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Abstract: In the cognitive radio system, spectrum sensing for detecting the presence of 
primary users in a licensed spectrum is a fundamental problem. Energy detection is the 
most popular spectrum sensing scheme used to differentiate the case where the primary 
user’s signal is present from the case where there is only noise. In fact, the nature of 
spectrum sensing can be taken as a binary classification problem, and energy detection is a 
linear classifier. If the signal-to-noise ratio (SNR) of the received signal is low, and the 
number of received signal samples for sensing is small, the binary classification problem is 
linearly inseparable. In this situation the performance of energy detection will decrease 
seriously. In this paper, a novel approach for obtaining a nonlinear threshold based on 
support vector machine with particle swarm optimization (PSO-SVM) to replace the linear 
threshold used in traditional energy detection is proposed. Simulations demonstrate that the 
performance of the proposed algorithm is much better than that of traditional energy detection.  

Keywords: cognitive radio; spectrum sensing; PSO-SVM; detection threshold 
 

1. Introduction 

Based on the conventional fixed spectrum allocation policy, most available radio spectra have been 
assigned to registered users, which lead to a serious waste of spectrum utilization. In fact, recent 
reports from Federal Communications Commission (FCC) have shown that only 30% of the allocated 
spectrum in US is fully utilized [1]. Cognitive radio, which enables secondary users to utilize the 
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spectrum when primary users are not occupying it, has been proposed as a promising technology to 
improve spectrum utilization efficiency [2–4], and has three essential components: (1) Spectrum 
sensing: the secondary users sense the radio spectrum environment within their operating range to 
detect the frequency bands which are not occupied by primary users; (2) Dynamic spectrum 
management: cognitive radio networks dynamically select the best available bands for communication; 
(3) Adaptive communications: a cognitive radio device can configure its transmission parameters  
(e.g., carrier frequency, transmission power) to opportunistically make best use of the ever changing 
available spectrum [5]. 

Spectrum sensing is a fundamental task for cognitive radio. However, there are several factors that 
make spectrum sensing practically challenging (e.g., low signal-to-noise ratio (SNR) of primary users, 
noise uncertainty, multipath fading). Several sensing methods have been proposed, including likelihood 
ratio test (LRT) [6–8], energy detection method [9,10], match filtering (MF) method [11], cyclostationary 
detection method [12,13] and the statistical covariances-based method [14]. Each of them has its own 
advantages and disadvantages, e.g., LRT is proven to be optimal, but it requires exact channel 
information and distributions of the primary signal and noise. The MF-based method needs perfect 
knowledge of the channel responses from primary users to the receiver and accurate synchronization 
(otherwise, its performance will dramatically be reduced) [15], it may not be possible if the primary 
users do not cooperate with the secondary users. The cyclostationary detection method requires the 
cyclic frequencies of the primary users, which may not be realistic for many spectrum reuse 
applications. Furthermore it needs high computation capabilities. The energy detection method does 
not require any primary signal information and it is robust to unknown dispersed channels and fading, 
but if the SNR of the received signal is low, the number of received signal samples is small and the 
power of noise is estimated inaccurately, the energy detection performance will decrease seriously [11]. The 
covariances-based method also does not require any prior information, but its computation complexity is 
also high [14].  

As mentioned one drawback of the traditional energy detection is that if the SNR of received signal 
is low and the number of the received signal samples is small the corresponding performance may 
decrease seriously. In order to overcome this drawback a novel method with the purpose of obtaining a 
nonlinear threshold for energy detection based on PSO-SVM is proposed in this paper. The proposed 
method focuses on one single point and one antenna scenario, which can be divided into Offline 
module and Online module. In the Offline module, the proposed system generates two classes of 
training samples, one for the simulated situation that both signal and noise exist simultaneously while 
another case is for noise only. The normalized energy of these two classes of training samples is used 
as the classification feature to train the PSO-SVM. After each training step, a decision function is 
generated. In the Online module, the decision functions obtained in the Offline module are used as the 
nonlinear thresholds for energy detection to verify if the primary user is present. The experimental 
results show that the receiver operating characteristic (ROC) curve of proposed approach is much 
better than traditional energy detection. The rest of this paper is organized as follows: the PSO-SVM is 
introduced in Section 2. In Section 3 determination of threshold and theoretical analysis are proposed. 
Simulation results are given in Section 4. Conclusions are finally drawn in Section 5.  
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2. PSO-SVM  

