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Abstract: In video analytics, robust observation detection is veryponiant as the
content of the videos varies a lot, especially for trackingplementation. Contrary
to the image processing field, the problems of blurring, maide deformation, low
illumination surroundings, illumination change and homogus texture are normally
encountered in video analytics. Patch-Based Observawbediion (PBOD) is developed to
improve detection robustness to complex scenes by fusitigfbature- and template-based
recognition methods. While we believe that feature-bassdatiors are more distinctive,
however, for finding the matching between the frames are &&steved by a collection
of points as in template-based detectors. Two methods ofPBe deterministic and
probabilistic approaches—have been tested to find the besenof detection. Both
algorithms start by building comparison vectors at eacleatetl points of interest. The
vectors are matched to build candidate patches based anrékpective coordination. For
the deterministic method, patch matching is done in 2-légst where threshold-based
position and size smoothing are applied to the patch witthiglkest correlation value. For
the second approach, patch matching is done probabillgtinamodelling the histograms
of the patches by Poisson distributions for both RGB and H8Ww models. Then,
maximum likelihood is applied for position smoothing whaldayesian approach is applied
for size smoothing. The result showed that probabilisti©OBPButperforms the deterministic
approach with average distance error of 10.03% compardd 21it03%. This algorithm
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is best implemented as a complement to other simpler deteatiethods due to heavy
processing requirement.

Keywords: tracking observation; Neyman—Pearson method; Poissoelimgd maximum
correlation; histogram intersection; patch matching

1. Introduction

Obtaining the correct observation for track maintenaneevsry challenging task. Tracking accuracy
is highly dependent on accurate observation. Improvingat®uracy of observation detection and
association are two crucial factors in building good traskespecially in people counting and behaviour
analysis systems. Even for a global positioning systémdbservation data from several satellites
are optimized in order to provide the best possible cootdindDuring complex situations such as
illumination changes, clutter and occlusion, robust oletgons are rarely obtained, which lead most
trackers R,3] to utilize prediction information only. Moreover, null ebrvation and false association
sometimes occur, which will hinder tracker performancee Thallenge of detecting the tracked object
throughout the video is more difficult compared with detegtn object in a database (image processing)
due to the non-rigid nature of the object where its appe@&aades with time. Even though there is a
strong correlation between the current and previous frantetfecting the moving object, the template
itself is not perfect, which makes comparison between feanery difficult. The dynamic change
between frames is the reason behind the difficulty in esthiolg and retaining a good set of template.
This paper is dedicated to robust observation detectigreaslly in various challenging environments
and surroundings. The processing requirement of the #fgoris quite heavy, so we suggest the user
implement a simpler detection algorithm as the primary méthnd only switch to our algorithm for
challenging situations and surroundings. An example ofrgplg switching mechanism is if the main
method fails to detect the observatiom,, there is no observation detected for that particular sitesm
our algorithm is activated to obtain the measurement. We this paper to single object tracking only,
which is a part of Zulkifley’s PhD thesid].

Generally, there are two major approaches to obtain theune@ent input, either by detection with
recognition or detection without recognition. Recogmitio this case means we know in the first place
to which track a particular observation belongs. Foregdos@gmentation and optical flow are two
methods of obtaining measurement input without recoggizive tracked object. Those algorithms
work by detecting moving pixels without knowing the identdf the tracked object, and the detected
foreground blob such as frorB][may contain more than a single tracked object. The detdotedround
blob must be associated with a specific track in order to krnwevidentity of the object. Multiple
hypothesis approaclé] can be employed to optimize the association process smthaterge and split
cases are considered. On the other hand, observations cdtaieed by recognizing the object using
feature-based and template-based recognition. We havstgned data of the tracked object where
we will find it in the later frames. Therefore, the detectedeaation is already associated with that
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particular track. During the initial stage of tracking, auteack can be initialized by the user or by using
non-recognition-based detection. The features of th&#chobject are then learned for recognizing it in
later frames.

Since illumination change is hard to model with a single aolmodel, we implemented two colour
models for PBOD—RGB and HSV—where the latter is heavily udedng illumination change. For
histogram matching, we explored five histogram similarityd@lling: correlationT], chi squared §],
intersection 9], Bhattacharyya 10] and Poisson distributionlfl]. We reviewed and compared two
schemes for PBODI1[l], one deterministic and the other probabilistic. The formeethod relies
on threshold-based decision making while the latter meihguements maximum a posterior and
Bayes risk for decision-making. Both algorithms share thme basic structure but differ in whether
patch matching and smoothing procedures are determimispcobabilistic. Details of the algorithms
are explained in the methodology section. The main nowetifePBOD are (1) the fusion between
a feature and template-based approach; (2) modellinggnesto similarity by Poisson distribution;
(3) probabilistically adjusted patch position and size tdHe tracked object completely. Finally, the
output patch is fed into any filter-based tracker as the nreasent input.

