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Abstract: Instruction memory organisations are pointed out as onbeofitajor sources of
energy consumption in embedded systems. As these systeroisaaacterised by restrictive
resources and a low-energy budget, any enhancement inatimganent allows not only to
decrease the energy consumption but also to have a bettiebwation of the energy budget
throughout the system. Loop buffering is an effective solémreduce energy consumption
in instruction memory organisations. In this paper, theplbaoffer concept is applied in
real-life embedded applications that are widely used imigdical Wireless Sensor Nodes,
to show which scheme of loop buffer is more suitable for aggions with certain behaviour.
Post-layout simulations demonstrate that a trade-offt@xistween the complexity of the
loop buffer architecture and the energy savings of utidjsin Therefore, the use of loop
buffer architectures in order to optimise the instructicennory organisation from the energy
efficiency point of view should be evaluated carefully, takiinto account two factors:
(1) the percentage of the execution time of the applicatian is related to the execution
of the loops, and (2) the distribution of the execution tineegentage over each one of the
loops that form the application.
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1. Introduction

Embedded systems have different characteristics compeitadyeneral-purpose systems. On the
one hand, embedded systems combine software and hardwaten ta specific and fixed set of
applications. However, they differ greatly in their chdeaistics, because they demand different
hardware architectures ranging from multimedia consunesicés to industry control systems. On
the other hand, unlike general-purpose systems, embeddtehs have restricted resources and a
low-energy budget. In addition to these restrictions, esdlee systems often have to provide high
computation capability, meet real-time constraints, aatisfy varied, tight, and time conflicting
constraints in order to make themselves reliable and picdule

The combination of these requirements, and the fact thatvéteknown problem of the memory wall
becomes even greater in embedded systems, make the deafrdaseotal energy consumption of the
system a big challenge for designers, who not only have tsidenthe performance of the system but
also its energy consumption. Works likeB] demonstrate that the Instruction Memory Organisation
(IMO) and the Data Memory Hierarchy (DMH) take portions ofchrea and energy consumption that
are not negligible. In fact, both memory architectures newaoant for nearly 50%—-70% of the total
energy budget of an embedded instruction-set processtonia Therefore, the optimisation in energy
consumption of both memory architectures becomes extgeimglortant.

Villarreal et al. [4] show that77% of the total execution time of an application is spent in ®op
of 32 instructions or less. This fact demonstrates that pliegtions of signal and image processing, a
significant amount of the total execution time is spent inlspragram segments. If these small program
segments can be stored in smaller memory banks (e.g., iotimedf loop buffers), the dynamic energy
consumption of the system can be reduced significantly. Tieegg-saving features of the loop buffer
concept can be obtained in Figurenvhere it is shown that accesses in a small memory have laveege
consumption than in a large memory. This observation is #se lof the loop buffer concept, which is a
scheme to reduce the dynamic energy consumption in the IM@h&rmore, banking is identified as an
effective method to reduce the leakage energy consumptioremories’$]. Apart from the possibility
of using multiple low-power operating modes, the use of mgrbanks reduces the effective capacitance
as compared with a single monolithic memory.

Embedded systems constitute the digital domain of Wirefsssor Nodes (WSNs). They are
widely deployed in several types of systems ranging fronugtidal monitoring to medical applications.
Particularly, for the biomedical domain, the informatibiatis processed and transmitted is confidential
or requires authentication in the majority of the cases. Ru#his fact, it is not unusual that two
applications like a Heart Beat Detection (HBD) algorithmdaa cryptographic algorithm such as
Advanced Encryption Standard (AES) algorithm can be fourtdloamedical WSNs. These two real-life
embedded applications are used in this paper as case stodiesluate the energy reduction achieved
by the use of IMOs that are based on the loop buffer concept.

In this paper, the loop buffer concept is applied in the twal-file embedded applications described
in the previous paragraph. The loop buffer architecturas dne analysed in this paper are the Single
Central Loop Buffer and the Banked Central Loop Buffer aetture. The contributions of this paper
include:
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e An analysis of real-life embedded applications that is usedhow which type of loop buffer
scheme is more suitable for applications with certain by

e The use of post-layout simulations to evaluate the poweathpf the loop buffer architectures in
the experimental evaluation in a strict method in order teeren accurate estimation of parasitics
and switching activity.

e Gate-level simulations demonstrate that a trade-off gkistween the complexity of the loop buffer
architecture and the power benefits of utilising it. The usleap buffer architectures in order to
optimise the IMO from the energy efficiency point of view shibbe evaluated carefully. Two
factors have to be taken into account in order to implemereraigy efficient IMO based on a
loop buffer architecture: (1) the percentage of the exeauime of the application that is related
to the execution of the loops included in the applicatiord &) the distribution of the execution
time percentage, which is related to the execution of thedpover each one of the loops that
form the application.

Figure 1. Power consumption per access in 16-bit instruction word BRAemories
designed by Virage Logic Corporation too ising TSMC 90 nm process.
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The rest of the paper is organised as follows. Secflopresents the related work regarding
the loop buffer concept. Sectiod describes the applications that are used as case studide, wh
Section4 describes the experimental framework. Secttoshows and analyses the results of the
simulations. Finally, in Sectio6 the conclusions are presented.

2. Related Work

During the last 10 years, researchers have demonstratedh#hdMO can contribute to a large
percentage of the total energy consumption of the system, (8]). Most of the architectural
enhancements that have been used to reduce this energynguitsu have made use of the loop
buffer concept. Works7-15] present the most traditional use of the loop buffer concép Single
Central Loop Buffer (SCLB) architecture. Work][analysed three hardware techniques to improve
direct-mapped cache performance: miss caching, victirhingcand stream buffers prefetch. Wo8g [
proposed a configurable instruction cache, which could tbaerea for a particular application in order
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to utilise the sets efficiently, without any increase in taele size, associativity, or cache access time.
Work [9] proposed an alternative approach to detect and removecass&y tag-checks at run-time.
Using execution footprints, which were recorded previgusla branch target buffer, it was possible
to omit the tag-checks for all instructions in a fetched klolf loops could be identified, fetched, and
decoded only once, worklL] proposed an architectural enhancement that could swifcthe fetch
and decode logic. The instructions of the loop were decodedstored locally, from where they were
executed. The energy savings came from the reduction in meauzesses as well as the lesser use
of the decode logic. In order to avoid any performance degrad, work [L1] implemented a small
instruction buffer that was based on the definition, dedb@cind utilisation of special branch instructions.
This architectural enhancement had neither an addressaiggreor valid bit associated with each loop
cache entry. Work12] evaluated the Filter Cache. This enhancement was an ulhusosll first-level
cache that sacrificed a portion of performance in order te saergy. The program memory was only
required when a miss occurs in the Filter Cache, otherwisamained in standby mode. Based on this
special loop buffer enhancement, wodg3] presented an architectural enhancement that detected the
opportunity to use the Filter Cache, and enabled or disabtithamically. Also, work 4] introduced