2.1. SVM 

In this subsection, a brief introduction to SVM, proposed by Vapnik [16], is given. Let ( )1
,i i i N
y

≤ ≤
x  

be a set of N training samples, each sample d
i R∈x  is a vector, d being the dimension of the input 

space, belonging to a class labeled by { }1, 1iy ∈ − . It amounts to find weight vector w and scale b, 

which satisfy: 

( ) 1i iy b⋅ + ≥w x  (1)

where ⋅  is inner product. The aim of SVM is to find the hyper-plane which makes the samples with 
the same label on the same side of the hyper-plane. The quantity 

2
1 w  is the margin, and optimal 

separating hyper-plane (OSH) is the separating hyper-plane which maximizes the margin. The larger 
the margin, the better the generalization is expected [17]. To search the maximum γ, quadratic 
programming is usually used, leading to:  

( )

2

w,b

1minimize
2

  1, 1, 2, ,i isubject to y b i N

⎫
⎪
⎬
⎪⋅ + ≥ = ⎭

w

w x
 (2)

according to Equation (2), a hyper-plane 0i b⋅ + =w x  with the largest margin can be obtained. For 

equality constraints in Equation (2), they can be modified to unconstrained by integrating positive 
Lagrange multipliers, leading to: 

( ) ( )
1

1, , 1
2

N

i i i
i

L b y bα α
=

⎡ ⎤= ⋅ − ⋅ + −⎣ ⎦∑w w w w x  (3)

to minimize ( ), ,L b αw  by requiring the gradient of ( ), ,L b αw  respect to w  and b  vanish, a dual 

form is given by: 

1

1
0

0
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i i i
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i i
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i
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=

=

=

=

≥

∑
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 (4)

substituting Equation (4) into Equation (3) gives: 

( )

( )
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According to Equation (3) and Equation (5), it is obvious that ( ) ( ) ( )
,

 inf , , , ,
b

w L b L bα α α= ≤
w

w w , 

thus the quadratic programming problem in Equation (3) can be converted to: 

( )
1 1

1maximize  
2

N N

i i j i j i j
i i

w y yα α α α
= =

= − ⋅∑ ∑ x x  (6)

subject to: 

( )

1
0

0 1,...,

1 0

N

i i
i

i

i i

y

i N

y b

α

α

α

=

=

≥ =

⎡ ⎤⋅ + − =⎣ ⎦

∑

w x

 (7)

the third constraint condition in Equation (7) is the Karush-Kuhn-Tucker (KKT) condition [18]. There 
is a Lagrange multiplier ai for each training sample, the training samples for which ai > 0 are called 
“support vectors”, lying on one of the two hyper-planes: 1b+⋅ + = +w x ; 1b−⋅ + = −w x . The 

training samples will only appear in the form of inner products between vectors.  
In the nonlinear case, the approach adapted to noisy data is to make a soft margin. We introduce the 

slack variables 0, 1, 2, ,i i Nξ ≥ =  so that:  

( ) 1i i iy b ξ⋅ + ≥ −w x  (8)

The generalized OSH is the solution of minimizing: 

1

1
2

N

i
i

C ξ
=

⋅ + ∑w w  (9)

subject to Equation (7). The parameter 
1

N

i
i

ξ
=
∑  is the upper bound of the number of training errors and C 

is the penalty parameter to control errors. 
In the nonlinear SVM, a kernel function is introduced to map the initial data into a feature space 

with a high dimension. In the new space, the data should be linearly separable. Then Equation (6) can 
be converted to: 