This paper is organized into 6 sections. A literature rewelivbe presented in Section 2. Details of
the algorithms are fully explained in Section 3, where eadfssction explains in detail the methods to
obtain points of interest, generate candidate patchestHendest patch, perform position alignment and
adjust the patch’s size. In Section 4, the pseudo-codestbfdeterministic and probabilistic PBOD are
given for more clarity. Simulation results and discussiares presented in Section 5. The conclusions
are given in the last section to emphasize the performariiezeatice.

2. Literature Review

Since we are focusing on obtaining an observation througbgmtion, the two most common
methods of object recognition are the template- and fediased methods. The feature-based approach
usually recognizes the object by obtaining a match basetefeature descriptor. The template-based
approach uses the shape or a collection of pixels in findingaéclm The major trade-offs of
both approaches are the distinctiveness property and thergleation property. Most feature-based
approaches have high distinctiveness property but low meggization property. This explains why
feature-based approaches do not work well for blurred imdge perform exceptionally well on rich
textured objects. On the other hand, the template-base@aqgp has low distinctiveness property
but is very good in generalizes the object detection. Evenrddl and non-rigid objects can still be
recognized reliably.

Template-based recognition is an approach that requireatabase or a collection of possible
templates to be built before any matching can be performad method is used in many license plate
recognition systemslp-14]. Templates of the characters are built under several vigwbnditions
before matching is performed. Another popular templateedaystem is human recognition such as the
work by Hsiehet al. [15]. The authors divided the frames into nine sections wheoh saction has
a different database of the human silhouette. It reducedessing time significantly by anticipating
the human shape at the selected viewing angle. This cley@oagh allows the system templates
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to capture all possible transformations in a smaller datalvasulting in acceptable processing time.
Sometimes, the templates or databases are obtained bgieeteaining even to the extent of 80 million
images 16]. Simple template-based recognition is demonstrated laygl& and Kaehler in7], where
they slide a single template across the whole image. The asiantage of the template-based approach
is that it manages to recognize the object under moderaterdafion, blurring and illumination change,
all of which are common in video applications. An example péate matching technique built for
video application is the system by Cadeal. [17], where they used an adaptive scaling technique to
reduce computation burden. The authors also reduce theerwhimatching candidates by segmenting
the database into several classes and further breakingwibh dathin a class into several groups.
Yanet al. [18] then proposed a sub-template mean-shift methaebest templates were chosen as the
candidate based on their distance from the tracked objécs.spatial distance also signified the a priori
knowledge, which a Gaussian-based voting is employed ezttle best template.

One of the most cited paper regarding point-based detest8cale Invariant Feature Transform
(SIFT) [19], which generates robust features that works exceptipnaéll even for problems of
rotation, scaling and moderate illumination change. Ke &uhankar 20| improved SIFT’s
feature distinctiveness property by applying principamponents analysis. Later, Burghouts and
Geusebroekd1] fused SIFT with a colour invarianc@2] algorithm to achieve robustness to illumination
changes. Their algorithm transformed the image into calmwariant forms, which they divided int#,

W, C andH colour invariants before applying SIFT. Performance eatiduins of SIFT and its variants are
explained in depth by Mikolajczyk and Schmi2lj. They also introduced their own algorithm, GLoH,
which improved SIFT by incorporating more spatial prog=tiuring histogram accumulation. In 2004,
Ledwich and Williams 24] proposed a simplified SIFT feature for reducing computetldourden.
The author claimed that a significant gain in processing gpe@btained at minimal accuracy loss
by utilizing structural similarity to reduce the number @fpoints generated. Moreover, Betyal. [25]
introduced Speeded Up Robust Features (SURF), which clitm&ar detection performance to SIFT
but requires less computational burden. The underlyingcoals used in SURF are the combination of
integral image and Hessian matrix based point descriptors.