a Decoder Filter Cache in the IMO to provide directly decoaedructions to the processor, reducing
the use of the instruction fetch and decode logic. Furtheemeork [L5] proposed a scheme, where the
compiler generated code in order to reduce the possibiliyraiss in the loop buffer cache. However,
the drawback of this work was the trade-off between the perémce degradation and the power savings,
which was created by the selection of the basic blocks.

Parallelism is a well-known solution for increasing penfiance efficiency. Because loops
form the most important part of an applicatiod],[ loop transformation techniques are applied to
exploit parallelism within loops on single-threaded atetiures. Centralised resources and global
communication make these architectures less energy efficie order to reduce these bottlenecks,
several solutions that used multiple loop buffers were pseg in literature. Workslp-18] are examples
of the work done in this field: the Multiple Central Loop BuffetMCLB) architecture. On the one
hand, work [L6] presented a distributed control-path architecture fatiibuted Very Long Instruction
Word (DVLIW) processors, which overcame the scalabilitpldem of Very Long Instruction Word
(VLIW) control-paths. The main idea was to distribute th&cfieand decode logic in the same way
that the register file was distributed in a multi-clusteradpath. On the other hand, work7 proposed
a multi-core architecture that extended traditional meidtie systems in two ways. First, it provided
a dual-mode scalar operand network to enable efficient-oter communication without using the
memory. Second, it could organise the cores for executioaitimer coupled or decoupled mode
through the compiler. In coupled mode, the cores executdtpieuinstructions streams in lock-step
to collectively work as a wide-issue VLIW. In decoupled mpdiee cores executed independently
a set of fine-grain communicating threads extracted by thepder. These two modes created a
trade-off between communication latency and flexibilityhigh should be optimised depending on
the required parallelism. Worklg] analysed a set of architectures for efficient delivery oflWL
instructions. A baseline cache implementation was contparth a variety of organisations, where the
evaluation included the cost of the memory accesses anditas thiat were necessary to distribute the
instruction bits.
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The SCLB architecture and the MCLB architecture can be impleted based on memory banks
or without them. Power management of banked memories has iogestigated from different
angles including hardware, OS and compiler. Using memocgsg patterns in embedded systems,
Benini et al. [19] proposed an algorithm to partition on-chip SRAM into nudanks that could be
accessed independently. Fetral. [20] presented memory controller policies for memory archiiszs
with low-power operating modes. Lyudt al. [21] used a compiler directed approach to determine
the operating modes of memory banks after scheduling theaneaperations. As we can see from
previous approaches, the drawback of using multiple baifieusually to increase the logic that controls
the banks, which has the benefit of further decreasing thkadgaenergy consumption. This fact leads to
the increase of the interconnect capacitances, as wekasdlction of possible dynamic energy savings
that are related to the access to smaller memories. Mosbagipes that are related to caches assume
that automated tuning is done statically, meaning thatuhag is done once during application design
time. Ghoshet al. [22] presented a heuristic that, through an analytical modetctly determined,
based on the designer's performance constraints and appficcharacteristics, the configuration
of the cache. Other cache tuning approaches could be usedniyadly, while an application was
executed23].

In this paper, an experimental framework is developed iriota evaluate the SCLB architecture and
the Banked Central Loop Buffer (BCLB) architecture from gyeconsumption point of view.

3. Experimental Applications

Two real-life embedded applications that can be found imigdical WSNs are used as case studies
in this paper. Both applications are described in the falhgnSubsections.

3.1. HBD Algorithm

The Heart Beat Detection (HBD) algorithm is a biomedicallegapion based on a previous algorithm
that was developed by2fl]. This algorithm uses the Continuous Wavelet Transform [Q\\25] to
detect heartbeats automatically. The QRS complex is thegbamn Electrocardiogram (ECG) signal
that represents the greatest deflection from the baseliteaignal, and is where this algorithm tries to
detect the R-peak. Figugshows the P, Q, R, S, and T waves on an ECG signal.

The algorithm that is used in this paper is an optimised @Qudage version for biomedical WSNSs.
It does not require pre-filtering and is robust against fetérg signals under ambulatory monitoring
conditions. The algorithm works with an input frame of 3 sad®y which includes 2 overlaps of
0.5 seconds between consecutive frames in order to not kisebétween frames. FiguBeshows the
flowchart of this algorithm. The algorithm performs the éoling steps to process an input data frame:

1. The ECG signal is analysed within a window of 3 seconds, wtier€WT is calculated over this
interval and a mask is applied to remove edge components.

2. The square of the modulus maxima of the CWT is taken in ordemtphasise the differences
between coefficients. Values above a chosen threshold lactestas possible R-peaks.
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3. In order to separate the different peaks, all modulus mapioias within intervals of 0.25 seconds
are analysed in turn as search intervals. In every searehvalt the point with the maximum
coefficient value is selected as R-peak.

4. The algorithm finds the exact location of the R-peak in thestohlomain.

Figure2. P, Q, R, S and T waves on an ECG signal.
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The input of this algorithm is an ECG signal from MIT/BIH dbatse R6]. The output is the positions
in time-domain of the heartbeats that are included in thatifiame. The testing of this optimised
algorithm results in a sensitivity of 99.68% and a positivedictivity of 99.75% on the MIT/BIH
database.

3.2. AES Algorithm

The Advanced Encryption Standard (AES) algorithm is a @gpphic application. The algorithm
used in this paper is the security operation mode AES-CCM-BRBis mode of operation provides
confidentiality, data integrity, data authentication, aeglay protection. In the next paragraphs, AES
and CCM are explained.

