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Abstract:  This paper proposes a distributed method for cooperatrgetdracking in
hierarchical wireless sensor networks. The concept ofelebdsed information processing
is conducted to achieve object positioning, considerinduater-based network topology.
Random timers and local information are applied to adajytiselect a sub-cluster for the
localization task. The proposed energy-efficient traclatgprithm allows each sub-cluster
member to locally estimate the target position with a Baymediltering framework and a
neural networking model, and further performs estimatasidn in the leader node with
the covariance intersection algorithm. This paper evaekishe merits and trade-offs of
the protocol design towards developing more efficient arattoral algorithms for object
position estimation.

Keywords: wireless sensor networks; target tracking; Bayesianifiggneural networking;
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1. Introduction

Giving the limited power and processing capability in a semaote, a critical challenge of target
tracking is how to acquire suitable data and perform infdromaprocessing at the local level through
cooperative communication and networking in the vicinityhe target. Thus, scalability and the need to
conserve energy lead to the idea of hierarchically orgagithe sensors, which can represent the target
state and incorporate statistical models for the sensingdide and target positioning. This paper aims
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to develop a fully distributed method for cooperative tatgacking in wireless sensor networks from
two perspectives: (1) energy-balanced tracking and (2Jongal estimation accuracy.

The first perspective is to build up an energy-balanced ingaketwork architecture. In this work, the
concept of leader-based information processing is coeduotautomatically achieve cooperative sensor
scheduling with multiple tasking sensors in a cluster-dasstwork topology based on sensor residual
energy level, target information, and estimation quallty.avoid the ambiguity, the clusterhead and the
cluster members refer to the original network topology, kehs the leader and the sub-cluster members
refer to the sensor group for the tracking task. Random 8raad local criteria are used to determine
the tracking responsibility of the clusters. Afterwardssub-cluster of the corresponding cluster for
the tracking task is formed by a leader, which can be a clusgat or a cluster member in the original
cluster-based network. The second perspective is to extllerbehaviors/characteristics of a target such
that supplementary information can be applied to improwenagion accuracy. Within the sub-cluster,
the sensing nodes provide their measurements to the lédplen receiving the measurements, the leader
fuses the local estimates from the sub-cluster membersepuits it to the clusterhead. When the target
moves out the region of the current active sub-cluster, ¢aeldr needs to trigger the leader handoff
procedure (detailed in Secti@¥).

As shown in [L], compared with the dynamic clustering approach in a flatvogk topology, the
static clustering approach incurs a larger location ermocesa clusterhead may not be a good local
controller for estimating the location and reporting ther@vdue to target movement. However, given
a fixed hierarchical network topology, dynamic clusteripgp@aches may not be feasible. Therefore,
considering a cluster-based network topology, we intredadistributed cooperative target tracking
system,Two-level Clustering Approach via Timer (TCAT), which aims to improve the energy efficiency
and provide good estimation accuracy. Here level-one@lungt indicates the original network topology
with control of clusterheads. Level-two clustering medresgub-cluster formation for the tracking task
with control of tasking leaders. Therefore, the informatitow goes through the sub-cluster members
to the leader, and then to the clusterhead, and vice versaordiagly, the TCAT scheme performs
target localization in four phases: (I) Tasking Leader &&b@; (1) Choosing the Sub-Cluster Members;
(111) Target Positioning; and (IV) Sub-Cluster Member Rleséion and Leader Handoff.

In Phases | and II, random timers and local information amgieg to adaptively select a tasking
leader and sub-cluster members for the localization tasRhise 111, the Bayesian particle filt&; 3] is
used to estimate the unknown target position from statetemsa The objective is to find feasible
position to minimize the error of the state vector. Afteraibing the initial position estimate, the
localization adjustment problem can be solved by applyimgaral networking model, which focuses
on improving positioning accuracy. Afterwards, the coaade intersection algorithnd] is adopted
to perform estimation fusion. In order to maintain trackstgbility, Phase IV performs the leader
handoff task.

The major contributions and key features of this paper atedi as follows. (1) We propose a
novel cooperative positioning approach. (2) One of the namivantages of Bayesian framework is
that the tasking sensor carries along a complete distobuif estimates of the target position. Thus,
the distribution is inherently a measure of the accuracyhef positioning system. (3) Due to the
characteristics of the cooperative information procagdime proposed estimation fusion approach owns
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adaptive flexibility when dealing with uncertainty in pasit estimation. (4) In practice, two basic
approaches can be applied to conserve power in a sensorrkeeitber by the power management for
sensor sleeping or by the design of low-power operationvarel Our scheme is actually a distributed
scheduling strategy for target tracking. The concept ofwgomanagement for sensor sleeping” is
applied to select a subset of sensors for exploring dettalegbt information. The selected sub-cluster
members (active nodes) are performing the tracking tasktenthactive nodes can go to the idle/sleep
mode. (5) We compare and contrast the existing trackingogapies with the proposed scheme. (6) We
outline the technical foundations of the tracking teche&jand present the tradeoffs in the algorithm
design.

The rest of the paper is organized as follows. SecHdriefly reviews the literatures on target
tracking. Section3 formulates the problem, derives a distributed solutiorg describes a neural
networking refinement model for target positioning. Satdgresents an estimation-theoretic analysis
of the proposed mechanism to assess the achievable estina&ituracy. Then, Sectidnhconsiders
the energy consumption of the proposed tracking schemeedtid® 6, the feasibility of the proposed
scheme is examined via simulation. The performance cosgabetween the proposed approach and
the scheme with a hierarchical network topology3hif presented. Sectionmakes a conclusion and
shows future research directions.

2. Literature Review

There are five major categories for the target tracking swist[1]: tree-based tracking, cluster-based
tracking, prediction-based tracking, mobicast messagedbtracking, and hybrid tracking. Studies have
shown that the cluster-based tracking algorithms haveibe¢twork scalability and resource utilization
compared with those in other categories. Prediction-based#ling rely on tree-based and cluster-based
tracking in addition to the prediction method, but the tiagkaccuracy cannot be guaranteed. Mobicast
message-based tracking method depends on predictiorh) veéhécmulti-cast method in which message
is delivered to a group of nodes that change with time acogrth estimated velocity of moving entity.
Scheduling strategies vary in target tracking protocot$ tame synchronization may be needed to set
the wake up and sleep timings of sensor nodes.