( ) ( )
1 1

1maximize    ,
2

N N

i i j i j i j
i i

w y y Kα α α α
= =

= −∑ ∑ x x  (10)

subject to Equation (7), and 0 i Cα≤ ≤ . ( ),i jK x x  is the kernel function. As one of the most popular 

kernel functions, the RBF kernel function is considered in this paper, and it takes the following form: 

( ) { }2
, expi j j iK g= − −x x x x  (11)

where g is kernel parameter, and denoting the width of kernel function. If g is too big, the SVM may 
outfit the training data, and a too small g may make SVM algorithm not flexible enough for complex 
function approximation. By solving Equation (10) we can obtain the minimum ⋅w w : 



Sensors 2012, 12 15296 
 

 

( )* * * *

1
,

N

i j i j i j
i

y y Kα α
=

⋅ =∑w w x x  (12)

where *w , *
iα  are the solution of Equation (10). Then the decision function is:  

( ) ( )*f x sign b= ⋅ +w x  (13)

where x  is a test sample with an unknown label y. Noting that *w  only depend on the training samples 
( )1

,i i i N
y

≤ ≤
x , if we choose a set of training samples ( )1

,i i i N
y

≤ ≤
x , a unique decision function will be 

obtained by solving Equation (10). 

2.2. Particle Swarm Optimization 

The parameters C and g need to be set to solve Equation (10). However, in a practical situation it is 
difficult to set these two parameters properly. In this subsection, we integrate a PSO (particle swarm 
optimization) method to adaptively set C and g.  

Particle Swarm Optimization (PSO) is inspired by the social behavior of birds, birds in a  
swarm preying on food and cooperation with each other to search for the optimal position to obtain  
the food. In a PSO optimal problem, there are a group of individuals, each individual is called a 
“particle”, which may be a potential solution. Suppose that the solution space of optimization problem 
is D dimensions. The i-th particle is ( )1 2 3, , , ,i i i i iDX x x x x= ⋅⋅⋅ , the optimal position for itself is  
Pi = (pi1, pi2, pi3,…piD) and its speed move to this position is ( )1 2 3, , , ,i i i i iDV v v v v= ⋅⋅⋅ , the optimal swarm 

position is Pg = (pg1, pg2, pg3,…pgD), iteration to find the optimal position is given by: 

( ) ( )1
1 1 2 2

t t t t
id id id id gd idx v c r p x c r p xϖ+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (14)

1 1t t t
id id idx x v+ += +  (15)

where t
idx  and t

idv  are the d–th location and speed component of i–th particle at the t–th iteration, 1c  and 

2c  are two positive coefficients, 1r  and 2r  are the random number selected from 0 to 1, ϖ  is the flexible 
coefficient of t

idv . The second part of Equation (12) is called “cognitive” part which is the optimization 

of the particle itself, and the third part of Equation (12) is the “swarm part”, which is the cooperation 
with other particles. In addition, a boundary for each particle should be set as[ ]max max,id idx x− , and maxidv . 

In the process of the iteration, if the parameter of particle is out of the range, they are replaced by the 
boundary value. For the optimization of the error penalty parameter C  and kernel parameter g, each 
particle is set as ( , )C g , and a three cross validation is used to estimate the performance of each ( , )C g , 
training data is separated into three parts, one part is considered as the validation set and the remaining 
two parts are for training . Our earlier work has validated this PSO algorithm [19].  
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3. Threshold Determination and Theoretical Analysis 

Common notation as summarized in Table 1 is used throughout this section. 

Table 1. Notation 

sN  number of signal samples for spectrum sensing 
( )s n  actual received primary signal sample 

( )u n  actual received noise sample  
( )trs n  training primary signal sample in offline module 
( )tru n  training noise sample in offline module 

2
sσ  variance of actual received primary signal 
2
uσ  variance of actual noise 

2
trs trσ λ=  variance of training primary signal in offline module 
2 1
truσ =  variance of training noise in offline module 
λ  SNR of actual received primary signal 

trλ  SNR of training primary signal in offline module 
T  actual decision statistic 

1T  actual decision statistic at hypothesis 1H   

0T  actual decision statistic at hypothesis 0H  
' 2

uT T σ=  normalized actual decision statistic 
' 2

1 1 uT T σ=  normalized actual decision statistic at hypothesis 1H  
' 2

0 0 uT T σ=  normalized actual decision statistic at hypothesis 0H  

1

,s tr

tr

NT λ  training decision statistic defined by sN , trλ  at hypothesis 1H  in offline module

0
s

tr

NT  training decision statistic defined by sN  at hypothesis 0H  in offline module 

3.1. Basic Conception of Energy Detection  

In this subsection we introduce the general model for spectrum sensing, then review the energy 
detection scheme and analyze the relationship between the probability of false alarm and probability  
of detection. 

