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Abstract: Advanced sensing and measurement techniques are key technologies to realize a 

smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data 

storage and magnetic measurement. In this work, a design of a GMR current sensor based 

on a commercial analog GMR chip for applications in a smart grid is presented and 

discussed. Static, dynamic and thermal properties of the sensor were characterized. The 

characterizations showed that in the operation range from 0 to ±5 A, the sensor had a 

sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency 

response of −1.5 dB at 10 kHz current measurement, and maximum change of the 

amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed  

real-time measurement and monitoring of a smart grid system, the GMR current sensor 

shows excellent performance and is cost effective, making it suitable for applications such 

as steady-state and transient-state monitoring. With the advantages of having a high 

sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current 

sensor is promising for the measurement and monitoring of smart grids. 
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1. Introduction 

Smart grids are the latest trend in the World’s power system. They represent an evolution  

towards a more optimized and sustainable energy system using the implementation of information  

technology [1–3]. Advanced sensing and measurement techniques are key technologies in a smart grid 

to successfully provide accurate information for real-time monitoring and control of the entire 

distributed power system. 

The giant magnetoresistance (GMR) effect was discovered in some ferromagnetic metallic 

materials. The resistance of these materials decreases greatly under the influence of external magnetic 

field. Grünberg and Fert separately discovered this phenomenon in 1988 [4–6], which revolutionized 

the field of data storage and magnetic measurement. For their significant contributions, they were 

awarded the 2007 Nobel Prize for Physics [7]. Since IBM Corporation developed the first commercial 

read head based on the GMR effect in 1997, the area density of the devices has grown hundreds of 

times [8,9]. 

In the field of magnetic measurement, GMR sensors are widely utilized for position and  

angular sensing, current sensing and biological sensing. A number of integrated detectors containing  

GMR elements with wide bandwidth have been developed for motor drives, power electronic modules, 

and regulator modules [9–13]. A GMR sensor for highly-sensitive stress measurement has been  

introduced [14]; additionally, an eddy current testing probe based on the spin-valve GMR effect has 

been developed for inspecting printed circuit boards [15]. In the field of biological sensing, GMR 

sensors have been applied in crop production for sensing growth conditions, fertilization, and 

irrigation; GMR sensors are also useful for plant protection, harvesting, and fleet controls [16]. Sensors 

based on the GMR effect have also been used in protein and DNA assays, to perform molecular 

diagnostics of diseases [17–20]. 

In order to realize linear sensing, the sensed field range, linearity, and sensitivity are three important 

parameters. For example, the sensitivity is 25 mV·A−1, and the sensed field range is from 0 to ±10 mA 

in certain linear spin-valve GMR sensors reported in the literature [21–24]. 

In this work, we designed the structure of a GMR sensor for current sensing that can be 

implemented in a smart grid. In addition, the characteristics of the GMR sensor, such as its static 

characteristics, dynamic characteristics and thermal characteristics were tested. 

2. Principle of Operation 

Current flowing through a metal wire creates a magnetic field around the wire. The relationship 

between the current and magnetic field is described by the Biot-Savart Law. The principle of operation 

of the GMR current sensor is shown in Figure 1. The current flowing through the metal wire can be 

measured from the output of the GMR current sensor, when the GMR current sensor is placed close to 

the wire. The output of the GMR current sensor can be generally described by: 

( , , , , , , , )GMR S DV F I f T V r B   (1)

where V is the output voltage of the GMR current sensor, I and f are the magnitude and frequency of 

the current passing through the wire, respectively, T is the environmental temperature, VS is the power 

supply voltage of the sensor, µ is the relative permeability around the sensor, r is the distance from the 
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wire to the sensor, θ is the angle between the magnetic field direction and the axis of sensitivity of the 

GMR chip, and BD is the surrounding parasitic magnetic field. 

Figure 1. Principle of operation of the GMR current sensor. I is the current passing 

through the wire, and the direction is from left to right. B is the magnetic field generated by 

the current I, and the direction is rotating around the wire. r is the distance from the wire to 

the sensor, and θ is the angle between the magnetic field direction and the axis of 

sensitivity of the GMR chip. 

 

3. Sensor Design 

The sensor system contains three main subsystems: the sensing head, the signal processing 

subsystem and the power supply subsystem. Each subsystem affects the overall performance of the 

sensor. The block diagram of the sensor system is shown in Figure 2. 

