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Abstract: In this study honeycomb-like NiO nanostructures were grown on nickel foam by 
a simple hydrothermal growth method. The NiO nanostructures were characterized by field 
emission electron microscopy (FESEM), high resolution transmission electron microscopy 
(HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures 
were uniform, dense and polycrystalline in the crystal phase. In addition to this, the  
NiO nanostructures were used in the development of a zinc ion sensor electrode by 
functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed 
zinc ion sensor electrode has shown a good linear potentiometric response for a wide range 
of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of  
36 mV/decade. The detection limit of the present zinc ion sensor was found to be  
0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc 
ion sensor electrode has also shown good reproducibility, repeatability, storage stability 
and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was 
also used as indicator electrode in potentiometric titrations and it has demonstrated an 
acceptable stoichiometric relationship for the determination of zinc ion in unknown 
samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion 
in various industrial, clinical and other real samples. 
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1. Introduction  

Zinc ion is the most abundant heavy metal ion in the human body and the quantity of zinc ion in 
serum is around 10 µM. Zinc ion is an important constituent of a number of enzymes such as carbonic 
anhydrase, matrix metalloproteinase [1], and also helps in the maintenance of structural characteristics 
of gene transcription proteins such as zinc finger proteins, etc. [2,3]. In addition to this, high levels of 
zinc ions are found present in the brain in chelatable form [4], in the pancreas [5], and spermatozoa [6]. 
The function of chelatable zinc ion is to govern the neuronal transmission in excitatory nerve  
terminals [4], inhibits apoptosis [7], and leads to neuronal injury under acute conditions [8],  
epilepsy [9] and transient global ischemia [10]. Zinc ions also stimulate the formation of  
α-amyloid [11], which causes Alzheimer's disease. Excess of zinc ion can be toxic and pollute the 
environment as well as decrease the soil microbial activity [12,13]. Zinc ion is also found in food and 
agricultural wastes [14]. Because of the high quantity of zinc ion in the atmosphere, it can easily  
be ingested by the human body and may cause pulmonary manifestations, fevers, chills and 
gastroenteritis. Due to the above facts, it is very important to be able to detect trace quantities of zinc 
ion and abundant research on this topic is going on in many scientific fields such as medicinal and 
environmental analysis, etc. Many analytical techniques has been used for the determination of zinc 
ion, including UV-Vis spectroscopy [15], potentiometry [16] and flame atomic absorption 
spectrometry [17], inductively coupled plasma atomic emission spectrometry (ICPAES) [18] and 
fluorescence methods [19,20]. These techniques have some limitations due to the completely filled  
d-orbital of zinc ion, which results in an absence of suitable spectroscopic or magnetic signals. Beside 
these analytical tools, ion selective electrodes (ISEs) are comparatively simple, cheap and fast. Many 
zinc ion selective electrodes based on different ionophores have been reported [21–26]. Currently, 
different selective and sensitive polyvinyl chloride (PVC) membrane-based ISEs for different metal 
cations have been reported [27–31] and a zinc ion sensor based on functionalised ZnO nanorods  
has also been published [32]. Moreover, a Schiff's base has also been used for the detection of  
zinc ion [33]. 

Recently, the research trend towards nanomaterials is rapidly increasing due to their unique and 
excellent properties and versatile applications as compared to their bulk devices. The most 
distinguishing behaviour shown by nanostructures is their dimension-based excitation and emission. 
The electrical, optical, magnetic, and thermoelectric properties of solid-state functional materials can 
be controlled by the quantum confinement of electrons through the potential well of nanoscale based 
structures. Therefore, it is potentially important to grow such nanostructures which are very important 
for modern science and technology [34–37]. Among the various nanomaterials nickel oxide (NiO) is 
attractive to researchers due its tremendous properties such as wide band gap (3.6–4.0 eV) [38], 
magnetic, optical, and catalytic and electrochromic properties [39]. Nickel oxide nanostructures are of 
great interest for the development of electrochemical energy-storage tools due to their large specific 
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surface area, rapid redox reactions and lowered diffusion path in the solid form. Nickel oxide is also 
used as magnetic storage material [40], optical active counter-electrode [41], in dye-sensitized solar 
cells [42], electrochromic films [43] and gas sensors [44,45]. Many methods have been reported for the 
synthesis of NiO nanostructures such as thermal evaporation [46], RF magnetron sputtering [47], and 
spray pyrolysis [48]. These growth methods have some limitations such as complex growth processes 
and the need for high growth temperatures. The size and morphology of the nanostructures is related to 
the type of technique used for their growth. By changing the growth parameters such as temperature, 
concentration, growth time, composition of sample solution using different amines, solvents and 
surfactants the nanostructures of different diameter, different morphologies can be obtained [49]. 