Figure 4. Flowchart of the AES algorithm. Encryption process.

Plaintext
128

128
roundkey(0) — XOR

v -

SubBytes

v

ShiftRows Fori=1to

+ Nr-1

MixColumns

128 +
roundkey(i) — XOR
SubBytes

v

ShiftRows Final
+ Round

128
roundkey(Nr) —— XOR

, —
€=

AES [27] is a symmetric-key encryption standard in which both thedse and the receiver use a
single key for encryption and decryption. The data bloclgtarthat is used by this algorithm is fixed
to 128 bits, while the length of the cipher key can be 128, 19256 bits. The AES algorithm is an
iterative algorithm in which the iterations are called rdanand the total number of rounds can be 10,
12 or 14, depending on whether the key length is 128, 192, ®b2S, respectively. The data block that
is processed during the rounds is called State. In the etioryprocess, each round, except for the final
round, consists of four transformations:

e SubBytesis a byte substitution transformation that can be impleedn software in two ways:
based on finite fields digital logic or as a look-up table (S¢Bd).
¢ ShiftRows shifts cyclically the rows of the State, over a different raenof bytes.
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e MixColumns multiplies the columns of the State with a fixed polynomial.
e AddRoundKey applies a XOR operation between the State and a Round key.

The final round does not have the MixColumns transformatiagure4 shows the flowchart of this
algorithm when it is working in encryption mode.

The CCM (CTR-CBC-MAC), which is presented in the NIST Spekétablication 800-38C 78],
encrypts and authenticates the message and the asso@tdedépending on the size of the message
authentication code that it produces (4, 8, or 16 bytesgetldifferent variations of AES-CCM exist:
AES-CCM-32, AES-CCM-64, and AES-CCM-128.

Because biomedical WSNs have ultra-low power requiremémgproposed algorithm supports only
128-bit key. In addition, only the encryption mode of the A&§orithm is supported. However, with
a very small change in the design, both encryption and dé&orypan be supported. In this algorithm,
the input data frame is fixed to 1,460 bytes of informationereas the output is a data packet where the
information is encrypted.

4. Experimental Framework

This Section describes all the components of the systenfdhatthe experimental framework. On
the one hand, Subsectiodsl, 4.2, and4.3 describe the processor architectures that are used in this
paper. On the other hand, Subsectdofpresents the rest of the components that form the experahent
framework and explains how the experimental framework i based on a platform that can contain
any processor.

4.1. General-Purpose Processor

The general-purpose processor architecture is designieg tise tools from Target Compiler
Technologies29]. The Instruction-Set Architecture (ISA) of this proces$® composed of integer
arithmetic, bitwise logical, compare, shift, control, andirect addressing I/O instructions. Apart from
support for interrupts and on-chip debugging, this promessipports zero-overhead looping control
hardware, which allows fast looping over a block of instioies. Once the loop is set using a special
instruction, additional instructions are not needed ineortb control the loop, because the loop is
executed a pre-specified number of iterations (known at dertime). This loop buffer implementation
supports branches, and in cases where the compiler camngg thee loop count, it is possible to inform
the compiler through source code annotations that the goreding loop will be executed at least N
times, and at most M times, such that no initial test is neddecheck whether the loop has to be
skipped. The special instruction that controls the loopduces only one cycle delay. The status of
this dedicated hardware is stored in the following set ot&eegisters:

Loop Start addressregister (LS) It stores the address of the first instruction of the loop.

Loop End addressregister (LE) It stores the address of the last instruction of the loop.

Loop Count register (LC) It stores the remaining number of loop iterations.

Loop Flagregister (LF) It keeps track of the hardware loop activity. Its value représ the number of
nested loops that are active.
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The experimental framework uses an 1/O interface to prothédecapability of receiving and sending
data in real-time. This interface is implemented in the pssor architecture by FIFOs that are directly
connected to the register file. The data memory that is redugy this processor architecture in order to
be a general-purpose processor is a memory with a capacli§kofvords/16 bits, whereas the required
program memory is a memory with a capacity of 2 k words/16 bits

Figure5. Data-path of the general-purpose processor.
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Figure 5 presents the data-path of this processor, where the matkdkre Data Memory (DM),
Register File (R), Arithmetic Logic Unit (ALU), Shift Unit§H), Multiplication Unit (MUL), and
Address Generation unit (AG1). The address generatiorspeitifies the next address as normal word
instruction in the case of word label, as negative offseth#ostack pointer register in the case of the
nint9 label, and as relative offset of short jump instruecsidn the case of the sbyte label.

4.2. Optimised Processor for the HBD Algorithm

The processor that is optimised for the HBD algorithm is dase the processor architecture that
is presented in Subsectighl This Subsection presents the modifications and optimoisatihat are
performed in order to build this optimised processor.

From the deep analysis that has to be performed to design gpécation-Specific Instruction-set
Processor (ASIP) for the HBD algorithm, a loop is pointed asitthe performance bottleneck in this
specific algorithm. This loop performs the convolution @tem, which is the core of the CWT. A
signed multiplication, whose result is accumulated in agerally variable, is performed inside of this
critical loop. The execution of this instruction is 72% oé&taxecution time of the algorithm according
to profiling information. Therefore, in order to improve tperformance, the MUL unit is modified
to multiply two signed integers and accumulate, withouftsig, the result of the multiplication. This
optimisation saves energy and at the same time reducestmtomplexity of the MUL unit and the
execution time of the application.

The load operations that are related with the previous MUérafion are combined in a customised
instruction in order to be executed in parallel. Howeverthia general-purpose processor, it is only
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possible to load and store data from the same memory oncegme of the pipeline. To solve this
bottleneck, the main data memory is split in two identicaiadamemories: Data Memory (DM) and
Constant Memory (CM). In order to access two memories inlfghranother address generator (AG2)
is created such that the load and store operations from theaBdCM can be performed at the same
stage of the pipeline.

As the input registers of the MUL unit can be loaded direclpew modification can be performed.
The parallel load and MUL instruction are combined, by addinother stage in the pipeline and creating
a custom instruction that integrates both instruction® MRJL instruction is then executed in the second
stage of the pipeline, while the parallel load instructi®executed in the first stage of the pipeline. After
this last modification, the MUL operation that is includedi main critical loop of this algorithm is
performed using only one assembly instruction.