Figure 2. Block diagram of sensor system. The whole sensor system contains three main 

subsystems: The function of the sensing head is to convert the current signal measured to 

the voltage signal. The function of the signal processing subsystem is to process the 

voltage signal from the sensing head and calculate the current measured. The function of 

the power supply subsystem is to provide the power source for the whole sensor system. 

 

3.1. Sensing Head 

The sensing head, which is shown in Figure 3, is the kernel of the whole measuring system, and its 

function is to convert the current signal measured into the voltage signal that can be measured easily. 
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A wire with the current line to be measured passes through a magnetic ring. A DC coil is uniformly 

wrapped around the magnetic ring. A GMR chip is placed in the gap of the magnetic ring, and a 

thermal compensation unit is used to compensate the temperature drift of the GMR chip. The output of 

the GMR chip is subsequently processed by the signal processing subsystem. 

Figure 3. Schematic diagram of sensing head. 

 

In order to convert the magnetic signal to a voltage signal that can be easily measured, a Wheatstone 

bridge is used in the design of the GMR chip (Figure 4). In the GMR chip, four resistive elements are 

arranged as follows: two are active sensing elements and two are shielded elements. Due to limitations in 

material processing and manufacturing technology, the four resistive elements cannot be manufactured 

identically, so their magnitudes are slightly different when the magnetic field is not present. 

Figure 4. Wheatstone bridge of GMR chip. The two shield resistors are shielded elements, 

and the two GMR resistors are active elements. V+ and V− are two terminals of the power 

supply of the GMR chip. OUT+ and OUT− are the positive and negative output of the 

GMR chip. 
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The output of the GMR chip is differential, and can be described as follows: 
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where Vout+ and Vout− are the voltage outputs of the GMR chip, V+ and V− are the power supply 

voltages of the GMR chip, and R is the intrinsic resistance of the four elements when no magnetic field 

is applied. ∆R is the change of the resistance of the two active elements under a magnetic field, and ∆R 

is linearly proportional to the magnetic field to be measured. 

The MR ratio (∆R/R) is about 7%. Because ∆R is much smaller than R, the output of the GMR chip 

can be treated as linearly proportional to ∆R. 

The magnetic ring is made of a soft ferromagnetic material with a large relative permeability, and 

its structure is shown in Figure 5. It can make the magnetic field to remain stable and nearly unaffected 

by position fluctuation of the current line. The magnetic field in the gap of the magnetic ring can be 

described as: 

0 0

2

r

I I
B

r d dd

 



 



 

(3)

where B is the flux density, μ0 is the permeability of vacuum, μr is the relative permeability of the 

magnetic ring, r is the average radius of the magnetic ring, d is the length of the gap, and I is the 

measured current. 

Figure 5. The structure of the magnetic ring. The magnetic ring is made of silicon steel. 

The size of the magnetic ring is as follows: the average radius r is 5 cm, the width l is  

1 cm, the thickness h is 2 cm, and the gap d is 1 cm.  

 

Because μr of ferromagnetic materials is usually in the range of 1,000 to 10,000, then (2πr–d)/μr ≈ 0. 

Therefore, B approximately only depends on d and I. Moreover, the magnetic ring can greatly amplify 

the magnetic field to be measured, enabling the GMR current sensor to measure a smaller current.  

The magnetic ring can also shield unwanted signals, such as neighboring current lines and the 

geomagnetic field. 
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The number of DC coil turns wound around the magnetic ring is 500, and the current of DC coil is 

10 mA. Therefore, the DC magnetic field in the gap is about 6.28 Oe. 

The GMR chip used in the experiment is a product of the NVE Corporation (Part Number: AA002-02); 

and its multilayered structure is based on a Ni-Fe-Co magnetic layer and Cu spacer. The typical 

transfer curve of the multilayered GMR chip is inverse-V-shaped. As it cannot identify the direction of 

the magnetic field to be measured; the DC coil superposes the magnetic field created by the passing 

current; so the GMR chip works on unipolar field; which can reduce hysteresis and realize bipolar 

measurement. Under a constant voltage supply, the GMR sensor signal output will fall as temperature 

rises. Because the GMR sensor signal is related to the power supply, a positive temperature control 

voltage supply is added to feed the GMR current sensor, as shown in Figure 3, to compensate for the 

temperature drift. 

3.2. Signal Processing 

The signal processing subsystem is used to process the voltage signal from the sensing head and 

calculate the current measured, and its schematic is shown in Figure 6.  

Figure 6. Schematic diagram of signal processing subsystem. 