Suppose that we are interested in the frequency band with carrier frequency fc, bandwidth W and the 
received signal is sampled at sampling frequency fs, respectively. When the primary user is active, the 
discrete received signal at the secondary user is given by [5]: 

( ) ( ) ( )z n s n u n= +  (16)

where ( )z n  is under hypothesis 1H . When the primary user is inactive, the received signal is given by: 

( ) ( )z n u n=  (17)



Sensors 2012, 12 15298 
 

 

and this case is referred to the hypothesis 0H . In this paper we only focus on one single point and one 

antenna spectrum sensing scenario, thus for simplicity we make the following assumptions [5]: 
(AS1) The primary signal ( )s n  is an independent, and identically distributed (IID) random process 

with mean zero and unknown variance ( ) 2 2
sE s n σ⎡ ⎤ =

⎣ ⎦
; 

(AS2) The noise ( )u n  is a Gaussian IID random process with mean zero and variance 

( ) 2 2
uE u n σ⎡ ⎤ =

⎣ ⎦
, which can be estimated; 

(AS3) The primary signal ( )s n  is independent of the noise ( )u n . 

The signal-to-noise ratio (SNR) of the actual primary user measured at the secondary receiver of 

interest is
2

2
s

u

σλ
σ

= , under hypothesis 1H . We consider the circularly symmetric complex Gaussian 

(CSCG) as the noise case. For the primary signal ( )s n , we consider complex PSK modulated signal. 

Two probabilities are of interest for spectrum sensing: probability of detection dP , which defines, at  
hypothesis 1H , the probability of sensing method correctly detecting the presence of primary user; and 
probability of false alarm fP , which defines, at hypothesis 0H , the probability of sensing method 
claiming the presence of primary user.  

Energy detection is one of the most popular spectrum sensing schemes, because of it does not need 
any prior information about the primary signal and is easy to apply. Let τ be the available sensing time 
and sN  be the number of samples, for simplicity we assume s sN fτ= . The test statistics are given by [5]: 

( )

( ) ( )

( )

2

1

2

1
1

2

0
1

1

1

1

s

s

s

N

ns

N

ns

N

ns

T z n
N

T s n u n
N

T u n
N

=

=

=

=

= +

=

∑

∑

∑

 (18)

for generality, decision statistics need to be normalized with the estimated power of noise, then the 
normalized decision statistics are given by: 

'
2

' 1
1 2

' 0
0 2

u

u

u

TT

TT

TT

σ

σ

σ

=

=

=

 (19)

if the number of signal samples sN  is small, the probability of false alarm fP  for a predefined threshold 

ε  is given by: 

( ) ( )' '
0 0Pr | PrfP T H Tε ε= > = >  (20)

The far right-hand side of Equation (20) indicates a class of chi-square variable with 2 sN  degrees 
of freedom for complex-valued case. From Equation (20) the threshold ε is related to the fP  as 
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( )12 , 2f schi P Nε −= , where ( )12chi − ⋅  is inverse of the chi-square cumulative distribution function. For 
the same threshold ε, the probability of detection dP  is given by:  

( ) ( )' '
1 1Pr | PrdP T H Tε ε= > = >  (21)