In a similar way as the MUL operation, another critical logadptimised by combining load,
select, and equal instructions in order to be executed iallpar This instruction is created adding
the functionality of the equal and select instructions, aachbining both of them with a normal load
operation. The functional unit ALU 2 is created for this Sfie@peration.

It is necessary to remark that, apart from the specialisstluations that are described in previous
paragraphs, custom techniques like source code transiormeale.g., function combination, loop
unrolling) and mapping optimisations (e.g., use of look4ables, elimination of divisions and
multiplications, instruction set extensions) are appteedenerate a more efficient code.

Figure 6. Data-path of the processor that is optimised for the HBD ratigm.
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All the optimisations and modifications that are descrilvettis Subsection result in a new processor
architecture shown in Figu® Basically, an address generator (AG2) and a second ALU (&).8re
added, in addition to some pipes and ports. Apart from thatPRrogram Counter (PC) is modified to
handle instruction words that use 32-bit immediate vallesrder to handle ECG signals sampled at
1,000 Hz, the memories that are required by this processbitacture are a DM with a capacity of
8 k words/32 bits, and a CM with a capacity of 8 k words/32 H8ssides, the program memory that is
required by this processor architecture is a memory withpac#y of 1 k words/20 bits. This optimised
processor is an implementation that is based on the worlepted in Reference3()].
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4.3. Optimised Processor for the AES Algorithm

The processor that is optimised for the AES algorithm is 8a@dso on the processor architecture that
is presented in Subsectighl This Subsection presents the modifications and optinoissitihat are
performed in order to build this optimised processor.

Analysing this algorithm, the critical functions are idéed and optimised in order to improve
performance in terms of clock cycles and memory accessessto@utechniques like source code
transformations (e.g., function combination, loop unng) and mapping optimisations (e.g., use of
look-up tables, elimination of divisions and multiplicatis, instruction set extensions) are applied to
generate a more efficient code.

In the design of this optimised processor, the structurenefgeneral-purpose architecture is kept
intact (16-bit data-path), and an extra 128-bit data-patidided. This last data-path is connected with
a vector memory, a vector register file, and a vector unit. videtor unit includes the AES accelerating
operations, as well as the logic and arithmetic instrustitvat this algorithm requires. In this processor,
the ISA was also extended with one AES accelerating instnu¢hat has two inputs: a 128-bit input,
which can be the State or a Round key, and an integer inputhwihdicates the behaviour of the
instruction itself. Depending on the input, the output eams the State or a Round key. One of the
advantages of this design is the ability to use the largeiovemits only when they are required.

Figure 7. Data-path of the processor that is optimised for the AESrélyu.
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All the optimisations and modifications that are presentedhis Subsection result in the new
processor architecture shown in Figute Basically, an extra 128-bit data-path is added. This extra
data-path includes a Vector Memory (VM), a Vector registler ), and a Vector Unit (Functional
Vector Unit). In order to handle an input signal of 1,460 Isytthe data memory required by this
processor architecture is a memory with a capacity of 1 k w/d®l bits, and the VM is a memory
with a capacity of 64 words/128 bits. On the other hand, tlggired program memory is a memory
with a capacity of 1 k words/16 bits. This optimised processan implementation that is based on the
work presented ind1].
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4.4. Experimental Platform

The experimental platform is automatically generated foy &f the processors described in
Subsectiongl.1, 4.2 and4.3. The experimental platform is composed of a DMH, an IMO, & |/
interface, and a processor that is used as core of the ptatf@n the one hand, the program memory
and the data memory are SRAM memories designed by Viragel@uiporation toolsg]. On the other
hand, the I/O interface that provides the capability toirecand send data in real-time is connected with
the 1/O interface that is described in Subsectch

The interface between a processor architecture and an IM@epcted in Figure8. The
interconnections of the processor architecture, the pragmemory, the loop buffer memory and the
loop buffer controller are included in this figure. Every qmmnent that forms the IMO is explained in
the next paragraphs. In our experimental platform, the laaffer architecture, which is composed of
the loop buffer memory and the loop buffer controller, cancbafigurable to be used as an SCLB or
BCLB architecture. For simplicity, the SCLB architectuseuised in the next paragraphs to explain the
loop buffer concept operation.

Figure 8. IMO interface for a SCLB architecture.
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In essence, the operation of the loop buffer concept is &masl During the first iteration of the loop,
the instructions are fetched from the program memory to mup buffer architecture and processor. In
this iteration, the loop buffer architecture records th&rimctions of the loop. Once the loop is stored,
for the rest of iterations, the instructions are fetchednfrime loop buffer architecture instead of the
program memory. In the last iteration, the connection betwthe processor and program memory is
restored, such that subsequent instructions are fetchedtfre program memory. During the execution
of non-loop parts of the application code, instructionsfatehed directly from the program memory.
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Figure 9. State-machine diagram of the loop buffer controller.
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The loop buffer controller monitors the operation of thedduuffer architecture based on a state-
machine. This state-machine is shown in Figaurd he six states of the state-machine are:

S0 Initial state.

sl Transition state betwees® ands2

s2 State where the loop buffer is recording the instructiora$ the program memory supplies to
the processor.

s3 Transition state betwees ands4

4 State where the loop buffer is providing the instructiong®processor.

s5 Transition state betwees#tandsO.

The transition statesl, s3 ands5are necessary in order to give the control of the instructigoply
from the program memory to the loop buffer architecture aivé-versa. The transition betweed
andslis necessary because the body size of a loop can change-tinmea.e., in a loop body with
if-statements or function calls). In order to check in reale whether the loop body size changes or not,
a 1-bit tag is used. This tag is associated with each addnassststored in the loop buffer. The loop
buffer controller checks this tag to know if the addressiisady stored in the loop buffer or not.