 

As shown in the Figure 6, the filter is a low-pass filter used to remove some interfering signals, 

especially high frequency noise of the voltage signal from the sensing head. The output of the GMR 

chip includes common-mode signal, and it is about half of the power supply. The differential amplifier 

is used to remove useless common-mode noise, and to amplify useful differential signal, and the model 

used in the experiment is an instrumentation amplifier produced by Texas Instruments (Part Number: 

INA114). The bandwidth gain unit is used to improve the frequency response of the GMR current 

sensor. Finally, the A/D converter is used to convert the analog signal from the GMR chip to digital 

signal, and the model used in the experiment is an USB digitizer produced by National Instruments 

(Part Number: USB-5133). 

3.3. Power Supply 

The power supply subsystem is used to provide a stable power source for the whole system, such as 

the voltage source of the GMR chip, the adjustable current source of the DC coil, and reference 

voltages of the system. A MH-Ni rechargeable battery pack is applied to the power source of the 
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system. Because the voltage of battery pack fluctuates from 13 V to 17 V, voltage regulators are used 

to provide stable voltages for the whole system. 

3.4. Circuit Design 

The circuit diagram of the sensor system is shown in Figure 7. It contains three parts: the power 

supply subsystem, the sensing head and the differential amplifier unit. The power supply subsystem 

provides following power sources: ±10 V power source for the operational amplifier and the 

differential amplifier, ±5 V power source for the GMR chip, 1 mA~100 mA DC current source for the 

DC coil and 5 V reference voltage for the system. 

Figure 7. Circuit diagram of the sensor system. The circuit diagram contains the power 

supply subsystem (a, b, c), the sensing head subsystem (d, e) and the differential amplifier 

unit (f). VTCout+ and VTCout- are outputs of the thermal compensation unit, connected to 

power supply to the GMR chip. Output is the output of the differential amplifier, and is 

connected to the USB digitizer (USB-5133). GMROut+ and GMROut-, two red measuring 

probes shown in the figure, are outputs of the GMR chip. In order to get the typical 

performance of the GMR current sensor and eliminate the influence of the thermal 

compensation unit and the differential amplifier unit, the power supply of the GMR chip is 

±5 V, and the direct measuring terminals (GMROut+ and GMROut-) are the outputs of the 

GMR chip in the experiment. 
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Figure 7. Cont. 

 

In order to get the typical performance of the GMR current sensor before being processed by the 

thermal compensation unit and the differential amplifier unit, the terminals of the power supply of the 

GMR chip was connected to the ±5 V outputs of the power supply subsystem, and the voltages were 

directly measured from the two outputs of the GMR chip, as shown in Figure 7. 

4. Typical Performance 

The performance of the GMR current sensor, which consists of static, dynamic and thermal 

characteristics, determines its application. Some performance parameters of the sensors were 

experimentally characterized and are presented below. 

4.1. Static Characteristics 

The static characteristics include the sensor’s range, sensitivity, linearity and accuracy. The GMR 

current sensor has high sensitivity, as much as ten times the sensitivity of a Hall effect-based sensor [25]. 

As the GMR chip is supplied by a dual power supply (±5 V), the output voltage offset is less than  

5 mV when the measured current and the bias current of DC coil are both 0 A, and the value is 149 mV 

when the measured current and the bias current of DC coil are respective 0 A and 10 mA. The effect of 

the DC coil was eliminated and ignored in the following performance analyses. When the current to be 

measured was 10 A peak to peak with frequency at 50 Hz, the environmental temperature T was 20 °C, 

the power supply voltage of the sensor VS was ±5 V, the distance from the wire to the sensor r was  

5 cm, the length of the magnetic ring’s gap d was 1 cm, and the angle between the magnetic field 

direction and the axis of sensitivity θ was 0°, the output waveforms of the GMR current sensor is 

shown in Figure 8. The linear response of the sensor is shown in Figure 9. 

In the case of 0~±5 A DC input range, the sensitivity of the GMR current sensor was  

27.9963 mV·A−1, and the zero-current drift was 3.8634 mV, and the linearity was 0.99951. In the case 

of 0~±5 A AC input range, the sensitivity of the GMR current sensor was 28.0064 mV·A–1, and the  

zero-current drift was 2.5319 mV. The linearity was 0.99972, which became higher as the measured 

current range decreased. Figure 9 also shows that the largest errors occurred when the measured 

currents were near −5 A. The measurement resolution of the GMR current sensor is 10 mA for the 

0~±5 A input range. 
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Figure 8. Waveforms of GMR current sensor. Current is the AC current passing through 

the wire, measured by the Tektronix TCP312. GMROut+ and GMROut− are outputs of the 

GMR chip. GMROut is the differential output of the GMR chip. 