Another method of obtaining tracking observation is by gp@ a histogram-based method.
Histogram-based tracking algorithn&26] have been applied successfully to non-rigid objects bszau
the matching is done based on the statistics of a group ofspix& multilevel thresholding of the
histogram data is used by Chetal. [27] to improve the detection robustness to illumination chemng
and spurious infrared noise. The most popular histogrased#acker is a mean shift algorithi2g]
where the next location is predicted based on the input dbéwam backprojection via the mean
shift algorithm. Bradski introduced CAMSHIFR§], which integrates scalability into the mean shift
algorithm, thus allowing the tracked object to have vapatire. A kernel-based tracker that utilizes
the Epanechnikov kernel profile has been introduced by Canueet al. [3]. This approach puts more
emphasize on pixels that are closer to the anchor pixel asdteight on distant pixels for accumulating
the histogram’s bin values. They also apply the Bhattagfeadistance 10] for measuring similarity
between two histograms.
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In general, a kernel-based algorithm performs well for lrapject tracking 3,29,30]. However,
as the scene becomes crowded and more objects need to bedirélck algorithms start to falter,
especially during occlusion, poor segmentation and iftgihd segment touching detections. The works
by Namboodiriet al. [31] and Penget al. [32] attempted to solve the problem of occlusion. The
algorithm of Namboodiret al. tweaks the localization of the mean shift by applying botiwird and
reverse methods so that it converges to the true modes. Téeyadd scalability by utilizing SIFT'’s
scale. However, this contradicts their assertion that eidgorithm should require less processing power
as itis a known fact that SIFT uses more processing power asgdwith the mean shift methods. The
work by Pengget al. focuses on how to improve the updating method for the objecteh for which they
utilize a Kalman filter prediction method. The predictedemibmodel is called the candidate model while
the previous model is called the current model. Hypothesisitg is used to select the correct histogram
model. In their paper, Leichtet al. [33] improved the kernel-based method by using multiple models
for the object so that it tracks well under sudden changesesipoint. This method requires the user
to initialize the object model in several views, which cangoite problematic. The main weakness of
the mean shift algorithm is it depends on the proximity propehere it is prone to failure when the
object’'s movement is fast. The algorithm of &ial. [30] approaches this problem by extending the
search area based on their hexagon method. However, itigefbrce search that requires a significant
amount of processing. Besides, the algorithm fails if theabmoves fast enough such that it leaves
their search region.

3. Patch-Based Observation Detection (PBOD): Determinigt and Probabilistic Approaches

Both methods were first introduced ii1]. PBOD is built specifically for obtaining tracking
observations in challenging surroundings and environmenThis algorithm has a moderate
distinctiveness property with better recognition accurémr most applications. The distinctiveness
property is the measure of the uniqueness of a descriptale whneralization property is the ability
to find a match in a noisy environment. A typical example ishié Dbject is blurred, the descriptor
will not be able to match the points of interest. Howeverhe generalization property is good, the
algorithm can still find a match by generalizing the inforiroatof the object. The main challenge lies in
recognizing the objects under illumination change, bhgeffects, moderate deformation and non-rigid
objects, low ambient illumination and objects with homogesitexture. We have developed two versions
of the observation detector, the deterministic PBOD angbtbbabilistic PBOD. Both approaches share
the same algorithm up to the possible patch generation. Heolatter stage, the algorithms differ as
indicated by the name where decisions are made deterroailgtor probabilistically. The main five
components of the algorithm are shown in Figlire
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Figure 1. Block diagram of deterministic and probabilistic PBODs.
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3.1. Generate Points of Interest and Possible Patches

A point of interest is used to obtain the location to genevatetor descriptors. These descriptors
are matched between frames for building possible patchés. ofiginal location of the object or the
original patch in the first frame is initialized by the usehelimportance of this user defined patch is
that it serves as the reference for building the statistiatd used in matching and smoothing procedures
and in particular, the reference histograms. Moreoversibe of the previous frame patch indicates the
object’s size. Let3,, and 5, denote the width and height of a bounding box or patch. Fargaction,
both currentr;%’; and previous framesy, ;¥ are transformed to grey scale spagg (¥, ;")
Corner detectors as defined by Shi and Tona4iqre applied to find the possible points of interest. The
threshold used in the Shi and Tomasi algorithm is arauf, which signifies the minimum eigenvalue
threshold required for the point to be considered as a cofiries corner detector was selected because
of its ability to generate points even under low ambientilination and for low textured objects. For
the previous frame, the points are generated inside thefned patch only, while for the current frame,
the points are generated for the entire image.

Then, vector descriptov”*? is used to match the points of interest between frames. IBessi
bounding boxes are generated at each corner where the yeceomatched. We use the RGB colour
model, and each channel is treated separately. Therefere, will be three sets of vectors for each point
of interest,V%", V™ V%™, The vectors are generated by finding the colour differemteiéen the
anchor pixel and its selected neighbouring pixels as shaviAigure2. Leti denote the colour channel
andi € {R,G, B}.
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Figure 2. Neighbourhood pattern used for vector generation.
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Each of the vector components is sorted from the lowest thitfigest value. The reason for sorting
Is to account for the rotation of the object, while the useabar differences allows the algorithm to
find good points of interest even during an illumination ap@nThis algorithm does not have rotation
invariant abilities since all matchings are done based enctilour histogram. The reason for using
4-connected neighbourhood data instead of 8-connecteghlm&irhood is to produce as much as
possible candidate patches in the early stage, which latebevfiltered by the subsequent processes.
Each vector from the initial frame is compared with each eett the next frame. The decision rule
LYY for matching the vectors is shown in Equatid) (vhere the differences between each vector
component are summed up, and the final value is obtained biioarg all three channels’ differences,
i.e., a Manhattan distance. Then it is compared with a predefmeghold,7;, which was found from
experiments to be optimal in the range 11 to 13. LgtY denote the label which is set to one when the
vectors are matched and zero for unmatched vectors.