The symbol '
1T  indicates a class of non-central chi-square variable with 2 sN  degrees of freedom 

and a non-centrality parameter λ , in our case 
2

2
s

u

σλ
σ

= , extensive tables exist for the chi-square 

distribution, but the non-central chi-square has not been as extensively tabulated.  
In this paper, we use approximations proposed by Patnaik [20] to replace the non-central chi-square 

with a central chi-square having a different number of degrees of freedom and a modified threshold 
level, If the non-central chi-square variable has 2 sN  degrees of freedom and non-centrality parameter 
λ , define a modified number of degrees of freedom D and a threshold divisor G given by:  

( ) ( )22 2 2s sD N Nλ λ= + +  

( ) ( )2 2 2s sG N Nλ λ= + +  
(22)

then: 
( ) ( )' '

1 0Pr PrdP T T Gε ε= > = >  (23)
As mentioned above, when the probability of false alarm fP  and the number of samples sN  is set, 

we can obtain a unique value of threshold ε, it equals to a linear classifier in binary classification 
problem. But if the SNR λ is low while the number of signal samples sN  is small, the corresponding 
spectrum sensing problem is linearly inseparable, and the traditional energy detection can not classify 
this linearly inseparable problem efficiently. 

3.2. Nonlinear Threshold System  

To overcome the drawbacks of traditional energy detection mentioned above, the authors here 
propose a method in purpose of obtaining nonlinearly threshold based on PSO-SVM. The system 
process encompasses two distinct modules i.e., Offline and Online, which are clearly illustrated by the 
Figure 1. 

Figure 1. System model of the proposed method. 
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( ) ( ),

2

1
1

1 s
s tr
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N
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tr tr
ns
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= +∑

( )
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1 s
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N
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= ∑
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3.2.1. Offline Module 

The main function of the Offline Module is to generate the nonlinear thresholds for energy detection.  
Firstly, the proposed system generates training signal and training noise under AS1-3. Therefore the 

variance of training signal is a known value 2
trs trσ λ= , the variance of training noise is 2 1

truσ = , and 
training SNR is trλ .  

Secondly, based on the parameter trλ  and number of signal samples sN , two classes of training 
decision statistics under hypothesis 0H  and hypothesis 1H  could be obtained, which are given by : 

( ) ( ),

2

1
1

1 s
s tr

tr

N
N

tr tr
ns

T s n u n
N

λ

=

= +∑  (24) 

( )
2

0
1

1 s
s

tr

N
N

tr
ns

T u n
N =

= ∑  (25) 

where the symbol ,
1

s tr

tr

NT λ  indicates a class of non-central chi-square variables with mean 1 trλ+ ， 2 sN  

degrees of freedom, and a non-centrality parameter trλ . While the symbol 0
s

tr

NT  indicates a class of 
central chi-square variables with mean 1 and 2 sN  degrees of freedom. 

Thirdly, labeling each variable of ,
1

s tr

tr

NT λ  class as “+1”, and each variable of 0
s

tr

NT   

class as “–1”, then these two classes of variables are used as training data to train PSO-SVM 
mentioned in Section 2. Consequently, a separating hyper-plane * 0b⋅ + =w x  and a decision 

function ( ) ( )*f x sign b= ⋅ +w x  could be derived.  

In the fourth step, the variables of 0
s

tr

NT  class are applied to test this decision function so as to gain 

the probability (denoted as ,s trN
eP λ ) that the decision function mistakenly label a 0

s

tr

NT  variable as a 
,

1
s tr

tr

NT λ  variable. 

Proposition1: The probability of a variable mistakenly labeled by decision function is determined 
by the geometric distance γ  which is from this variable to the separating hyper-plane. 

Proof: The proof is mainly based on Rosenblatt classifier, and detailed proof is given in Appendix A. 
The average geometric distance from variables of 0

s

tr

NT  class to separating hyper-plane is given by: 

* *
0

1 * *

2 2

1
 

s

tr

tr

NT b b
Eγ −

⎡ ⎤⋅ + ⋅ +
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

w w

w w
 (26)

while the average geometric distance from variables of '
0T  class to separating hyper-plane is given by:  