 

Figure 9. (a) DC linear analysis of GMR current sensor. (b) AC linear analysis of GMR 

current sensor. The output voltage offset is less than 5 mV when the measured current and 

the bias current of DC coil are both 0, and the value is 149 mV when the measured current 

and the bias current of DC coil are respective 0 A and 10 mA. GMROut is the differential 

output of the sensor in the corresponding measured current, and the effect of bias current of 

DC coil has been eliminated. Linearfit is the data of linear regression. 

(a) (b) 

Accuracy is one of the most important parameters when designing sensors. As shown in Figure 10, 

when the input AC current was below 10 A peak to peak, the input current can be obtained from the 

output of the GMR current sensor, using the following fitting equation: 

 (4)0.03626 0.03007I U 
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where I is the measured input current in Ampere, U is the output of the GMR current sensor in 

millivolts. The maximum deviation of Equation (4) is 2.717%. 

Figure 10. Accuracy analysis of GMR current sensor. True value is the true value of the 

current measured. Measured value is the calculated value of the Equation (4), according to 

measured value of the sensor. Errors is the deviation of the system from the true value. 

When the measured current range is 0~±5 A, The function of the current is I = 0.036255 U 

+ 0.030072, and the maximum deviation is 2.717% at −5 A. 

  

The related coefficients can be adjusted to appropriate values using the differential amplifier unit. 

Usually, the lower the measured current range, the higher the accuracy and the lower errors. This 

empirical finding is shown in Table 1. When the measured current range was 0~±2 A, the linearity 

increased to 99.993%, and the maximum deviation decreased to 1.757%. 

Table 1. Static characteristics of GMR current sensor in different measured range. 

Range Linearity Maximum deviation Equation 

0~±5 A 99.972% 2.717%  

0~±2 A 99.993% 1.757%  

4.2. Dynamic Characteristics 

The multilayered GMR chip can sense high frequency magnetic fields up to 1 MHz. By measuring 

pure sinusoidal current with different frequencies, the frequency response of the sensor was obtained, 

which is shown in Figure 11. The GMR current sensor worked very stably from 50 Hz to 1 kHz. The 

amplitude response was 28 mV·A−1, and varied less than 5%, about −0.45 dB at the reference 

amplitude response of 50 Hz. The phase response lagged by approximately −6° but only varied a little. 

From 1 kHz to 10 kHz, the amplitude and phase response of the GMR current sensor were gradually 

attenuated. The amplitude response attenuation was about −1.5 dB at the reference amplitude of 50 Hz, 

and the phase response lagged from −6° to nearly −33°. 

0.03626 0.03007I U 
0.03626 0.00797I U 
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Figure 11. Frequency response of GMR current sensor. The way to obtain the frequency 

response is measuring pure sinusoidal current with different frequencies. At the reference 

frequency of 50 Hz, the amplitude response is 0 dB (28 mV·A−1), and the phase response is 

−6.13° lag. The corresponding data is −0.45 dB and −7.62° at 1 kHz, −1.5 dB and −32.8° 

at 10 kHz, respectively. 

 

Figure 12. Step response of GMR current sensor. Current is the step current signal 

generated by the waveform generator Agilent 33250A, with the rising time of 6.58 μs. 

GMROut is the differential output of the GMR current sensor, with the rising time of 

15.21 μs. Therefore, the rising time of the step response of the GMR current sensor is  

8.63 μs, according to the Equation (5). 

 

The step response of the GMR current sensor is shown in Figure 12. The step signal was generated 

by a waveform generator (Agilent 33250A). Measured using a Tektronix TCP312, the rise time of the 
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step current was 6.58 μs, and the rise time of the output voltage of the GMR current sensor in response 

to the step current was 15.21 μs. It is recognized that an infinitely steep current step is impossible to be 

realized. Therefore, the rise time of the GMR current sensor is evaluated from the relation: 

 (5)

where Trise is the rise time of the step response of the GMR current sensor, Tout is the rise time 

measured on the output of the GMR current sensor, and Tin is the rise time of the applied current step. 

Therefore, the rise time of the step response of the GMR current sensor was about 8.63 μs. 