Since the proposed approaches fall into the category otethimsed tracking, we focus on the
research results of this category. The following subsastioriefly describe the current literature of
target tracking with respect to the number of tasking sensor

2.1. Single Tasking Sensor

In the current literature, the general problem formatiosanfiet tracking is reformed to be a sensor
selection problem with the uniform sampling interval andheut incorporating the target dynamics,
i.e., the information-driven sensor query (IDSQ) appro&jlahd the entropy approach based on sensor
selection f]. In contrast, the authors i189] propose adaptive scheduling strategies to choose thkesing
tasking sensor and determine the sampling interval simedtasly. In 8], the sensors are scheduled in
two tracking modes: (1) the fast tracking approaching modle the unsatisfactory predicted tracking
accuracy; and (2) the tracking maintenance mode with thisfaetiory predicted tracking accuracy.
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The approach employs an Extended Kalman Filter (EKF) basé&thation technique to predict the
tracking accuracy, and adopts a linear energy model to grélae energy consumption. ][ the
proposed algorithm applies the interactive multiple m@déM) filter to estimate and predict the target’s
dynamic state and select the tasking sensor node and sgnknval for each time step based on both
the tracking accuracy and the energy cost. The simulatisaltseshow that the proposed approach
outperforms the popular extended Kalman filter (EKF) basscking scheme for maneuvering target in
terms of tracking accuracy and energy efficiency. 1€][ a small region is specified in order to select
the single tasking sensor for achieving energy consemvatithe distributed IMM filter is employed
to estimate target position and velocity. A novel dynamicuging idea is proposed to schedule next
tasking node. However, the IMM filter has to face the probldrhigh complexity, especially with the
operation of dynamic grouping.

In general, the localization problem can be solved by tha jiie-of-arrival (TOA)/angle-of-arrival
(AOA) positioning scheme using a single seed.( a sensor node with a known position). However,
in the case of poor observations, more TOA/AOA measureniebstsmultiple tasking sensors) may be
applied to complement the measurements of the environment.

2.2. Multiple Tasking Sensors

For the purpose of increasing estimation accuracy andbrifia multiple tasking sensors may be
scheduled to track the target with detection uncertainti@s[5], target localization strategies based
on a communication protocol between the clusterhead arsteclunembers are presented. In these
approaches, a subset of sensor nodes is selected for quelgiailed target information. Although
energy and communication bandwidth are conserved in aicenaount, the processing burden all falls
on the clusterhead, which may drain its power quickly. Sygaet al. [11] focuses on tracking error
and energy management involved in tracking the target. itnapproach, the sensor nodes collectively
monitor and track the movement of the target, which involdetecting, clustering and localization of
target.

In [12], an information-driven approach in ad hoc sensor netwasksroposed to determine the
tasking sensors in a “sensor collaboration” by dynamicafi$imizing the information utility of data
for a given cost of communication and computation.18|] a distributed estimation method is proposed
based on mobile agent (MA) computing paradigm and genedoesgial Bayesian filtering for the
target state estimation at each time step. Nonethelesb)Ahmigration planning problem needs to be
handled in order to achieve the desired tracking accuratye tilacking schemes iri4,15 combine
the mechanisms of the tree-based and cluster-based sclamgsropose information-based target
tracking methods. However, the proposed sensor systethbate to deal with complexity issues.
Authors in [L6-21] propose multi-sensor scheduling schemes for maneuvtaiggt tracking in sensor
networks, while not considering the motion information loé¢ target. Williamset al. [22] presents an
integrated approach to dynamically routing measuremerttsrandels in a sensor network and examines
the problem of tracking objects within a region wherein tbgponsibility for combining measurements
and updating a posterior state distribution is assignedgmgle sensor at any given time step. The
proposed approach is able to substantially reduce the caneations cost incurred in tracking an object.
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However, this strength comes along with the additional demity of transmitting the representation of
the state distribution between the tasking sensors. Cdrapsive surveys of design challenges and
recently proposed target tracking algorithms can be foarjd]i

Note that most of these design approaches are dynamic rhgsfaotocols in a flat network. In
contrast, the method irb] is built upon a static cluster-based network topology. §,waferenceq] may
provide a good way to benchmark the performance of the pezptracking scheme.

3. Distributed Target Tracking Systems

In this section, we present the proposed distributed cabpertarget tracking systemtwo-level
Clustering Approach via Timer (TCAT) in a cluster-based network topology, which orgasizbe
tracking task in four phases: tasking leader selection,osing the sub-cluster members, target
positioning, and sub-cluster member reselection and teaaiedoff. Therefore, the proposed tracking
approach organizes a sub-cluster for the tracking taskwalleach sub-cluster member to locally
compute the target position, and uses cooperation to otitaifused estimate in the leader node. The
local level estimate of a sub-cluster member and the gl@val lestimate of a leader can be derived by
a Bayesian and neural networking framework, and the cavegigntersection algorithm, respectively.
The main assumptions are: (i) all sensors are homogeneiuie( sensors are in fixed and known
location; (iii) a pre-specified sub-cluster sizés applied to perform cooperative target positioning with
angle-of-arrival (AOA) information or hybrid time-of-aval/angle-of-arrival (TOA/AOA) information,
(iv) the target periodically broadcasts a message for nmmeasent purpose. Note that these assumptions
may be applied to healthcare scenarios or habitat mongtoilocate patients or animals. The distributed
tracking architecture in a cluster-based network is degdiat Figurel.

Figure 1. lllustration of block diagram for the TCAT method.

Cluster-Based
Network Topology
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3.1. Phasel: Tasking Leader Selection

When sensors are first deployed, they may apply the CAR@[tp establish the cluster-based network
architecture (Figur@(left)). However, due to the target movement, the clustedheay not be a proper
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local controller in the neighborhood of the target. Thus,luster member may be a good control
candidate and can be a leader for the tracking task. Denot@soswith tracking responsibility as
an active sensor. Otherwise, a sensor is marked as an maetsor. Suppose each sensor is an inactive
sensor with the initial deployment. The tracking task igdered when the target broadcasts a message
of L,;, whereL,; is a leader ID with an initial value zero, which is used to mficthe active sensors to
compete for being a leader of the tracking task. Thus, whesmeé receives the message sent from the
target, it will broadcast &/ ello message and become an active sensor, which allows itsedtitoage
how many neighboring active sensors it has? Allo message consists of (1) the sensor ID of the sending
sensor, (2) the leader ID of the sending sensor, and (3) tlsteclID of the sending sensor. Therefore,
the sensors update their neighboring informatias, (@ counter specifying how many neighboring active
sensors it has detected) and decrease the random leadegwiaiie (LWT) through the receiveHello
message sent from neighboring active sensors.