Figure 10 shows how the BCLB architecture is composed of differenplbaffer memories. In a
BCLB architecture, every memory is connected to the prazemshitecture and the program memory
through multiplexers. The loop buffer controller, basedtl@ loop body size of the loop that is on
execution, decides which of the available loop buffer maesois connected directly with the program
memory and the processor. The logic circuit that decideseaflbop buffer architecture is activated is
the same as the one used in the SCLB architecture. In ordeake all the decisions that are described
previously, the complexity of the state-machine is increted. However, Figurd0 shows that this
modification allows the design of the loop buffer architeetto be scalable.
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Figure 10. IMO interface for a BCLB architecture.
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5. Experimental Evaluation

This section shows the results of the experimental evalnati the SCLB and the BCLB architecture.
Firstly, Subsectiorb.1 describes the methodology that is used in our energy sironkat Secondly,
Subsectiorb.2 analyses the experimental applications that are descinb®ection3 based on profiling
information. Finally, Subsectioh.3 shows and discusses the results of the power simulations.

5.1. Simulation Methodology

The simulation methodology that is used in our experimestaluation is described by the following
steps:

Application mapping The selected application is mapped to the system archigstat we want to
simulate. The I/O data connections of the system are uselebgrhbedded systems designer to
corroborate the correct functionality of the system.

Behaviour simulation The mapped application is simulated on the system archieot order to check
its correct functionality. For that purpose, an Instruct®et Simulator (ISS) from Target Compiler
TechnologiesZ9] is used.

RTL implementation The RTL language description files of the processor are aatioally generated
using the HDL generation tool from Target Compiler Techgads R9]. The design of the
interfaces between the DMH and the IMO has to be added in todeave a complete description
of the whole system in RTL language.

RTL synthesis When every component of the system has its own RTL languageriggon file, the
design is synthesised. In our RTL synthesis, a 90 nm Low PA@&iC library is used for a
system frequency of 100 MHz. During synthesis, clock gaisngsed whenever possible.

Place and route After the synthesis, place and route is performed using &meo [32].

Recording Activity It is necessary to generate a Value Change Dump (VCD) file Herdesired
time interval of the netlist simulation. If the selected énmterval is the execution time of the
application, the VCD file will contain the information of tretivity of every net and every
component of the whole system when an input data frame isepsec.
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Extraction of power consumption As a final step, the information of the average power consiompt
is extracted with the help of Primetim&3].

Figure1l shows the inputs and outcomes of each step described above.

Figure 11. Simulation Methodology.

Target
ISS & RTL

Cadence ‘<_ ........
NCSim [ 1

Y

Cadence
RTL compiler

v

Cadence |-==22n
SOC encounter

y

Synopsys
PrimeTime  [-=—-—--

v

Synopsys
PrimeTime PX

!

Dynamic Power
Leakage Power

5.2. Analysis of the Experimental Applications

The total energy consumption of the systems that are pregemtthis paper is strongly influenced
by the consumption of the IMO. Following the steps that arecdbed in Subsectioh.1, Figuresl?2,

13, 14, and 15 present the first outcome from the experimental evaluatidigures12 and 13 show
the power breakdowns that are related with the HBD algorjtivimereas Figure$4 and 15 show the
power breakdowns that are related with the AES algorithmthése figures, the components of the
processor core are grouped. Apart from seeing how the powaibdition changes from a design
based on a general-purpose processor to an ASIP desige fitpees demonstrate that the total energy
consumption of these systems is strongly influenced by thewaption of the IMO.

Loops dominate the total energy consumption of the IMO. Fagli6, 17, 18, and19 show profiling
information based on the accesses that are done in the pragtdress space. Figuré§ and17 show
the profiles based on the number of cycles per program cotinateare related with the HBD algorithm,
whereas Figure&8 and 19 show the profiles based on the number of cycles per programteothat
are related with the AES algorithm. We can see from theser€gthat there are regions that are more
frequently accessed than others. This situation impliesttistence of loops. Apart from this fact, it
is possible to see from these figures that the applicatiooutiam time of the selected applications is
dominated by only a few loops.
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Figure 12. Power breakdown in the general-purpose processor runnéggBD algorithm.
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Figure 15. Power breakdown in the optimised processor running the Ag&ithm.
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Figure 16. Number of cycles per PC in the general-purpose processoingrihe HBD

algorithm.
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Figure 17. Number of cycles per PC in the optimised processor runniagnBD algorithm.
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Figure 18. Number of cycles per PC in the general-purpose processoingrine AES
algorithm.
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Figure 19. Number of cycles per PC in the optimised processor runniaghMBS algorithm.

N
o
o

fary
wv
o

100

w
o

0 200 200 600 800 1000
PC value

Number of executed cycles

In order to implement energy efficient IMOs based on loop dyufirchitectures, more detalil
information related with loops is needed. Tables?, 3, and4 provide this information. Table&
and 2 present the loop profiling information of the systems that r@lated with the HBD algorithm,
whereas Table3and4 present the loop profiling information of the systems thatratated with the AES
algorithm. In these tables, loops are numbered in the stadier that they appear in the assembly code
of the algorithm. A nested loop creates another level of renmly. Thus, a loop nameticorresponds to
the second loop encountered, while a loop nathédorresponds to the first sub-loop encountered in the
loop named. These tables corroborate the fact that the execution tfrtteedoops dominates the total
execution time of the application. For instance, the exenuime of the loops represents approximately
79% of the total execution time of the HBD algorithm in theeca$ the general-purpose processor, and
81% in the processor that is optimised for this algorithncdntrast, in the AES algorithm, the execution
time of the loops represents 77% of the total execution tmibae case of the general-purpose processor,
and 90% in the processor that is optimised for this algorithris necessary to remark that differences
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exist between algorithms of the same application due todliece code transformations and mapping
optimisations that are applied in the optimised algoritimsrder to generate efficient codes.

The configurations of the SCLB and BCLB architectures thataaralysed in this paper are based
on the loop profiling presented in Tablés2, 3, and4. On the one hand, the selection of the SCLB
configurations is based on the small size of the loops that bayger percentage of execution time.
With this strategy, we assume that these configurationsharenbst energy efficient. This assumption
is based on the fact that these configurations provide theebtgenergy savings among all the possible
configurations. These major energy savings help to redwceehalty related with the introduction of
the loop buffer architecture in the system. On the other hdredselection of the BCLB configurations
is based on the strategy of taking the maximum loop body dizbeoapplication, and chop it by the
granularity of the smaller loop body size that the applmadi contains. This strategy is used in these
architectures, because the exact energy consumption eitheelogic that has to be added in the loop
buffer controller is unknown. Table presents the initial configurations that are evaluated.