4.3. Thermal Characteristics 

Thermal characteristic is another important performance parameter of a sensor. The working 

environment of the GMR current sensor can widely fluctuate, and the applications of the sensor are 

directly limited by the thermal characteristics of the sensor. To characterize the thermal property of the 

GMR sensor, we first define the maximum change of the amplitude response in temperature as: 
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 (6)

where TMCA is the maximum change of the amplitude response in temperature, VO/I is the amplitude 

response of the GMR current sensor, T is the working temperature, “Tref” indicates the value of the 

reference temperature, usually 20 °C, and “max” indicates the maximum value of amplitude response, 

and “min” indicates the minimum value of amplitude response. 

The thermal response of the GMR current sensor with a constant voltage power supply and 50 Hz 

alternating input current is shown in Figure 13. Due to limitations in material processing and 

manufacturing technology, the four resistive elements shown in Figure 4 are slightly asymmetrical. 

Therefore, the magnitude of the positive output and the magnitude of the negative output of the sensor 

were slightly different. According to the feature of the Wheatstone bridge, there is a phase lag of 180° 

between the positive output and negative output of the GMR current sensor, and the differential output 

has the same phase degree with the positive output of the GMR current sensor, as shown in Figure 13. 

The differential output of the GMR current sensor decreased with rising temperature. The amplitude 

response was 28.43 mV·A−1 at −15 °C, but decreased to 26.49 mV·A−1 at 80 °C. The TMCA is 

0.0751%·°C−1. In contrast, the phase response was independent of temperature, and the phase lag with 

respect to the input current was −5.18°, as shown in Figure 13. 

In order to sustain the high degree of accuracy of the GMR current sensor, thermal compensation 

measures, such as a constant current power supply, should be considered. A generalized impedance 

converter with reference input current can be utilized to perform the thermal compensation [26,27]. 

This compensation technique is compatible with the Wheatstone bridge circuit, and could successfully 

bring TMCA from −0.024%·°C−1 to −0.007%·°C−1. 

In the present work, a kind of simple-structure thermal compensation unit was used to compensate the 

thermal characteristics of the GMR current sensor. As the sensitivity and output of GMR materials are 

linearly related to its input power supply, a voltage power supply that increases with the  

rise out inT T T 
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rising temperature can compensate for the decreased sensitivity and output of GMR materials with the 

rising temperature. 

Figure 13. Temperature response of GMR current sensor. GMROut+ is the positive output 

of the GMR current sensor. GMROut- is the negative output of the GMR current sensor. 

GMROut is the differential output of the GMR current sensor. The amplitude response was 

28.43 mV·A−1 at −15 °C, but decreased to 26.49 mV·A−1 at 80 °C. The differential output 

of the GMR current sensor decreased with the rising temperatures, and the TMCA is 

0.0751%·°C−1. In contrast, the phase response was independent of temperature, and the 

phase lag with respect to the input current was −5.18°. 

 

As shown in Figure 14(a), Vin is the input voltage of the thermal compensation unit. VTCout+ and 

VTCout- is the output of the thermal compensation unit, respectively, connected to the V+ and V− of the 

GMR chip (as shown in Figure 4). Rntc is a linearized NTC thermistor, and Rhp is a high precision 

resistor. The output of the thermal compensation unit that is connected to the power supply of the 

GMR chip can be described by Equation (7): 

 (7)

The thermal characteristics of Rntc and Rhp are shown in Figure 14(b). The resistance of Rntc is 

5.1526 kΩ at the reference temperature of 20 °C, and the temperature coefficient of resistance (TCR) is 

−2.6990 × 10−4 °C−1. The resistance of Rhp is 0.9980 kΩ with almost no change in temperature. 

(1 )hp
out in

ntc

R
VTC V
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Figure 14. (a) Circuit diagram of the thermal compensation unit. (b) Thermal 

characteristics of the compensating resistors. Vin is the input voltage of the thermal 

compensation unit. VTCout+ and VTCout− are output of the thermal compensation unit, 

respectively connected to the V+ and V− of the GMR chip (as shown in Figure 4). Rntc is a 

linearized NTC thermistor. Its resistance is 5.1526 kΩ at the reference temperature of 20 °C, 

and the temperature coefficient of resistance (TCR) is −2.6990 × 10−4 °C−1. Rhp is a high 

precision resistor, and the resistance is 0.9980 kΩ with almost no change in temperature. 

(a) (b) 

With a 50 Hz alternating input current, the thermal compensation of the GMR current sensor is 

shown in Figure 15. The power supply of the GMR chip is 5 V constant voltage supply before the 

thermal compensation, and the Vin (as shown in Figure 14(a)) of the thermal compensation unit is 5 V 

when it is applied. The normalized amplitude response is 1.00 at the reference temperature of 20 °C. 