Figure 2. The cluster-based network topology and target movemeht2@time stepd éft);
an example of leader and sub-cluster member seleatight].
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Assume the initial value of the waiting time of sens!pLWTi(O), is a sample from the distribution
U(C,D’), whereD' = C'+ D, C'andD are positive numbers, arid(-, -) is a uniform distribution. The
update formula for the random LWT is given by

LwrV™ =a. Lwr? (1)

where LIWT” is the random LWT of sensarat time stepj, and0 < o < 1. Note that the setting of
random LWT may depend on sensor residual energy level tterfigemation, and measurement quality
(e.g., the channel condition, the accuracy of positionygiesm). When the timer of sensoexpires, it
then broadcasts Beader message to claim that it is leade(e.g.,L;; = ¢) for the tracking task.

3.2. Phase l1: Choosing the Sub-Cluster Members

Based on the claimed message sent from the leader and ther ¢tiisf the leader, the target will send
a message to inform the active sensors about the corresmpddster for the tracking task, which also
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notifies the active sensors with the same cluster ID to bedhdidate sub-cluster members associated
with the leader. To choose the members associated with arl@adtead of directly selecting the active
sensors from the leader, the sensor selection may be detxirbased on the reporting order of target
position estimates from the neighboring active sensorsedigader. Accordingly, a candidate sub-cluster
member, say sensar, may decrease its LWT along with an extra backoff tiBig,,, which is inversely
proportional to the estimation accuracy, for reporting éisémate of target position. When the timer
LWT,, expires, sensom will deliver the tracking information to leadér That is, based on the time
stamps of the received estimates, the target tracking gsaimen automatically formed with the leader.

For those active sensors without receivind.euder message, they transmit the estimated target
position directly to the clusterhead and become suppleangatb-cluster members. This is attributed to
the fact that the active sensors may not have direct commatimicwith the leader. Hence, they may send
their tracking estimates to the clusterhead for providingptementary information on the tracking task.
Therefore, when the number of sub-cluster members meetietieed numbet, the leader will perform
the Cl model (as detailed in Section 3.3.3) to obtain a gltdrgket position estimate and senfasition
message to the clusterhead, which also serves to specifiniesub-cluster members for cooperative
target tracking. If the leader does not collect sufficientber of estimatesi.€., |[M| < n, M is the
index set of the sub-cluster), then the leader may sendsedfestimate to the clusterhead and request
the clusterhead to incorporate the supplementary estinfgtessible. Afterwards, the clusterhead will
perform the CI algorithm based on the received fused estimatl the supplementary estimates. Note
that in order to spread the energy burden in the network, liiigter is responsible for informing the
base station about the target tracking and positioningurgig(right) shows an example of leader and
sub-cluster member selection.

3.3. Phase 1l Target Positioning

This phase presents a measurement mechanism to estimatadbe position. The localization
operation is performed in three phases: “initial geomatripositioning”, “position estimation
refinement”, and “estimation fusion”. For each sub-clustember, the Bayesian patrticle filter is used to
obtain an initial position estimate. Next, the localizatedjustment problem can be solved by applying
a neural networking model to refine the sample area and tltgring the particle filter to improve the
positioning accuracy. Finally, estimation fusion is penied by the leader node in order to obtain a
global estimate.

3.3.1. Geometrical Positioning with Particle Filtering

The Bayesian patrticle filte2] method may be preferred for object positioning becauserinbust to
noisy measurements, it allows for flexible information smmssion, and it can be robust to lost or lossy
data. Particle filter is an algorithm of estimation used ton@ste the unknown target position from state
equations. The objective is to find feasible position to middeeerror of state vectot minimum. The
state vector is represented as a set of random samples datatgpropagated with the algorithm. One
of the main advantages of this approach is that the taskimgpsearries along a complete distribution of
estimates of the target position. Therefore, the distigous inherently a measure of the accuracy of the
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positioning system. If a given task requires certain acoyria is possible to determine if that level of
accuracy is currently available. Therefore, our approschay be computationally affordable by sensor
nodes.

The idea in 4], using known sensor positions and the bounding-box algworito extrapolate the
unknown target position, inspires us to choose a proper pieasity for generating initial samples.
Figure3 shows an example how the measurement information (e.gandis information) can be used
to obtain thex andy coordinate bounds of the unknown target. Therefore, th@owk target combines
its bounds on the coordinates to form a bounding box, whickiges a good set of initial samples for
the particle filtering. In this work, each sub-cluster membges Bayesian particle filter to estimate
the unknown target position and performs target positigmith angle-of-arrival (AOA) information or
hybrid time-of-arrival/angle-of-arrival (TOA/AOA) infanation. The patrticle filter method is shown in
Tablel.

Figure 3. An example of obtaining the andy coordinate bounds of the unknown sensor D
by the distance and position information of the known sen#oB, and C.

Ye—Co )l
Xe+e vy —b

Table 1. The Particle Filtering Methodology.

1. Initialization: Generate a set of random sampigéi),
i=1,2,..., Npr from the prior density at timé = 0.
Each sample of the state vector is a “particle”.

2. Prediction: Each random sample is passed through the state
equation to obtain samples from the prior density at time
k + 1. Thus

Ty (1) = Pag (i) + TAk(4)

where\, (i) is a sample drawn from the probability density
function of the system nois@, is related to the mobility model,
andI is an identity matrix.
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Table 1. Cont.

3. Measurement Update: The weights of the likelihood function
p(zk+1|Tr1(2)) are updated for each sample in the random

seti = 1,2,..., Npr and the normalized weights are
Z. _ p(Zk+1|i‘k+l(i))
€k+1< ) Z;V:PlF p(Zk+1|i‘k+l(J’))

for each sample.

4. Re-sampling: Take Npr samples with replacement from the
random sample sé, (i), = 1,2,..., Npp, t0o generate the
new sample set; (7).

5. Position: The best single estimate of the position is the mean

Of 2p11 (i), T

3.3.2. Position Estimation Refinement

Since the AOA measurement quality highly depends on the asmgation environment, this
subsection presents estimation refinement criteria basemigy AOA information, TOA information,
and an angle-of-arrival neural networking (ANN) model. Phepose of the ANN model is to coordinate
the initial target position estimate, the initial sampleasp, and the measurement information in a
scenario with multiple tasking sensors such that effelstimdjustment of angle information and a better
sample area for particle filtering can be provided.