* ' *
0

1 * *

2 2

1
 

T b b
Eγ −

⎡ ⎤⋅ + ⋅ +
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

w w

w w
 (27)

according to Equation (26) and Equation (27), it is obvious that the average geometric distance from 
variables of 0

s

tr

NT  class to the separating hyper-plane is equal to the average geometric distance from 

variables of '
0T  class to the separating hyper-plane, and the probability distribution of 0

s

tr

NT  class are 
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same as the probability distribution of '
0T  class. Then, based on proposition 1, the probability that a 

variable of 0
s

tr

NT  class mistakenly labeled as ,
1

s tr

tr

NT λ  class is equal to the probability (the probability of 

false alarm) that a variable of '
0T  class is mistakenly labeled as '

1T  class. To conclude, it could be 

expressed as equation: 

( ) ( ), '
0 0Pr( 1) Pr( 1)s tr s

tr

N N
e fP f T f T Pλ = = = = =  (28)

Each set of parameter trλ  and sN  will be used to generate two classes of variable: ,
1

s tr

tr

NT λ  and 

0
s

tr

NT . A decision function marked as ( ),s fN Pf x  could be obtained by training PSO-SVM with these 

two classes of data. Finally, the decision function ( ),s fN Pf x  is stored as a non-linear threshold. 

The process to obtain a non-linear threshold is shown in Table 2, and some of typical training 
results of ( ),s fN Pf x  are shown in Table 3 and Figure 2. 

Table 2. The process to obtain a non-linear threshold. 

1. Generate training signal ( )trs n  and training noise ( )tru n , with 2
trs trσ λ= , 2 1

trsσ = . 

2. Compute two classes of data: ,
1

s tr

tr

NT λ , 0
s

tr

NT  by (24) and (25). 

3. Train PSO-SVM with two classes of data: ,
1

s tr

tr

NT λ , 0
s

tr

NT to obtain a decision function ( )f x . 

4. Test this ( )f x  with the variables of 0
s

tr

NT  class to obtain ,s trN
eP λ , based on  Proposition 1 ,s trN

e fP Pλ = .

5: Return ( )f x  as ( ),s fN Pf x , and store it as non-linear threshold. 

Table 3. Typical Training Results. 

=5sN  =10sN  

trλ  fP  ( ),s fN Pf x  trλ  fP  ( ),s fN Pf x  

−35.7 dB 0.9 ( )5,0.9f x  −37.1 dB 0.9 ( )10,0.9f x  

−29.8 dB 0.8 ( )5,0.8f x  −32.8 dB 0.8 ( )10,0.8f x  

−24.9 dB 0.7 ( )5,0.7f x  −27.2 dB 0.7 ( )10,0.7f x  

−20.4 dB 0.6 ( )5,0.6f x  −21.6 dB 0.6 ( )10,0.6f x  

−16.5 dB 0.5 ( )5,0.5f x  −18.4 dB 0.5 ( )10,0.5f x  

−6.5 dB 0.4 ( )5,0.4f x  −8.1 dB 0.4 ( )10,0.4f x  

−2.8 dB 0.3 ( )5,0.3f x  −4.2 dB 0.3 ( )10,0.3f x  

−0.2 dB 0.2 ( )5,0.2f x  −1.7 dB 0.2 ( )10,0.2f x  

2.3 dB 0.1 ( )5,0.1f x  −0.2 dB 0.1 ( )10,0.1f x  
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Figure 2. Training Results of Table 3. 
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3.2.2. Online Module 

In the Online module, the proposed system automatically chooses one of the decision functions 
(according to required number of signal samples sN  and probability of false alarm fP  ) stored in the 

Offline Module as non-linear threshold to judge whether the actual primary user is present e.g., the 
required number of signal samples is = 5sN  and probability of false alarm is  = 0.1fP , the proposed 

system would apply decision function ( )5,0.1f x  as the non-linear threshold. 