Figure 15. Thermal compensation of the GMR current sensor. The power supply of the 

GMR chip is 5 V constant voltage supply before the thermal compensation, and the Vin (as 

shown in Figure 14(a)) of the thermal compensation unit is 5 V when it is applied. The 

normalized amplitude response is 1.00 at the reference temperature of 20 °C. The 

maximum change of the amplitude response is 0.0751%·°C−1 before the thermal 

compensation, while the value reduces to 0.0335%·°C−1 after the thermal compensation. 
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Before the thermal compensation, the amplitude response decreased monotonically with rising 

temperature. The maximum normalized value was 1.0148 at the temperature of −15 °C, while the 

minimum normalized value was 0.9435 at the temperature of 80 °C, and the TMCA is 0.0751%·°C−1 

before the thermal compensation. After the thermal compensation, the amplitude response was 

parabolic with rising temperature. The maximum normalized value was 1.0005 at the temperature of 

10 °C, while the minimum normalized value was 0.9956 and 0.9435 respectively at the temperature of 

−15 °C and 80 °C, and the TMCA decreased to 0.0335%·°C−1 after the thermal compensation. With 

this kind of simple-culture thermal compensation unit, the sensor obtained the appreciable reduction in 

temperature dependence. 

Software compensation is another simple and effective method to achieve this purpose, in which, 

the current and the temperature are measured simultaneously. The output of the GMR current  

sensor can be calibrated and modified based on the measured temperature response curve using 

software compensation. 

5. Applications in Smart Grid 

A variety of currents need to be measured in the smart grid. The coverage of the magnitude and the 

frequency of typical currents in the smart grid are shown in Figure 16. The magnitude of currents 

varies from 1 μA to 200 kA, and the frequency of currents varies from DC to 100 MHz, and the 

working state varies from steady-state to transient-state. Many of the currents in the figure are typical 

values found in the transmission lines and distributed networks. The diversity of these requirements is 

well matched by the versatility of GMR current sensors as described earlier. 

Figure 16. Current measurement requirements of a smart grid. 

 

5.1. Comparison of Current Sensors 

Current sensors play an extremely important role in power systems for the purpose of protection and 

control. Presently, current sensors applied in power systems mainly include current transformers (CTs), 

Rogowski coils, shunts, fiber-optic current transformers (FOCTs), fluxgate sensors, Hall effect sensors 
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and GMR effect sensors, and they are mainly based on the following physical principles: Faraday’s law 

of induction, Ohm's law of resistance, Faraday effect and magnetic field sensors [25,28,29]. The 

performance and characteristics of the current sensors mentioned above are compared in Table 2. 

Table 2. Performance comparison of existing current sensors applied in power systems. 

Sensors CT Rogowski Shunt FOCT Fluxgate Hall GMR 

Volume large small small small large small small 

Price high low low extra high high low low 

Frequency 

Range 
0.05~10 kHz 0.1~100 MHz kHz~MHz ~300 MHz ~100 kHz ~1 MHz ~5 MHz 

DC 

Capability 
No No Yes Yes Yes Yes Yes 

Sensitivity 1 V·A−1 10 mV·A−1 1 mV·A−1 high high 10 Oe 0.01 Oe 

Dynamic 

Range 
1 A~100 kA 0.1~100 kA mA~kA 1 A~3 kA 1 A~10 kA 10 mA~35 kA 1 mA~10 kA

Non-linearity 0.05% 0.05% 0.01% 0.2% 
0.001%~ 

0.5% 
0.1~1% 0.01~0.05% 

Temperature 

Coefficient 
-- -- -- 

−0.4%·°C−

1 
-- −0.3%·°C−1 

−0.1~ 

−0.4%·°C−1

Isolation complex complex complex simple complex complex complex 

Breakdown 

Voltage 
high high low high high low high 

The current transformer, with its advantages of high stability and high breakdown voltage, is the 

most widely applied for alternating current sensing in traditional power systems. Because it is based on 

Faraday’s law of induction, it can’t be applied in direct current measurement, and with its 

disadvantages of large size, high price, limited bandwidth and large consumption of metal resources, it 

is only used in power stations and substations. The Rogowski coil, with favorable features of high 

bandwidth and capability of measuring large currents, is mainly used for transient large current 

sensing, and can be easily installed on the transmission lines as a small size and low price unit. 

However, Rogowski coils have poor accuracy when sensing small and low frequency currents, which 

limits their broader application. 

