for embedded processor cores: An analytical approach.

In Proceedings of the ICCAD, San Jose, CA, USA, 9–13 November 2003; pp. 342–347.

23. Gordon-Ross, A.; Vahid, F.; Dutt, N. Fast Configurable-Cache Tuning With a Unified

Second-Level Cache.IEEE Trans. Very Large Scale Integr. Syst.2009, 17, 80–91.

24. Romero Legarreta, I.; Addison, P.; Reed, M.; Grubb, N.; Clegg, G.; Robertson, C. Continuous

wavelet transform modulus maxima analysis of the electrocardiogram: beat characterisation and

beat-to-beat measurement.Int. J. Wavelets, Multiresolut. Inf. Process.2005, 3, 19–42.

25. Yunhui, S.; Qiuqi, R. Continuous wavelet transforms. InProceedings of the 7th International

Conference on Signal Processing, Beijing, China, 31 August–4 September 2004; pp. 207–210.

26. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.;

Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000,

101, 215–220.

27. Advanced Encryption Standard (AES). National Institute ofStandards and Technology (NIST) -

FIPS PUBS 197. Available online: http://www.retarget.com/ (accessd on 18 September 2012).

28. Dworkin, M. Recommendation for Block Cipher Modes of Operation: The CCMMode for

Authentication and Confidentiality; NIST Special Publication 800-38C; National Institute of

Standards and Technology: Gaithersburg, MD, USA, 2004.

29. Target Website. Available online: http://www.retarget.com/ (accessd on 18 September 2012).

Sensors2012, 12 15118

30. Yassin, Y.; Kjeldsberg, P.; Hulzink, J.; Romero, I.; Huisken, J. Ultra low power application

specific instruction-set processor design for a cardiac beat detector algorithm. InProceedings

of the NORCHIP, Trondheim, Norway, 16-17 November 2009; pp. 1–4.

31. Tsekoura, I.; Selimis, G.; Hulzink, J.; Catthoor, F.; Huisken, J.; de Groot, H.; Goutis, C.

Exploration of Cryptographic ASIP Designs for Wireless Sensor Designs. InProceedings of the

ICECS, Athens, Greece, 12–15 December 2010; pp. 827–830.

32. Cadence Design System Website. Available online: http://www.cadence.com/ (accessd on 18

September 2012).

33. Synopsys Website. Available online: http://www.synopsys.com/ (accessd on 18 September 2012).

c© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