In the present research work, the hydrothermal growth method was selected for the growth of NiO 
nanostructures due to its versatility in growing nanostructures of various morphologies, ease, simplicity, 
environmental friendliness, cheapness and low temperature growth conditions [50]. Besides this, NiO 
nanostructures grown in the absence of organics at low temperature have also been reported [51]. We 
have grown honeycomb nanostructures of NiO on nickel foam without the use of any organic 
compound and the grown NiO nanostructures have been applied for the chemical sensing of zinc ion. 
This work provides an alternative approach for the further refinement of NiO nanostructures and their 
industry-based applications as well as use in chemical sensing. 

2. Materials and Methods  

2.1. Materials 

Nickel sulphate heptahydrate (NiSO4·7H2O), 25% ammonia (NH3), zinc nitrate [Zn(NO3)2·6H2O] 
ionophore (12-crown-4), sodium tetra phenyl borate (NaTPB), di-n-butyl-phthalate (DBP), 
tetrahydrofuran (THF) and polyvinyl chloride (PVC) were purchased from Sigma Aldrich Sweden 
(Stockholm, Sweden). All other chemicals used were of analytical grade. 

2.2. Fabrication of NiO Honey Comb Nanostructures  

The honeycomb-like NiO nanostructures were fabricated on nickel foam substrates using 
NiSO4·7H2O and NH3 as primary chemical reactants. The nickel foam substrates were sonicated in an 
ultrasonic bath for 15 minutes using an ethanol solution. Then, the nickel foam substrates were cleaned 
with deionized water and dried in air. Afterwards the substrates were affixed in a Teflon sample holder 
and vertically dipped into a mixture of 0.1 M NiSO4·7H2O and 0.1 M NH3 solutions prepared in 
deionized water. The sample solutions were kept in an oven at 90 °C for 7 hours. The role of NH3 in 
growth process is to act as a complexing reagent for nickel. When the growth time was completed then 
the substrates were taken out from the oven and a visible greenish colour type film was visible on the 
nickel foam, then the sample substrates were washed with deionized water and dried in an oven  
at 80 °C for 3 hours. After drying, some of the as-prepared nickel foam substrates were annealed in air 
at 500 °C in order to achieve NiO honeycomb nanostructures.  
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Figure 3. XRD pattern study of the NiO nanostructures. 

 

3.2. Potentiometric Response Measurements of the Honeycomb-Like Functionalised  
NiO Nanostructures 

The potentiometric response of the honeycomb-like functionalised NiO-based zinc ion selective 
electrode was measured for the zinc ions concentration range of 0.0005 to 100 mM. The sensor 
electrode detected 0.0005 mM concentration of zinc ion, but it was out of the linear range. After the 
0.0005 mM concentration of zinc ions, the proposed sensor has shown a highly linear response for 
0.001 mM to 100 mM concentrations of zinc ions, as shown in Figure 4.  

Figure 4. Calibration graph of zinc ion sensor from 0.0005–100 mM zinc nitrate 
concentrations. 
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A sensitivity of 36 mV/decade for the functionalised NiO nanostructures-based zinc ion sensor was 
observed, with a regression coefficient of r2 = 0.99. This is due to the high surface provided by the 
honeycomb-like nanostructures for the attachment of the selective zinc ion ionophore and due to 
shortened diffusion path in the solid phase of the NiO nanostructures which might be responsible for 
the slightly higher slope value than the theoretical value. These two characteristics of the proposed 
sensor electrode confirmed its potential applicability for analytical purposes. 

3.3. Working Performance of the Honeycomb-Like Functionalised NiO Nanostructures-Based  
Zinc Ion Selective Electrode 

In this study, repeatability, reproducibility, and selectivity of the proposed ion selective electrode 
were examined. The repeatability of the ion selective electrode describes the response of a specific 
electrode which has been more than once under the same set of conditions. The functionalised NiO-based 
zinc ion selective electrode was tested for three consecutive days and it showed good repeatability with 
similar ranges of zinc ion detection, sensitivity and regression coefficient values as shown in Figure 5. 

Figure 5. Repeatability of zinc ion sensor for 0.0005–100 mM zinc nitrate concentrations. 

 

For reproducibility, seven independent ion selective electrodes based on the honey- comb-like 
nanostructures of NiO were functionalised under the same conditions. All these zinc ion selective 
electrodes were used in a 0.1 mM solution of zinc nitrate electrolyte. It was observed that the proposed 
zinc ion selective sensor electrodes demonstrated high reproducibility with less than 5% standard 
deviation, as shown in Figure 6.  
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Figure 6. Reproducibility of zinc ion sensor in 0.1 mM solution of zinc nitrate. 