Shunts are mainly applied in power electronics and direct current converter stations. They are the 

most cost effective solution, but their disadvantages are obvious: the measured current has to be 

interrupted into the sensor, an overcurrent may permanently damage it, and the intrinsic inductance 

limits the accuracy and bandwidth. Fiber-optic current transformers have developed rapidly in recent 

years. Their advantages of effective isolation from high potentials, immunity against electromagnetic 

interferences, and wide bandwidth offer a wide potential application in power systems. However, the 

extremely complicated structure, high price, susceptibility to the temperature and polarization under 

direct current are problems that need to be solved. 
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Hall effect current sensors are mainly applied in non-contact current measurements. And indeed, 

currently, most non-contact current measurement probes are based on the Hall effect. However, the 

problems of the Hall effect sensor are low sensitivity, low breakdown voltage, and susceptibility to the 

temperature, which limit it to applications in high voltage power systems. The fluxgate technology can 

significantly improve the accuracy of magnetic field sensors such as Hall effect sensor, but because of 

its high cost and size requirements, fluxgate technology is usually only employed in calibration 

systems, diagnosis systems and laboratory equipment. 

Compared with the current sensors mentioned above, the GMR effect sensor has advantages of high 

sensitivity, high linearity, small volume, low cost, simple structure and lower susceptibility to the 

temperature, which make it the most promising for current measurement in smart grids, especially in 

distributed transmission lines. 

5.2. Distributed Monitoring 

One major challenge in a smart grid is how to realize real-time monitoring of each node in the 

distributed electrical power system. Currently, real-time sensor systems such as traditional current 

transformers and fiber-optic current transformers, are only applied in some key places like power 

stations and substations, and there are currently no suitable real-time sensor systems capable of 

monitoring each distributed transmission line in the smart grid. With the advantages of small volume, 

low cost and simple-structure, the GMR current sensor can be readily implemented to monitor  

large-scale distributed power systems, and to provide accurate real-time information for each grid. 

5.3. Steady-State Monitoring 

In an electrical power system, the steady-state current of various electrical equipment must be 

monitored, such as transmission lines, power substations, AC transformer stations, DC converter 

stations, distribution networks, and user networks. The current can be either direct current or 

alternating current. In the case of DC converter stations, measurement of both direct and alternating 

current is necessary. The optical current transformer and fluxgate current transformer are the two most 

commonly-used current transformers in such DC converter stations. However, these two types of 

current transformers are expensive, complex, and possess adverse environmental effects. In contrast, 

the GMR current sensor we describe here has excellent DC and AC performance, is cost-effective, and 

can be readily applied to steady-state monitoring. 

5.4. Transient-State Monitoring 

In a smart grid, transient-state currents, such as lightning currents, switch impulse currents, 

harmonic currents and leakage currents, also needs to be monitored. However, these currents have 

large amplitudes and frequency ranges, making accurate measurements difficult. For instance, 

lightning current can reach as high as 200 kA, with frequencies as high as 100 MHz, and leakage 

current can be as small as 1 mA. The saturation field of multilayered GMR materials reaches 2,000 Oe 

(1 Oe = 0.1 mT), and a sensitivity of 0.1%·Oe–1. In addition, the saturation field of spin valve GMR 
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materials reaches 50 Oe and a sensitivity of 1.0%·Oe–1. Therefore, we can utilize GMR current sensors 

based on these two kinds of materials to measure wide ranges of currents. 

5.5. Power Monitoring 

The sensitivity and output of GMR materials are linearly related to their input power supply. If we 

connect the power supply pins of the GMR current sensors to measure an electrical system, the output 

of the GMR current sensor is related to the voltage and current of the measured electrical system. 

Therefore, we can calculate the system’s instantaneous power. A possible device used to measure 

alternating instantaneous power [21], and a circuit used to measure the discharge power of a battery 

using a GMR sensor have been developed [30]. A kind of wattmeter based on an anisotropic 

magnetoresistive (AMR) sensor was designed and tested experimentally [31], and a practical 

magnetoresistive wattmeter was designed to measure active power at industrial frequencies, which 

reached the 700 W power level with an uncertainty of less than 1% [32]. 

Taking into account the power delivered to a cosine circuit, the voltage and current of the load can 

be described as: 

( ) 2 cos( )

( ) 2 cos( )

rms

rms

u t V t

i t I t

 



 


 (8)

where Vrms is the root mean square of the voltage, Irms is the root mean square of the current, ω is the 

angular frequency of the circuit, and θ is the initial phase of the voltage. 