In order to conclude the analysis of the experimental appbas, it is necessary to remark that
due to time requirements, a system frequency of 100 MHz isdfix&t this frequency, the HBD
algorithm running on the general-purpose processor spé6ascycles in order to process an input
sample contained in the data frame. However, if this algoriis running on the processor that is
optimised for this algorithm, the number of cycles in ordeptocess an input sample contained in the
data frame is 11 cycles. On the other hand, the AES algorittrming on the general-purpose processor
spends 484 cycles in order to process an input sample cedtairthe data frame. If this algorithm is
running on the processor that is optimised for this algaritthe number of cycles in order to process an
input sample contained in the data frame is only 3 cycles.

Table 1. Loop profiling of the HBD algorithm on the general-purposegassor.

Start End Loop body Number of Execution

address address size iterations  time[%]
Loop 1 33 34 2 4 0
Loop 2 44 45 2 594 0
Loop 3 54 57 4 594 1
Loop 4 72 75 4 594 1
Loop 5 92 103 12 132 1
Loop 6 124 136 13 594 3
Loop 7 160 160 1 15 0
Loop 8 236 242 7 32,625 71
Loop 9 417 427 11 594 2
Loop 10 569 590 22 64 0

5.3. Power Analysis

Tables6, 7, and8 present the power results for each system that is evaluatexke tables show the
dynamic power, the leakage power, and the total power fahallconfigurations that are presented in
Table5. As it can be seen, the power consumption of the IMO is the suimegpower that is consumed
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Table 2. Loop profiling of the HBD algorithm on the optimised procasso

Start End Loop body Number of Execution

address address size iterations  time[%]
Loop 1 192 244 53 1,380 70
Loop 1.1 200 205 6 1 0
Loop 2 266 271 6 350 2
Loop 3 209 302 13 768 9

Table 3. Loop profiling of the AES algorithm on the general-purposecessor.

Start End Loop body Number of Execution

address address size iterations  time[%]
Loop 1 307 309 3 8 0
Loop 2 324 327 4 2 0
Loop 3 340 342 3 16 0
Loop 4 360 362 3 1,460 3
Loop 5 383 387 5 1,600 7
Loop 6 409 411 3 4 0
Loop 7 419 421 3 8 0
Loop 8 426 428 3 16 0
Loop 9 436 458 23 92 2
Loop 10 472 474 3 1,392 3
Loop 11 489 491 3 1,392 3
Loop 12 506 510 5 1,460 6
Loop 13 519 523 5 4 0
Loop 14 926 930 5 6,016 25
Loop 15 942 1,000 59 40 2
Loop16 1,019 1,034 16 1,692 26

Table 4. Loop profiling of the AES algorithm on the optimised processo

Start End Loop body Number of Execution

address address size iterations  time[%]
Loop 1 519 524 6 36 5
Loop 2 544 560 17 2 1
Loop 2.1 550 555 6 0 0
Loop 3 806 837 32 91 84

by the components that the IMO containe ( the loop buffer controller, the loop buffer memory and
the program memory).

We can see from these tables that the systems that are agdifoisthe experimental applications
always consume less power than the general-purpose sysiémrefore, the introduction of the SCLB
and BCLB architectures does not affect this energy consiempend.

Analysing Tabler, it is possible to see that there is a decrease on the dynawerpf these systems
in relation with the baseline architectures. This is beeahe majority of the instructions are fetched
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Table 5. Configurations of the experimental framework.

Basdine architecture  SCLB BCLB

HBD algorithm No loop buffer 8 words 8 banks of
General-purpose processor architecture 8 words
HBD algorithm No loop buffer 64 words 8 banks of
Optimised processor architecture 8 words
AESalgorithm No loop buffer 8 words 4 banks of
General-purpose processor architecture 8 words
AESalgorithm No loop buffer 32 words 4 banks of
Optimised processor architecture 8 words

Table 6. Power consumption [W] of the baseline architecture.

Component  Dynamic power Leakagepower Total power

HBD algorithm IMO 4.44 x 107 0.91 x 1072 4.44 x 106
- LB Controller 0 0 0
General-purpose LB Memory 0 0 0
processor PM 4.44 x 1076 0.91 x 107° 4.44 x 1076
HBD algorithm IMO 3.57 x 1077 8.46 x 10711 357 x 1077
- LB Controller 0 0 0
Optimised LB Memory 0 0 0
processor PM 3.57 x 1077 8.46 x 10711 3.57 x 1077
AESalgorithm IMO 1.81 x 1076 432 x 10719 1.82x107°
- LB Controller 0 0 0
General-purpose LB Memory 0 0 0
processor PM 1.81 x 1076 432 x 10719 1.82x107°
AESalgorithm IMO 1.20 x 1076 211 x 10719  1.20x 1076
- LB Controller 0 0 0
Optimised LB Memory 0 0 0
processor PM 1.20 x 1076 211 x 10719 1.20x 1076

from a small memory instead of the large memory that formgptiegram memory. On the other hand,
the SCLB architectures have an increase in the leakage pmmsumption in relation with the baseline
architectures, due to the introduction of the loop buffahéecture. We can see also the importance
of the loop buffer controller in the IMO, which accounts frahe 5% of the power consumption of the
IMO in the system where the AES algorithm is running on thesgahpurpose processor, to 30% in the
system where the AES algorithm is running on the processoigtoptimised for this algorithm.

Using the profiling information presented in Table®, 3, and4, and the power results obtained from
the simulations of the systems presented in T&blge can evaluate if our initial configurations for the
SCLB architecture are selected correctly from the energygemption point of view.