 

Selectivity of an ion selective sensor electrode is the fundamental parameter among all other 
parameters for the performance evaluation of an ion selective electrode. The separation solution 
method, which is recommended by IUPAC [52], was used for the study of the selectivity of the ion 
selective electrode by determination of the selectivity of coefficient values of both mono and divalent 
metal cations using 1 mM solution of each interferent. The calculated selectivity coefficient values are 
given in Table 1. The determined selectivity coefficient values are fairly constant and this study 
revealed that the proposed ion selective electrode is highly selective towards zinc ion. 

Table 1. Calculated selectivity values for different interferents.  

Interferent (X+Z) Slope (mV/decade) ,  

K+1 2.40 −4.34 
Co+2 4.30 −3.70 
Mg+2 5.2 −4.71 
Fe+3 7.6 −3.05 
Na+1 7.5 −4.70 
Ni+2 8.1 −4.72 
Cu+2 3.6 −2.65 

3.4. Influence of Temperature on the Potentiometric Response of the NiO Nanostructures-Based  
Zinc Ion Sensor Electrode 

The response of an ion selective electrode is also temperature dependent due to changes in the ionic 
mobility of target ions in solution. In this experiment, the effect of temperature on the response of the 
proposed electrode was observed from room temperature to 75 °C.  
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Figure 7. (a) Influence of temperature of the output response of zinc ion sensor. (b) Study 
of response time. (c) Potentiometric titration curve in 10 mM zinc nitrate solution. 

 
(a) 

 
(b) 

 
(c) 

It can be inferred from the Figure 7(a), that the output response was increasing gradually up  
to 55 °C due to the increase in the mobility of zinc(II) ion, but above 55 °C the response trend was 
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increasing due to possible detachment of ionophore membrane from the surface of the honeycomb-like 
nanostructures of NiO and also at higher temperature the analyte ions suffered from self-resistance in 
the solution. Moreover, the proposed zinc ion sensor has shown response time of less than 10 s, as 
shown in Figure 7(b).  

3.5. Analytical Application of the NiO Nanostructures-Based Zinc(II) Ion Selective Electrode 

The functionalized NiO nanostructures-based ion selective electrode was used as indicator  
electrode for the potentiometric titration of 70 mL of 10 mM zinc(II) ions against 100 mM 
ethylenediaminetetraacetate solution [21] as shown in Figure 7(c). It can be seen from Figure 7(c) that 
with addition of EDTA the response of ion selective electrode was decreasing due to complex 
formation among zinc (II) ions and EDTA molecules, but at 7 mL a sharp intersection point was 
observed, which shows a good stoichiometric relationship for the determination of zinc ion 
concentration in unknown samples. Table 2 shows a comparison of the proposed zinc ion sensor based 
on the functionalised NiO honeycomb-like nanostructures with reported zinc ion sensors. The 
performance of the present zinc ion sensor is better than that of the reported zinc ion sensors due to the 
three dimensional network of NiO nanostructures and enhanced electrochemical properties of NiO in 
nanodimensional form.  

Table 2. The comprative study of present zinc ion sensor with the reported zinc  
ion sensors. 

S. No Concentration Range 
Slope sensitivity 

(mV/decade) 
Response time 

(Seconds) 
Reference 

1 0.006–100 mM 29.0 12 [24] 
2 0.01–100 mM 35.0 5 [32] 
3 0.013–100 mM 30.0 10 [53] 
4 0.5–100 mM 33.0 20–25 [54] 
5 0.005–100 mM 29.7 8 [55] 
6 0.001–100 mM 36.0 Less than 10 this work 

4. Conclusions 

In this work, honeycomb-like nanostructures of NiO were grown on nickel foam and also 
functionalised with 12-crown-4 a selective zinc ion ionophore. The as-grown NiO nanostructures 
exhibited good crystal quality and have shown a good potentiometric response in the development of a 
zinc ion-selective electrode. The NiO nanostructures-based zinc ion sensor electrode detected a wide 
linear range of zinc ion concentrations from 0.001 mM to 100 mM with a low limit of detection of 
0.0005 mM. The sensitivity of the proposed zinc ion sensor was found to be of 36 mV/decade and the 
regression coefficient 0.99. Beside these characteristics, the zinc ion sensor electrode demonstrated 
good reproducibility, repeatability, and selectivity, a fast response time of less than 10 s and good 
storage stability. The zinc ion sensor electrode was also used as indicator electrode in potentiometric 
titrations. All the obtained results indicated that the proposed zinc ion sensor electrode has good 
potential for analysing zinc ions in industrial, clinical and other real samples. 
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