Angle-of-Arrival Neural Networking with CFBP

The feed-forward backpropagation (FFBP) and cascadeaforvackpropagation (CFBP) are
supervised learning algorithms for artificial neural natkgovhich most commonly used for prediction,
pattern recognition, and nonlinear function fittir®p]. Since the CFBP provides a better performance in
terms of convergence time, optimum of network structureraedgnition performancep], the neural
network with CFBP is applied for analyzing the performantthe TCAT.

Assume that the network under consideration has a generatesture with three layers of neurons.
In our case, input and output layer neurons are linear, vasereeurons in the hidden layer are
tan-sigmoidal. Let the vector pairsihbe sample representation of the unknown funcfioriR"” — RP:

T = {(X, Dq)}le, wheren is the neuron index range in the input layeiis the neuron index range
in the output layerX, € R", D, € R”?, Qis the number of training vector pairs, aqds the iteration
index. Note that), is the desired vector response for the network inputThus, the mean square error
of the entire training set is€ = %Zle &, Whereé, = 1ETE,, andE, is the instantaneous error of
the training paif.X,, D,).
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Estimation Adjustment

In order to adjust angle information, the three-layer peir@e neural network is considered. Based
on the proposed network architecture, the goal of trainsng imaximize the correlatio@ between the
signal of the hidden neuron and the residual output e&dr [

P Q

= (S(4) — 00 (81— A) @

|
j=1 g¢=1

whereS(-) is the signal functions,, = & 32, S(z1), A; = 532 67, = is the signal of the hidden
neuronh in response to input pattethi,, 5;? is the familiar scaled output error at neurpnj; is the
average scaled error on the entire pattern set. Accordiftglgelecting the network parameters (weights
and biases) that best approximate a given function, thegoapkgation learning algorithm is considered
to minimize the mean square error performaéice

Figure4 illustrates the perception network architecture. Noté Shaepresents the number of input
neurons, which may denote the number of received messagesrfeighboring sensors, the AOA
measurement of the estimated target, the desired valuebetlaater sizen, and the minimum angle
coverage area of a tasking sensor with a right-hand-sidée dwundary and a left-hand-side angle
boundary (two brown lines as shown in Figu@op)), where the initial sample area is located within
the coverage areal/! denotes the number of hidden neurons. In the output ldyerepresents the
number of neurons, which may denote the network approxanasults. Moreover, let IW and LW be
the input weight matrix and layer weight matrix for the hiddayer and the output layer, respectively.
Let b' andb? be bias vectors for the hidden layer and the output layepeetively. Established upon
the developed neuron network model, the behavior of the TSBAEmMe may be abstracted with sensible

settings, which is further discussed in Sectton

Figure 4. The three-layer perception network architecture for aniatythe performance of
the TCAT.

Input Hidderl Layer Outpui Layer
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Figure 5. The initial sample areadp); the refined bounding box based on the reference
angle informationtjottom).
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In order to improve positioning accuracy with particle filbg, one option is to determine an
appropriate sample space for generating particles. As shiowigure5(top), the initial sample area
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is the rectangle defined by blue lines and four corners: 2),(8), and (4) ordered clockwise, which
serves as a basis for estimation refinement. Observe thatrtiet is located within the defined rectangle
and the pink “TOA’ circles represent the minimum and maxinmamge estimates.

After importing the information of the defined rectangle ahd tasking sub-cluster to the trained
neural networking model, a reference angle informationljR@A.e., the angle information label with a
red line), is proposed to refine the initial sample area fergthor density in Step 1 of Table Without
loss of generality, a tasking leader is applied as an exatoglescribe the refinement procedures. With
the RAI produced by the neural networking model, a threstgl@.e., the angle between the red line and
the blue line in Figure®) is used to adjust the initial sample area. Given the infoionaof transmission
range and the position knowledge of sub-cluster membeesletlder node can choose a sub-cluster
member, which is an active sensor and has a minimum overig@piea between the communication
coverage and the initial sample area, as a reference nodartoandown the sample area. This is
attributed to the fact that the position information and ¢cbexmunication coverage of a reference node
can be applied to help reshape the initial sample area fatifieg the target. On the basis of the RAI
(the red line), denotey; (r9;) as the intersection between the initial sample area andghthand-side
angle boundary (the left-hand-side angle boundary), whanelj are related to the four corners. L&t
and R, be the intersections between the initial sample area anB#&ieFor this typical scenario, the
intersections among the initial sample area, the rightdkside angle boundary, the left-hand-side angle
boundary, and the RAIli €., 711, 712, 723, 724, R1, @nd Ry) are mostly located within the transmission
range of a reference node (Figwg@ottom)). Referring to Figurg(top), the intersections between the
initial sample area and the communication coverage of fleeaece node can be regarded as new corners
of the refined sample areid(, (2) + (2), (3) < (3), and(4)" + (4)) in Figure5(bottom). Let4,.; be
the communication coverage of the reference node. Thufinddesample area is the intersection among
A,es, the refined sample area defined by blue lines and four coriigys(2)’, (3)', and(4)" ordered
clockwise, and the RAI with a threshold valuetyf.

However, Figures(left) shows that the deviation of RAI from the target difentand improperly
selected threshold values 6f, (e.g., too small values df;;,) may lead to the exclusion of possible
target locations during the refinement process, which t®gulan even worse estimate compared with
the one without applying the neural networking model. Tfaes in order to avoid the estimation error
caused by this scenario, the adjustment principle is tdljoaonsider the communication coverage of a
reference node and the locations of the intersectiogs k.., F.,,, andPg,). Accordingly, if none of the
intersection locations is within the communication cogeraf the reference node, the updated RAI may
be rotated towards the reference node since the originai&#ighly deviated from the target direction.
That s, referring to Figuré(left) and Figures(right), if (P, € A,cp, Pry; € Arey, @ndPp, & A,.cy), the
angle information may be updated by { < R, r, + R,, andry, + ). Hence, the left-hand-side
angle boundary is replaced by the original RAI and the rigdrtd-side angle boundary is replaced by the
line between the position of the leader node and the corpeA{erwards, the intersection of the refined
sample area and, ., forms the final sample area, which generates more effeciivgkes for particle
filtering and target positioning. Figuiegshows an example of angle adjustment for position estimatio
refinement, which consists of four stages: the original RA¢, updated RAI, the refined sample area,
and the final sample area for particle filtering.
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Figure 6. The deviation of RAI from the targeleft); the updated RAIr{ight).
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3.3.3. Covariance Intersection (CI)

For obtaining global estimates, we adopt covariance iatéien to perform data fusion. The
Cl method of §i] provides the best estimate given the information avadlalthich takes a convex
combination of mean and covariance estimates that aresaqex in information space. Since these
typical runs are independent, the general form is

Pl o= wP .+ 4w, P (3)

aial

Pczlc = wPlta+-+ wnPa_nznan (4)

aijal

where>™" w; = 1, n > 1, g, is the estimate of the mean from available informatih,, is the
estimate of the variance from available informatiors the new estimate of the mean, alRd is the new
estimate of the variance.