For the HBD algorithm running on the general-purpose premesFigure20 shows the power
reductions that we can achieve for all the possible conftgans. In the configuration of eight words,
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Table 7. Power consumption [W] of the IMO based on an SCLB architectur

Component  Dynamic power Leakagepower Total power

HBD algorithm IMO 1.74 x 1076 1.14 x 1079 1.74 x 1076
- LB Controller ~ 2.55 x 10~7 1.60 x 10710 255 x 1077
General-purpose LB Memory 6.97 x 1078 6.60 x 10711 6.97 x 1078
processor PM 1.41 x 1076 9.16 x 10719 1.41 x 107°
HBD algorithm IMO 1.40 x 107 1.77 x 10719 1.40 x 1077
- LB Controller ~ 3.71 x 1078 2.66 x 10711 3.71 x 1078
Optimised LB Memory 5.76 x 1078 6.56 x 10711 5.76 x 1078
processor PM 4.50 x 1078 8.46 x 10711 451 x 1078
AESalgorithm IMO 1.76 x 1076 5.25x 10719 1.76 x 1076
- LB Controller ~ 1.03 x 10~ 7 7.39x 1071 1.03x 1077
General-purpose LB Memory 9.54 x 107° 2.68 x 10711 9.54 x 1079
processor PM 1.65 x 1076 4.25 x 10719 1.65 x 1076
AESalgorithm IMO 8.32 x 1077 412 x 10710 836 x 1077
- LB Controller ~ 2.43 x 107 753 x 10711 247 x 1077
Optimised LB Memory 1.79 x 1077 1.29 x 10719 1.79 x 1077
processor PM 4.10 x 107 2.13x 10719 4.10x 1077

Table 8. Power consumption [W] of the IMO based on a BCLB architecture

Component  Dynamic power Leakagepower Total power

HBD algorithm IMO 1.97 x 1076 147 x107%  1.97x 1076
- LB Controller ~ 4.72 x 107 3.95x 10710 472 x 1077
General-purpose LB Memory 8.73 x 1078 1.59 x 10710 8.73 x 1078
processor PM 1.41 x 1076 9.16 x 10719 1.41 x 106
HBD algorithm IMO 1.64 x 1077 3.83x 10710 1.65 x 1077
- LB Controller ~ 5.51 x 1078 1.40 x 10710 551 x 1078
Optimised LB Memory 6.39 x 1078 1.58 x 10710 6.39 x 1078
processor PM 4.50 x 1078 8.46 x 1071 4.51 x 1078
AESalgorithm IMO 1.90 x 1076 7.40 x 10719 1,90 x 1076
- LB Controller ~ 2.35 x 10~7 2.72x 10719 2.35x 1077
General-purpose LB Memory 1.46 x 1078 429 x 1071 1.46 x 1078
processor PM 1.65 x 1076 4.25 x 10719 1.65 x 107
AESalgorithm IMO 6.60 x 1077 4.30 x 10710 6.60 x 10~
- LB Controller ~ 5.20 x 1078 1.10 x 107 520 x 1078
Optimised LB Memory 1.98 x 1077 2.06 x 10719 1.98 x 1077
processor PM 4.10 x 1077 213 x 10719 410 x 1077

the 73% of the execution time of the application is on loopsilevin the rest of the configurations this
percentage is 79%. We can see that in this scenario, the trafsgjweration is a loop buffer memory of
16 words, because the increase of use of the loop buffer nyeroanpensates the penalty introduced by
using a bigger loop buffer architecture.

Figure 21 shows the energy reductions we can achieve for all the pessimfigurations when the
HBD algorithm is running on the processor that is optimisedthis algorithm. In the configuration
of eight words, the 2% of the execution time of the applicai®on loops. This percentage is 11% in
the configuration of 16 and 32 words, whereas in the configuraif 64 words this percentage is 81%.
We can see that in this scenario, the only configuration thagb energy savings is the loop buffer of
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64 words. The percentages of the execution time of the resprfigurations do not compensate the
penalty introduced by using a loop buffer architecture.

Figure 20. HBD algorithm running on the general-purpose processongusiifferent
configurations for the SCLB architecture.
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Figure21. HBD algorithm running on the optimised processor usingegdéht configurations
for the SCLB architecture.
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For the AES algorithm running on the general-purpose psmred-igure22 shows the energy
reductions we can achieve for all the possible configuratidn the configuration of eight words, the
47% of the execution time of this application is on loopshia tonfiguration of 16 words this percentage
is 70%; in the configuration of 32 words this percentage is ,7&¥ereas in the configuration of 64
words this percentage is 77%. We can see that in this scetfaibest configuration is a loop buffer of
32 words, because the increase of use of the loop buffertacthie compensates the penalty introduced
by using a bigger loop buffer memory. On the other hand, thallsimcrease in the percentage of
execution time from the configuration of 32 words to 64 wordesinot compensate the increase in
leakage consumption that this last loop buffer architechas.
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Figure 22. AES algorithm running on the general-purpose processargusifferent
configurations for the SCLB architecture.
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Figure 23 shows the energy reductions we can achieve for all the pessamfigurations when the
AES algorithm is running on the processor that is optimisedtiis algorithm. In the configuration of
8 words, the 5% of the execution time of the application isaopk; in the configuration of 16 words
this percentage is 6%, whereas in the configuration of 32 dwdoBds this percentage 90%. We can see
that in this scenario, the best configuration is a loop budfe32 words. The percentages of execution
time for the 8 and 16 words configurations do not compensat@démalty introduced by using a loop
buffer architecture. Also in this scenario, the small ias®in the execution time percentage from the
configuration of 32 words to 64 words does not compensatenttiease in leakage power consumption
that this last loop buffer architecture has.

Figure 23. AES algorithm running on the optimised processor usingdifit configurations
for the SCLB architecture.
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Analysing Table8, it is possible to see that also in these architecturesetisea decrease in the
dynamic power of these systems in relation with the basemhitectures. However, we can see
that these architectures sometimes do not offer as goodjemsavings as the SCLB architectures
offer, because the system suffers an increase in both dgnamnd leakage power consumption with
the introduction of these loop buffer architectures. HKirsh the dynamic power consumption, the
loop buffer controller of the BCLB architecture has highemplexity than in the SCLB architecture.
Secondly, in the leakage power consumption, apart from tgheh complexity of the loop buffer
controller, there is more loop buffer memories. In theséisgectures, the importance of the loop buffer
controller is increased in the IMO, which now accounts foval@f the power consumption of the IMO in
the AES algorithm when itis running on the general-purpaad,for 32% in the HDB algorithm running
on the processor that is optimised for this algorithm. Usiregsame information and methodology as in
the analysis of the SCLB architectures, we can analyse i€onfigurations for the BCLB architectures
are power efficient.