If a decision function ( ),s fN Pf x  is chosen as the nonlinear threshold, Equations (20) and (21) will be 

converted to:  

( ) ,'
, 0Pr( 1| ) s tr

s f

N
f N P eP f T H P λ= = =  (29)

( )'
, 1Pr( 1| )

s fd N PP f T H= =  (30)

The result of spectrum sensing is given by: 

( ) ( )
( ) ( )

'
, 1

'
, 0

1,  Primary user is presented hypothesis 

1,  Primary user is not presented hypothesis 
s f

s f

N P

N P

f T H

f T H

⎧ =⎪
⎨

= −⎪⎩
 (31)

3.2.3. Comparison with Traditional Energy Detection 

Energy detection is the basic sensing method, which was first proposed in [9] and further studied  
in [5,10]. It does not need any information of the signal to be detected and is robust to unknown 
dispersive channels. Energy detection compares the normalized average power of the actual received 
signal plus noise ' 2

1 1 uT T σ=  variable with the noise power ' 2
0 0 uT T σ=  to make a decision. To 

guarantee a reliable detection, the threshold must be set according to the actual noise power 2
uσ  and 

the number of samples sN  [9]. The difference between the traditional Energy detection and the 



Sensors 2012, 12 15303 
 

 

proposed system is that the proposed system has a Offline module to obtain decision functions as the 
non-linear thresholds.  

In the Offline module, the system needs a great number of 
1

,s tr

tr

NT λ  variables and 0
s

tr

NT  variables to 

train PSO-SVM during each training process. Taking the simulation process in this article as an 
instance, 500 variables from 

1

,s tr

tr

NT λ  and the same from 0
s

tr

NT are deployed for each training process, of 

which computational complexity is about ( )31000O  [16]. 

As the price of getting the full list of decision functions, the training times are huge. Therefore the 
overall computational complexity of the offline module is extremely high. However, in a real spectrum 
sensing situation, we only take care of the computational complexity in the Online module. The 
computational complexity of traditional Energy detection needs about sN multiplications and 
additions. Hence, the computational complexity of the proposed methods is about 1sN +  

multiplications and additions, which is competitive with traditional Energy Detection. 

4. Results and Discussion 

In this section, we use the decision functions stored in the Offline module as the nonlinear 
thresholds to simulate the probability of detection dP  in the Online module. 

In Figure 3 we compare the receiver operating characteristic curve of the proposed method and 
traditional energy detection for actual SNR 0dBλ =  and number of signal samples 5sN = . If the SNR 
of the actual received signal is low and the number of signal samples is small e.g., 0 dBλ =  and 

5sN = , the corresponding spectrum sensing problem based on energy detection is a linearly 
inseparable binary classification problem. Traditional energy detection with a predefined threshold is a 
linear classifier, it cannot solve linearly inseparable problem efficiently. But the proposed method is a 
nonlinear classifier based on PSO-SVM, which can solve linearly inseparable problem efficiently. As 
shown in Figure 3, the performance of the proposed method is much better than traditional energy 
detection. 

Figure 3. Receiver operating characteristic curve of the proposed method and traditional 
energy detection for number of signal samples 5sN =  and actual SNR 0 dBλ = . 
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In Figure 4 we compare the receiver operating characteristic curve of the proposed method and 
traditional energy detection in terms of actual SNR 5 dBλ =  and number of signal samples 5sN = . 
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Although the actual SNR λ  increases to 5 dB but the number of signal samples 5sN =  is small, which 
means the corresponding spectrum sensing problem based on energy detection is still linearly 
inseparable. Therefore, as shown in Figure 4, the performance of proposed method is dramatically 
better than the traditional energy detection method.  

Figure 4. Receiver operating characteristic curve of the proposed method and traditional 
energy detection for dP  for number of signal samples 5sN =  and actual  SNR 5 dBλ = . 
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In Figure 5 we compare dP  of the proposed method and traditional energy detection for fixed 
0.1fP =  and number of signal samples 1,000sN = , the corresponding performance of the proposed 

method is still better than energy detection. This is because although the number of sensing samples is 
large i.e., 1000, but actual SNR λ  is low, thus the corresponding spectrum sensing problem is linearly 
inseparable, however the proposed method can classify linearly inseparable problem efficiently. As 
shown in Figure 5, at 20 dBλ = −  the proposed method is almost three times better than traditional 
energy detection. With the λ  increases the spectrum sensing problem coverage to linearly separable, 
and the difference of performance between the proposed method and the traditional energy detection 
also decreases. 