3.3.4. Estimation Fusion

The distributed scheme is executed in two steps: (1) Grotimgson: local decisions are performed;
(2) Estimation Fusion: a fusion rule is applied to combire plosterior density of the estimation from
each member of the cooperative group in the leader sensace e weight reflects the significance
attached to the estimate, the nextissue is to determinedighw; for each estimate and try to weight out
faulty estimates. One strategy for choosings to use the utility measure. Since the utility of a sensor
measurement is a function of the geometric location of tihgeta here we consider the Mahalanobis
measure28]. Hence, with respect to a neighboring system estimateackenized by the megm,,, and
covariance, the utility function for sensom s defined as the geometric measure

umf - (MmO - MmZ)TE_l(MmO - MmZ) (5)

wherey,,, is the local estimated target position of sens@nd/ refers to a neighboring system estimate.
In order to arrive at a consensus, the utility measyye can be shown to b&,,,, < 1[29]. Given the
utility measure, two estimates can be allowed to be compar@adommon framework and measure how
much they differu,,0 — 1me|. Accordingly, the weights for the ClI method i8)(are given by

1

Ut
We= =" (6)
ZkeUs L{Lmk
whereU; is the index set of the neighboring estimates that pass tlitg tést. Otherwisew; is set to be
zero. Notice that in this workn may refer to a tasking leader andnay refer to a sub-cluster member.

3.4. Phase | V: Sub-Cluster Member Reselection and Leader Handoff

This phase performs the sub-cluster member reselectioneaa@r handoff task, which aims to
maintain tracking stability. The conditions for initiagithe leader handoff procedure are:

e The distance between the reference location of the sulbecloasemberP; (Vi € M) and the
fused target position estimajé j) exceeds the handoff threshold value at time gtefhat is,
d(P;, f(5)) > R, Vie M.
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¢ Due to the movement of the target, the numbePokition messages or expected active sensors
are less than the desired value. ThatNg, < n or Ng < n.

For condition 1,8 = 3 - R, whereR is the radio transmission range ahe: S < 1. For condition 2,
a threshold valué\ R with AR = 6 - R (0 < ¢ < 1) for dynamically measuring the number of valid
sub-cluster members is applied. Denég, as the location of leaddr;; andB;,,, as the leader handoff
boundary (the red dashed line in FiguB2and9) of leaderL;;, which is a circle of radiug\ R centered
atOy,,. Note thatO,, is the center of gravity of the bounding box, which is deribgdthe estimated
target position, the positions of the sub-cluster membkand, the bounding-box algorithn24]. Thus,
Np is the number of estimates from the sub-cluster members\anchn be computed as the number of
active sensors which satisiyO,, P;) < AR, whereP, is the location of active sensar

Figure 8. An example of adaptively updating the sub-cluster membéts AvR.

20 22

. 20k RS
181 M : ~
~ . \‘ \
N \ “
AY |-
%0 \ ‘| 1 '
16 A ! 1 !
\ 1 1 1
1 1 1
AR™S, g ol /!
’ 4
141 < /! ’
® Inactive sensors ® Inactive sensors
* Clusterhead 141 * Clusterhead
Communication link Communication link
12k ¢ Target ¢ Target
A Position estimate 12l A Position estimate
AP AP
id id
oL [0 Active sensors [0 Active sensors
= = =Handoff Boundary 10F - - - Handoff Boundary
X Ole X Ole
- - - Comunication range - = - Comunication range
T T T T I

14 16 18

241 25

22~ Pid N
’ v A
‘ ’ \
L2 S S N i \
’ - -~ v e T e \
2 ] e N \ '
[ PA I ) ’
\ ’ B 20l . Y
\ 1 ’
Al 1 ’ /’
M \ -7
181 Moo e
RN
BN

® lnactive sensors  [~Tm = === =" ® Inactive sensors

* Clusterhead
—— Communication link

% Clusterhead
—— Commuication link

& Target 15| @ Target
1al| A Position estimate A Position estimate
A PL\d A PL\d
[0 Active sensors O Active sensors
121 = = = Handoff Boundary - = ~Handoff Boundary
X O X O

id
- = = Comunication range
T T

id
- - - Comunication range
T

20



Sensors 2012, 12 15323

Table 2. Procedures of the TCAT model for target tracking.

1. Target broadcasts a message vlith= 0.
2. Determine the active sensdrﬁé) and the leadef ;; at time stepy.
(@) Lig = argminiLWTZ-(j),i € Iﬁ{); M = L.
() BT, = LWT, + bfi,i € Ioa; Ioa = 19 N Cy,,.
3. Find the sub-cluster members:
while(lc4 # @)
) if((S = In, ) == 0), S = (In, N 1ca)".
(i) M= argminiBTZ-(j), 1€ 8.
(iif) Send the position estimate to the leader or clustedhea
(V) M =MUM; S =(SO\M) Iea = (Ica(\M)°.
(v) if(| M| == n), break.
end
4. Estimation Fusion:
(a) Leader sends the global fused estinygtg to the clusterhead.
(b) The clusterhead disseminates fti¢) to the base station.
5. Perform leader handoff (renewing sub-cluster members):
(@ Np = |Hp|, Hp ={i: d(T},i) < R,i € M}.
(b) if(Np < n),j =j+ 1andgoto Step 1.
(©) if(d(PL,,, F(7)) > R)
M = (M Li)S,
K = {i:argmin,d(P;, f(i)) <R,i e CL,},
L;q = argmax, N(k), k € K,
if(L;q == 0),j =j+ 1, goto Step 1.
end
(d) Iea = (Cr,, N M)".
(e)Ng = |Hg|, Hg ={i : d(Oy,,, P,) < AR,i € M}.
(f) while(Ng < n)
(i) M = argmin,d(Oy,,, P;) < R,i € Ica.
(i) Np = Ng+ 1M =MUDM; Icq = (Ica( M)-.
(iii) if( Ica == ©), break.
end
(9) If(Ng <n),j=j+1;goto Step 1.
(h) Target broadcasts a message Withat time stegg + 1.
(i) Go to Step 4.