For the HBD algorithm running on the general-purpose premesve have to analyse only the
loop buffer configurations of 8 instruction words, becaukeh@ loops can fit in a loop buffer of 16
instructions words (see Tablg, and every configuration in a BCLB architecture with a loafér of
16 instruction words is worse in power consumption than aB@ichitecture of 16 instructions words.
Figure24 shows the possible configurations of two loop buffers, wioere of them has a fixed size of
8 words. From this Figure, we can see that the best configaratitwo loop buffers of 8 words. If we
compare the energy savings from the BCLB and the SCLB authite, we can see that for this specific
scenario, it is better to have the SCLB architecture.

Figure 24. HBD algorithm running on the general-purpose processongusiifferent
configurations for the BCLB architecture.
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For the HBD algorithm running on the processor that is oedifor this algorithm, we have to
analyse only the loop buffer configurations of 64 instruttieords because any configuration without a
loop buffer of this size will not bring us energy savings (Begure21). Figure25shows the configuration
of two loop buffers, where one of them has a fixed size of 64 woFdom this Figure, we can see that the
best configuration is a loop buffer of 16 words together whi lbop buffer of 64 words. If we compare
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the energy savings from the BCLB and the SCLB architectueecan see that for this specific scenario
it is also better to have the SCLB architecture.

Figure25. HBD algorithm running on the optimised processor usingedéht configurations
for the BCLB architecture.

1.80E-003

1.60E-003

1.40E-003

1.20E-003

1.00€-003

8.00E-004

W 64 words

6.00E-004

4.00E-004

Reductionin power consumption [W]

2.00E-004

0.00E+000

8words 16 words 32words 64 words

Loop Buffer size

Figure 26. AES algorithm running on the general-purpose processargusifferent
configurations for the BCLB architecture.
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For the AES algorithm running on the general-purpose psmes/e have to analyse all the possible
configurations because the execution time of the applicasiespread (see TabB). The configuration
with two loop buffers of 64 instruction words each is not gsal, because this configuration is worse
in energy efficiency than the SCLB architecture of 64 indtans words, due to the increase in energy
consumption of the loop buffer controller. From Fig@& we can see that the best configuration is a
loop buffer of 8 words together with a loop buffer of 32 wordis.this case, if we compare the energy
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savings from the BCLB and the SCLB architecture, we can saefdin this specific scenario it is also
better to have the SCLB architecture.

For the AES algorithm running on the processor that is opaiifor this algorithm, we have to
analyse only the loop buffer configurations that has 32 uiesiton words, because all the loops can fit
in a loop buffer of 32 instructions words (see Ta#l)e However, from Figur@3, we can see that only
loop buffers of 32 and 64 instruction words bring us energyrnggs. Therefore, we will analyse only
the loop buffer configurations that has 32 instructions Wwokgure27 shows the configuration of two
loop buffers, where one of them has a fixed size of 32 wordsmRhus figure, we can see that the best
configuration is a loop buffer of 8 words together with theddmuffer of 32 words. If we compare the
energy savings from the BCLB and the SCLB architecture, weseg that for this specific scenario it is
also better to have the SCLB architecture.

Figure 27. AES algorithm running on the optimised processor usingeckifit configurations
for the BCLB architecture.
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Figure 28. Summary of the best and worst SCLB and BCLB architectures.
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Based on all the previous results and discussions, we cacludenthat the use of loop buffer
architectures in order to optimise the IMO from the enerdicieihcy point of view should be evaluated
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carefully. In the case studies that are presented in thisrp#pe SCLB architecture is normally more
energy efficient than the BCLB architecture, as can be sefeigure28. However, the SCLB architecture
is not always more energy efficient than the BCLB architextufhe higher energy efficiency of the
SCLB architecture is because the whole execution time dfeadchmarks is concentrated in a few loops
with similar loop body size. If we can find a benchmark whetlie ffercentage is shared between loops
with different loop body sizes, the BCLB architecture whenh bring us more energy efficiency than
the SCLB architecture. Therefore, the two factors to takadoount in order to implement an energy
efficient IMO based on a loop buffer architecture are:

e the percentage of the execution time of the applicationighalated to the execution of the loops
included in the application. If this percentage is low, thigaduction of a loop buffer architecture
in the IMO cannot offer any energy savings, because the latipitarchitecture is not used enough
to achieve energy savings. In contrast, the higher thisgoéage, the higher energy savings that
can be achieved.

¢ the distribution of the execution time percentage, whictelated to the execution of the loops,
over each one of the loops that forms the application. Fdant®, the whole execution time
percentage that is related to loops can belong only to a fepslcor in another case, this percentage
can be spread in each loop homogeneously. If the whole egedirmnme is concentrated in a few
loops, the SCLB architecture will bring more energy savitiga the BCLB. If this percentage
is distributed homogeneously between loops, the BCLB techire will then bring more energy
savings than the SCLB. These facts are based on the effidemfuhe multi-banks that can form
the loop buffer architecture.

6. Conclusions

In this paper, the loop buffer concept was applied in two-fiéalembedded applications that are
widely used in biomedical WSNs. The loop buffer architeatarganisations that were analysed in this
paper were the Single Central Loop Buffer and the Bankedr@dmop Buffer architecture. An analysis
of the experimental applications that were used in this pajs performed to show which type of loop
buffer scheme was more suitable for applications with aetiahaviour. To evaluate the power impact, a
post-layout simulation was used to have an accurate estimait parasitics and switching activity. The
evaluation was performed using TSMC 90 nm Low Power librartgg aommercial memories. From
the experimental evaluation, gate-level simulations destrated that a trade-off exists between the
complexity of the loop buffer architecture and the powerddes of utilising it. This confirms our results,
showing that the Central Banked Loop Buffer does not alwaysylbenefits. Therefore, the use of loop
buffer architectures in order to optimise the IMO from thergy efficiency point of view should be
evaluated carefully. Two factors have to be taken into aetwuorder to implement an energy efficient
IMO based on a loop buffer architecture: (1) the percentdgbeexecution time of the application
that is related with the execution of the loops included mabpplication, and (2) the distribution of the
execution time percentage, which is related with the execwdf the loops, over each one of the loops
that forms the application.
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