Figure 5. dP  of the proposed method and traditional energy detection for number of signal 
samples 1,000sN = , 0.1fP =  and actual SNR 20 0dB dBλ = − − . 
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5. Conclusions 

In this paper, a novel modular spectrum sensing method for cognitive radio based on PSO-SVM is 
proposed. It comprises two distinct modules, i.e., Offline and Online. In the Offline module, the 
decision functions with associated probabilities of false alarm are obtained. In the Online module, the 
primary user is detected by using the decision functions obtained in the Offline module. 

The proposed method actually is independent from the traditional detection method, a nonlinear 
decision is exploited to replace the linear threshold, which drastically improves the performance of 
detection without increasing the computational complexity in Online phase. The approach can be used 
for various signal detection applications without a priori knowledge of signals and channels. 
Simulations have been carried to evaluate the performance of the proposed method. It has been shown 
that the proposed approach is more effective than the traditional energy detection approach in hostile 
environments. More specifically, when the received signal samples are lacking and SNR is low, the 
approach proposed in this paper can give a reliable performance, while the traditional energy detection 
approach is hypodynamic.  

In our future research work, we will try to apply the proposed method to enhance more sophisticated 
detection algorithm which uses predefined linear threshold (e.g., the method proposed in [14]). More 
specifically, secondary users are located with detected radio map thereby deploying space-time spectrum 
sensing. And the specific signal pattern from the primary user can be recognized by analyzing the 
signal detected.  
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Appendix: Proof of Proposition 1  

If the point ( ), yx  is correctly classified by the optimal hyper-plane 
2

b
y γ

⋅ +
≥

w x
w

. In order to 

facilitate the analysis, we introduce an additional coordinate to expand the sample, the new sample is 

( )'' , R
∧

=x x , R is a constant, 'x  is the transpose of x . Similarly we can use bias b to expand the 

weighted vector w, and the expanded w is ( )'' ,b R
∧

=w w , the iteration starts from 0
∧

=w , if there is a 

wrong separation, the 
∧
w  is updated accordingly. Suppose 1t

∧

−w  is the weighed vector before the wrong 
separation: 

1 1 1 0it ti i ty b
∧ ∧

− − −
⎛ ⎞⋅ = ⋅ + ≤⎜ ⎟
⎝ ⎠

w x w x  (32)

where ( ), yx  is the data mistakenly separated by ( )''
1 1 1,t t tb R

∧

− − −=w w  and the t th−  update is given by: 

( ) ( ) ( )' ' '' ' '
11 1, , , it tt t t t i i i i ib R b R y R yα α

∧ ∧ ∧

−− −= = + = +w w w x w x  (33)

where 1t tb R b R yRα−= + , α  is Lagrange multiplier and we can obtain a result: 
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1 1it t tiyα αγ
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

− −⋅ = ⋅ + ⋅ ≥ ⋅ +w w w w x w w w  (34) 

Before the t-th mistaken separation there already has 1t −  wrong separations thus we can obtain: 

t tαγ
∧ ∧

⋅ ≥w w  (35)

similarly: 
2 2 2

2
1 1

2 2 2 2
2 2 2

1 1

2
2 2

1

2

       

       2

tt t

t t

t

y x

R

R

α α

α α

α

∧ ∧ ∧ ∧ ∧

− −

∧ ∧ ∧ ∧

− −

∧

−

⎛ ⎞= + ⋅ +⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ + ≤ + +⎜ ⎟⎜ ⎟

⎝ ⎠

≤ +

w w w x

w x w x

w

 (36)

which means: 
2

2 22t t Rα
∧

≤w  (37) 

and a close form is given by Equation (34) and Equation (35): 

2 t tt R tα αγ
∧ ∧ ∧ ∧ ∧

≥ ≥ ⋅ ≥w w w w w  (38) 

based on Equation (35) and Equation (36):  

1t
γ

∝  (39) 

Proposition 1 is proven. 
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