Figure8 presents an example of adaptively updating the sub-closerbers withA R. Observe that
at time step 20, two sub-cluster members are with trackisgawesibility (Figure8(left)). However,
at time step 21, one sub-cluster member becomes an ina@nsoisdue to the target movement
(Figure8(right)). Thus, the leader will assign an active sensor Wiisclocated inside3;,,, to become



Sensors 2012, 12 15324

a new sub-cluster member. If any of the above conditionshale leader and target will sequentially
broadcast d&dandoff message withi.;; = 0 to trigger a leader reselection process as depicted in Bhase
I and Il. Figure9 shows an example of leader handoff procedure from time s2dp Ame step 24. In
Figure9(left), a handoff procedure is triggered by condition 2.ekvards, as shown in Figu@gright),
a new leader and its associated sub-cluster members aredorm

Due to the cluster-based network topology, the handoff mesecan be further divided into two
categories: (1) intra-cluster leader handoff and (2) totester leader handoff. Since the clusterhead
collects the supplementary estimates and receives thmatstifrom the leader, it may monitor the
d(P;, f(j)), Np, and Ng. If condition 1 holds, then an intra-cluster leader handefberformed and
the clusterhead may assign a cluster member to be a new .le@deerwise, an inter-cluster leader
handoff is triggered and the operations move to Phase | afithél procedures of the TCAT model for
cooperative target tracking are detailed in TahleNote that/y, is the index set of vicinal sensors of
sensot, 7T} is the true position of target at time stgpand(; is the set of cluster members of sengor

4. Analysis of Positioning Accuracy

Referring to BQ], evaluating the computation process and the significahe@proximate accuracy
is an important step in deriving either exact or approxinsatetions for the localization problem. This
section presents an estimation-theoretic analysis ofriiy@gsed measurement mechanisms to assess the
achievable localization accuracy with Cramer—Rao lowemnold CRLB) for joint TOA/AOA estimation.

The measurements at the reference sensor can be modeled as

T = T+6; (7)

¢ = o+ (8)

where T is the true propagation time anglis the true angle information. Note that andJ, are
uncorrelated Gaussian noises with the distributions~ N (0,02) andd, ~ N(0,03). Assuming
that the direct path exists between the sensor and the tdrgetstimated target position is given by

i = xy+4vicos(¢) =, + 7 cos(o) 9)
Ys + 07 sin(@) = y, + 7sin(o) (10)

Nach¥
I

wherer is the distance measuremene( 7 = v7 = r + vd,), (zs, ys) iS the true position of the sensor
andwv is the speed of signal. Assumiidg andd, are sufficiently small, the variance of the position
estimatiory is approximated by

0; ~ vio? + dQJq% =02+ dza; (11)

Given the above assumption81], the CRLB with a single sensor is derived as follows. The
probability density function of = |7, ¢] is

Fgiy) = —— - exp {—L (P — d)Q}

2
207
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1 1 /- 2.\ \?
: “exp | —=—3 (qﬁ — arctan (y J )) (12)
\ /27?03) 205 T = Ts

Thus, the Fisher information matrix yields

cos2(¢>) sin? (¢) sin(2¢) 1 1 i|

d? 042) 2 o2 d? 042)

1)y — o?
](X ) - M |:L _ 1 2:| sin2(¢>) COS2(2¢)) (13)
2 o? d?o? o? d?o?
and the CRLB can then be written as
I, I
Var(x(t)) > I’l(x(t)) = | Lt L2 (14)
]2,1 ]2,2
Thus,
Var(z) > I,,, Var(y) > I, (15)

Accordingly, the best possible fused estimation for tatgealization may be determined by applying
Equation {5) and the Cl method.

5. Analysis of Energy Consumption

This section considers the energy consumption of the pegpssheme in Sectia® It is often the
case that inter-sensor communication costs are greaterdeysoof magnitude than local computation
and sensing costs with respect to energy expendit@34,33]. Therefore, the computational cost in
a wireless sensor network is usually neglected compareldetedmmunication cost. In addition, the
problem of energy waste in idle listening mode can be solweddriodic listen and sleep. Moreover,
based on the data sheet of CC242d][ the energy consumption of receive mode is about 59.1 mW,
the energy consumption of transmit mode is about 52.2 mW, taadenergy consumption of idle
listening mode is about 1.2 mW. Accordingly, we focus on tbemparison of power consumption for
communication with the scheme ][ The total power requirements include both the power negli
to transmit messages and the power required to receive goegs) messages. Suppose that the energy
needed to transmit for sensors with omnidirectional araensi~;-, which depends on the transmitting
rangeR, and the energy needed to receivéis

When the target broadcasts a message wijth= 0, its neighboring sensor, say sengpbecomes
an active sensor and broadcastd @lo message with a random waiting tinﬁM/Ti(j) for being a task
leader at time step. As the active sensarclaims to be a leader, the, is updated and broadcasted from
target. As a result, the number of transmissions and remepfor tasking leader selection (Phase |) are

St(j) = 14+ N()) (16)
Se() = > n|+2N() (17)
ie(1 ULY))

whereL%) is a leader ID at time stepy Iy, is the index set of vicinal sensors of sensoand V,(j) is
the number of transmissions of vicinal sensors of the tatygtne step j.
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Afterward, the active sub-cluster members of the leadesalected according to the extra backoff
time BT,,, which transmit thePosition messages to the leader. Thus, the number of transmissions
yields the sub-cluster sizé/(j) (1 Iy , | and the number of receptions|i&y,|(Vi € M(j) Iy ;)

L L

id id
where thel(7) is the set of sub-cluster members at time gtefince the fused estimafg;) is routed
to the clusterhead in a multi-hop manner, the number of missions isN/ (Vi € (I’ Iy . )°),

L

where N/ is number of hops for sensaérto perform estimation reporting. Finally, the cIu%terhead
disseminateg ;) to the base station. Furthermore, if the clusterhead reseimessage from the leader

for incorporating supplementary estimates, it may assggsared number of supplementary members to
be supplementary sub-cluster members for the tracking Tdsikrefore, the number of transmissions and
receptions for selecting tasking members (Phase Il) andedliglg the position estimate (Phase lIl) are

SpG) = MG (Vv 1+ Do NI+ N+ (18)
e Ny ) ieM’
Lia
NH
Se(d) = > I+ ), +>) ZNIgQ (19)
iE(M(J')ﬂINL(j)) ie(I9 NI )" €M’ h=1 ¢

whereM’ = {i : argmin, 5> N¥ i € M(5) (1Y Ny, U L))} andIy” is index set of relay ID
for sensor at hoph. N