The instantaneous power of the load can be described as: 

( ) ( ) ( )

2 cos( ) 2 cos( )

cos cos(2 )
rms rms

rms rms rms rms

p t u t i t

V t I t

V I V I t

  
  



  
  

 (9)

The relationship between output and input of the GMR sensor can be described as: 

 
( )( ( ) )

2 cos( ) 2 cos( )

2 cos( )cos( ) 2 cos( )

cos cos(2 ) 2 cos( )

out

rms rms

rms rms rms

rms rms rms rms rms

u u t Ai t B

V t A I t B

AV I t t BV t

AV I AV I t BV t

  

    

    

 

  

   

    

 (10)

where A and B are the sensitivity and offset output of the GMR sensor. AVrmsIrmscosθ is related to the 

active power of the load, AVrmsIrmscos(2ωt + θ) is related to the reactive power of the load, and 

AVrmsIrmscosθ + AVrmsIrmscos(2ωt + θ) is related to the instantaneous power of the load. 

To obtain the active power, Ramírez Muñoz et al. designed a low-pass filter to remove the AC 

frequency components [32]. In the works of this paper, with the aid of a digital signal processing 

technique, both the active power (DC component) and the reactive power (2-harmonic components) 

are extracted from the output signal, and then the instantaneous power of the load is calculated and the 

effect of the GMR sensor offset is eliminated.  
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To demonstrate the capability of GMR current sensor mentioned above to measure instantaneous 

power, the GMR current sensor was used to measure alternating instantaneous power delivered to a  

10 Ω resistor. The resistor was powered by an AC voltage source at 50 Hz and 10 V peak to peak. As 

shown in Figure 17, the output of the GMR current sensor contained two frequency components:  

50 Hz and 100 Hz. The 100 Hz frequency component showed the alternating instantaneous power of the 

resistor, and the 50 Hz frequency component was caused by the asymmetry of the Wheatstone bridge. 

Figure 17. Power monitoring of GMR sensor. The 10 Ω resistor is powered by a 50 Hz and 

10 V peak to peak AC voltage source. The two power supply terminals of the GMR chip 

are connected to the two terminals of the l0 Ω resistor load. Current is the AC current 

passing through the 10 Ω resistor load. GMROut is the differential output of the GMR 

current sensor. GMROut-50Hz is the 50 Hz frequency component of the GMROut, which 

is caused by the asymmetry of the Wheatstone bridge, and the frequency is the same as the 

voltage of the 10 Ω resistor load. GMROut-100Hz is the 100 Hz frequency component of 

the GMROut, which showed the instantaneous power of the 10 Ω resistor load. 

 

As mentioned, due to material processing and manufacturing technology limitations, it is 

impossible to manufacture the four resistive elements shown in Figure 4 identically. This results in 

voltage variations between the positive and negative outputs of the GMR current sensor when no 

current passes through the wire being measured. Therefore, there is a component in the output of the 

GMR current sensor, which the magnitude of the component is linearly related to the voltage of the 

load, and frequency is the same as the voltage of the load. This offset needs to be taken into account 

and mitigated in practice. 

6. Conclusions 

The design and development of a GMR current sensor for smart grid applications were discussed. 

Characterization of the sensor was done to study its static, dynamic and thermal characteristics. The 
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static characteristics of the sensor consist of the following performance parameters: operation range, 

sensitivity, linearity, and accuracy. The sensitivity of the sensor is 28 mV·A−1. At an input range of 

0~±5 A, the linearity reached 99.972%, and the maximum deviation was 2.717%. At an input range of 

0~±2 A, the linearity reached 99.993%, and the maximum deviation was 1.757%. Furthermore, 

dynamic characterization of the sensor showed that the frequency response of the GMR current sensor 

was −0.45 dB at 1 kHz input current and −1.5 dB at 10 kHz input current. Lastly, the thermal 

characterization showed that the maximum change of amplitude response in temperature (TMCA) of 

the GMR sensor was 0.0751%·°C−1, and the value decreased to 0.0335%·°C−1 with a simple-structure 

thermal compensation unit. 

The GMR current sensor described in this paper can be readily applied to monitor a smart grid in 

real-time. In the case of distributed monitoring, steady-state monitoring, and transient-state monitoring, 

the GMR current sensor provides excellent performance, and is cost-effective. Moreover, with 

appropriate design modifications, it can also be used for power monitoring, which potentially has a 

vast market in residential power systems. With its high sensitivity, high linearity, small volume, low 

cost and simple structure, the proposed GMR current sensor has bright prospects in the measurement 

and monitoring of smart grids. 
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