As characterized in Phase IV, since the clusterhead hasajabdity of updating the sub-cluster
members, a cluster member, say serisaray become an active supplementary sub-cluster member or
leader when receiving the message, which contains the IDswfsupplementary sub-cluster member
or the leaderi(e., (i) M(j) # ©) or leader ID), and then joint the tracking task. Note th&tj) is the
index set of new supplementary sub-cluster members. Tdrerafe obtain

St = Y N'+1 (20)
ieM”
NH
Sh() = Newpy+ Y ZNIgQ (21)
ieM” h=1 ¢

whereM” = {i : argmin; > N/ i € (M(j) N Ingy,)ULE ™ N LY} and SE(5) and S (5) are
the number of transmissions and receptions for leader liarréspectively. Nonetheless, when the
leader ID is zeroi(e., Lﬁﬁfq) = 0), the sub-cluster members are assigned to be inactive rseaso the
procedure of selecting a new sub-cluster will be triggefeztordingly, the total energy consumption of
transmission and reception for tracking targeE#™” = 3~ (B - (S5.(5) + S5(j) + S5(j)) + Er -
(S5:07) + Sp(3) + SE())-

6. Simulation

To evaluate the performance of the proposed approach, agbatrthe target moves within the— y
sensing field according to the standard second-order mafdel [

Xk = @Xk_1 + FWk (22)
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over a four-dimensional state space, whéfg = (z,%,y,9)i, wy = (w,,w,)}, an uncorrelated
Gaussian diffusion term describing the uncertainty,

1 100 05 0
o 0100 Landl = 1 0
0011 0.5
0001 0 1

Herex andy denote the Cartesian coordinate of the target. The noisgunement is given by
2 = tan ! (yx/ax) + vy (23)

where the measurement noisg, is a zero mean Gaussian white noise process with a finiteneed; .
Before measurements are taker at 1, the initial state vector is assumed to be a Gaussian distib
with known mear;, and covariance

o2 0 0 0
o5 0 0
M = 2
0 o5 O
0 0 0 o}

The target trajectory and measurements are generated baseduations Z2) and @3) with the
parameter values: the covariance of the system n@ise, ¢/, wherel; is the2 x 2 identity matrix,
v/ = 0.001. The initial state of the targetis = (0.0,0.1, 0.0, 0.05)T. The prior distribution parameters
are set tar; = (0.0,0.0,0.4,0.05)T ando; = 0.5, 05 = 0.001, o3 = 0.05 ando; = 0.01. The target
position estimate is conducted witfi-» = 1000 samples, the ANN model, and the CI method for 25
time steps.

Figure 10 depicts the system performance (e.g., the average pasgienror and the leader handoff
frequency) with various values of parametets (3, 6, sub-cluster size, and network density), for
cooperative target tracking. Observe that for parameténere is a tradeoff between localization error
and leader handoff frequency since a larger valug @fe., a larger handoff threshold value) may lead
to a lower leader handoff frequency and may result in a lovesitning accuracy. Without loss of
generality, we investigate the typical performance of tl@AT in a network with random uniform
deployment of Ng sensors givemw = 5 = § = 0.5, C = D = 1, and the standard deviation of
angle informatiorvy = 0.5 radian. Note that the entire experiments are conductedguars with side

length L = 30 unit length and transmission range= L+/log.o(L)/Ng [35].
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Figure 10. The target localization error with = 6 = 0.5 and varying the values af (top
left); The target localization error with = 5 = 0.5 and varying the values of(top right);
The target localization error with = § = 0.5 and varying the values gf (bottom left);
The leader handoff frequency with= ¢ = 0.5 and varying the values gf (bottom right).
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6.1. Performance of Neural Networking Model

For the CFBP model, FigurEl depicts the learning and regression analysis of the netvagkire11
(top left) shows that the network is learning since the meprased error of the network is decreasing
to a smaller value and the training of CFBP network is stopgpefdre overfitting. The 22,804 input
and target vectors are randomly divided into three sets96P5yectors are used to train the network.
Of these vectors, 3,421 are used to validate how well theor&tgeneralized. Finally, the last 3,421
vectors provide an independent test of network generaizab data that the network has never seen.
Moreover, regression analysis is employed as post-trguainalysis between the network response and
the corresponding targets and three parameters are rétiormvaluate the performance. The first two
parameters, slope and y-intercept of the best linear regreselate targets to network outputs. If the
outputs exactly equal to targets, the slope and y-inte@eptd be 1 and 0, respectively. For the training
case, slope = 0.99 and y-intercept = 2.6. For the validaise cslope = 0.99 and y-intercept = 2.1. For
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the test case, slope = 0.98 and y-intercept = 3. The thirdhpetex is correlation coefficient between
the outputs and targets. When the correlation coefficieatjigal to 1, then there is perfect correlation
between targets and outputs. In this study, the correlabefficients of the regression analysis is about

15329

RA = 0.99 as shown in Figurd1, which therefore illustrates a good fit.

Figure 11. The performance analysis of the netwotkp( |eft); the regression analysis
between the network response and the corresponding tatbetraining caset@p right),
the validation casebpttom left) and the test casé@ttom right).
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6.2. Target Localization Error
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In order to further explore the effectiveness of the propossfinement scheme, four different

information measurement scenarios are considered:

(1) A®drmation only; (2) AOA with
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neural network (ANN) refinement; (3) Joint TOA/AOA infornm@t only; (4) Joint TOA/AOA with
ANN refinement.

6.2.1. AOA with/without ANN Refinement

To assess the tracking accuracy, the root mean squaresus®d for comparing the tracking accuracy
of the distributed TCAT with that of]. Referring to the network topology and the target movement
in Figure 2(left), we vary the number of sub-cluster members from 1 td~#yure 12(left) shows the
accuracy of the position estimate. The performance imgal@ng with the number of sub-cluster size
n. However, the improvement is not significant (especiallyewlithe numben is greater than 2). This
suggests that even a low number of sub-cluster members saactieve good estimation accuracy.

Figure 12. The target localization erroteft); the estimation error witlhh = 2 and various
ratios of R/ R, (right).
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As illustrated in Figurd 2(left), the radio transmission rand&is assumed to be the same as the target
detection rangé:.. Here the effect of varying target detection ranges on tif@peaance is investigated
with changing the ratio of the radio transmission rangergaiedetection range. Figul€(right) depicts
that when the ratio is greater than onee.( R/R. > 1), the sensors may fail to detect most target
events and a larger network density may be required to detedarget of small signal magnitude and
to suppress the estimation error. However, the estimatiar decreases dramatically when the ratio
R/R. < 1 due to sufficient detection coverage.

Notice that the above performance evaluation is based on i@ mation only without executing
estimation refinement. Figu3 shows the comparison of target localization error withiheiit ANN
refinement. With a moderate value &f, (e.g.,0.250 < 6, < © with © = 9.98 degree), the
proper refined sample area results in an improvement of astimaccuracy. However, loose NN-based
angle information (e.g.9 < 6, < 30) may generate a broader sample area, which degrades the
estimation performance.
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Figure 13. The comparison of target localization error with/withoutiN refinement.
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6.2.2. TOA/AOA with/without ANN Refinement

Compared with Figurd3, Figurel4(left) shows that the average localization error is sigatiity
suppressed by applying the TOA information. Considenng 2 andf;, = 9.98 degree, the average
localization error of TCAT using AOA/TOA information with N refinement is about6% less than
that of TCAT using AOA information with ANN refinement. Normetless, as the deviation of TOA
measurement increases, the localization performance &T Mith joint TOA/AOA is approaching
to that of TCAT with AOA only (Figurel4(right)). This is attributed to the fact that a noisy TOA
measurement may lead to a broader sample aread lower particle density) for Bayesian filtering,

which enlarges the localization error.

Figure 14. The comparison of target localization error with/witholti N refinement Igft);
the performance comparison of TCAT with joint AOA/TOA and ATCwith AOA only with
varying the deviation of TOA measuremenigfht).
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Given the variance of angle estimatiop = 0.5 and with varying the uncertainty of distance
estimationoy, here we consider the best achievable performance andatidrtg performance with
TCAT using TOA/AOA information. Notice that the CRLB and therformance of the proposed method
tend to merge together with an increasing measurementtanugro,;. Due to a small sample size for
particle filtering and the limited capability of a sensor,sh®wn in Figurel5, fundamental problems
when locating mobile target in a network are to estimate thadce between the reference sensors and
the target and to determine the angle of arrival of the sgysialce accurate location estimates highly rely
on precise TOA/AOA measurements and the processing cégaifib sensor node.

Figure 15. The performance comparison of TCAT with joint AOA/TOA and R X-axis
(left) and Y-axis fight).
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6.3. Protocol Characteristics

Figure 16(left) shows the typical runs of sub-cluster formation with = 100 and R/R. = 1.
Notice that the TCAT effectively organizes the sensors trdcking groups. Referring to Figurd2
(left) and Figurel6(right), observe that compared with the protocol5h the TCAT has a lower leader
handoff frequency and there is no significant performanggattation during the leader handoff period.
Moreover, considering different sub-cluster sizeand a network with random uniform deployment,
Figuresl2(left) suggests that compared with the TCAT with= 2, the TCAT with a smaller value of
(e.g.,n = 1) with respect to handoff condition 1 and the TCAT with a largelue ofn (e.g.,n = 3,4)
with respect to handoff condition 2 lead to a higher freqyesfanter-cluster handoff. Thus, the TCAT
with n = 2 may provide flexibility and robustness for distributed serscheduling management.
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Figure 16. The typical runs of sub-cluster formatiokeft); the frequency of leader handoff
(right).
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6.4. Network Energy Consumption

The simulation is performed with different density of nodesnsidering the number of messages
transmitted and received involved in clustering and taigetlization. In order to evaluate the
network performance, several models for measuring theggrikssipation per transmitted bit have been
proposed36,37]. Here, the energy model presented3#][is applied to describe the energy dissipation.
Assume the hardware energy dissipation is as foll @@ [

tE e +tessd?,  d < d,

By, = { et (24)
tEelec + tgmpd ) d Z do

ERJ: = tEelec (25)

where £, and Er, are energy consumption of a transmitter and a receiverectisply, ¢ is the data
packet size E,,.. denotes the energy consumption of the electronic cirguitryande,,, depend on
distancel between the transmitter and the receiver for maintaininacaeptable bit-error rate, addis
a threshold of the transmission. The values of simulatioampaters are detailed in Tal8436].

Table 3. The Values of Simulation ParameteB$].

Parameter Value

Eeee 50 nJ/bit

Efs 10 pJ/bit/mi

Emp 0.0013 pJ/bit/rh

d, Transmission rang&

Energy for data aggregation 5 nJ/bit/signal
Data packet size 2048 bits
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Figuresl7and18show the accumulated energy consumption comparison betive& CAT scheme
and the method ing]. Observe that the number of transmissions/receptionsgnearly linearly as the
tracking sub-cluster size increases. Referring to Figdreompared with a network witlvg = 100 and
1 < n < 3, anetwork with a larger scale (e.gvs = 500, 1000) may have a larger cluster size, which
may lead to a higher number of transmission/reception fta dathering at each round and result in a
faster network resource depletion. Nonetheless, the imediace of TCAT is still superior to that of the
approach in%].

Figure 17. The number of transmission/reception: the communicatosh.
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Figure 18. The comparison of accumulated network energy consumption.
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Givenn = 2, Ng = 100, and R/R. = 1, Figure 12(right) shows that the tracking accuracy of
TCAT is comparable to that ob]. Moreover, as depicted in Figutg(left), the energy consumption
of transmissions with TCAT is abo@6.4% less than that ofH] and in Figurel8(right) the energy
consumption of receptions with TCAT is abQit% less than that ofd], which implies that the scheme
in [5] may lead to a fast network energy depletion. Accordingig TCAT provides better network
service characteristics compared to the protocobpf [
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Observe that in Figures2 and 18, although the performance of TCAT with= 1 leads to a lower
network energy consumption, compared with those of TCAhwit= 2 ~ 4, it results in a larger target
localization error. Moreover, due to high correlation ohsi@g data in time and spatial domains, the
sub-cluster witln. > 2 members may lead to undesired sensing redundancy. Theretorsidering the
trade-off between performance and network energy consamphe TCAT withn = 2 may be a good
choice for the tracking task.

7. Conclusions

Because of the resource-constrained sensors, feasildessrsensor-based tracking systems require
more breakthroughs in terms of network architecture, systesign, and data processing techniques.
In order to achieve good tracking quality, the number of eenshosen for target positioning may be
dynamically adjusted based on the available target andsartiermation. Thus, incorporating the target
motion information into cooperative positioning schemethwnultiple sensors may be a good strategy
to improve the estimation accuracy. Future plans will imeofjeneralizing the method to implement
a prototype of the tracking system, evaluate the merits fbéreint cooperative schemes, explore the
characteristics of target mobility model, and further exarhe impact of target motion information on
cooperative estimation performance.
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