L= 30 VY =V e {R.G.B) @
Vi
i 1if Ly < Ty
L™ = {

3
0if L1 > T )

All the matched vectors are candidates for locations atkvpatches are built. Patches for the second
frame are generated around the location of the matched rviectbe first frame with respect to the
original bounding box. Figur8 shows an example of how the bounding box is generated. lIpjtibe
size of the object is assumed to remain constant betweem$am

A subsequent test for distinguishing overlapping patckgserformed after all patches have been
assigned location and size. This is performed due to diftemeatched features possibly lying close
to each other. If the difference is small, the patch shouldieothed out as one. This is done in
order to reduce the calculation burden by reducing the nurob@atches. Moreover, most of the
small differences occur because of “noise” in the patch geimm process. The decision rulg for
determining overlapping patches is calculated as in Eqa#t). Patch smoothing to combine all patches
that lie close to each other is performed if the overlappirea®, is more tharn7,% of the original
patch size.
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Figure 3. Examples of constructing new patches between the framese bblnding
boxes are aligned with respect to the matched vectors in thieffame. &) First frame
(b) Second frame.

(a) (b)

(4)

I Lif Oy > (T2 X Buw X Br)
| 0if O < (T3 % Bu X )

The new combined patch locatiom, () is the average of the corresponding centers of the overlgpp

patches as shown in Figudewvhere N, is the number of.3;s detected. Comprehensive pseudo-code of

both points of interest and possible patches generatiogiaea in Algorithm 1.
1 1 &
Ty [ xij . Yi 5

Figure 4. Example of several patches combination. a) (Original patches
(b) Combined patch.

(a) (k)
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Algorithm 1 Generate points of interest and possible patche

Require: Points of interest
(a) Obtain user input bounding box during the first frame
(b) Convert previous and current frames to grey scale fan egcle
(c) Perform Smoothing to both frames with Gaussian coniatut

(d) Find Laplacian for each frame
t,z,y t,x,y

. | F
(e) Obtain the matri Flfzv Ify

for each pixel

(f) If min eigenvalue T
accept the point as possible POI
Else
reject the point
End If
Require: tentative patches
(a) Each channel of RGB is treated separately
(b) Built vector descriptorsy>*¥ for both frames
(c) For i, ..., total POIDo
Ly=3 ’V?W - VE_L%Z/’
End For
(d) ObtainL- to decide either to accept the POI or not
If L, < T,
Ly =1
Else
LE™Y =0
End If
(e) Construct a patch at each point whépe= 1
The original size of each patch is similar with the final sizéhe previous frame
(d) Smooth out overlapping patches by combining redundatthes
If Oy, > (T2 X Buw X Br)
combine the patches by finding the mean of the patches
Else
remain as itis
End If

3.2. Patch Matching

Patch matching is performed to find the patch where the objest likely resides. The match is done
by comparing the histograms of previous and current franbéhpa. Two colour models are considered,
i.e., RGB and HSV. For the case of constant illumination, the RGBur model gives better histogram
comparison than does HSV. The RGB colour model is betteralte more distinctive feature when there
is no illumination change. If illumination change occutsg thue channel from the HSV colour model
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gives better comparison performance. This is because thelmannel is more stable under moderate
illumination change even though its distinctive properggchdes. Another reason for choosing HSV
colour model is due its simplicity, which results in low coatational burden as compared with other
colour invariant models such a2Z35]. For RGB colour space, a 3-dimensional histogram is bailt f
each patch while a 1-dimensional histogram is built for the bhannel. The conversions from RGB
model to HSV model are given by Ts&4q].

1
V=3(R+G+D) (6)
3 .
S =1- m mln(R, G,B) (7)
0if B<G
H = . (8)
360° —0if B> G

(9)

(10)

wnere o3RG +(R-B)
V(R—G)?*+ (R-B)(G - B)

3.2.1. Deterministic Approach

After the number of patches has been finalized, histogrameledion (D:) between current frame
patches and previous frame patch is used to identify thecbbjéhe test is divided into two levels,
where the first level is used to obtain the match under norto@hination, while the second-level test
is initiated when an illumination change is detected. Tha-fevel test depends on RGB colour space
while a 1-dimensional hue histogram is used for the secomad. ket /V, be the number of histogram bins
in one dimension while previous and current frames’ hisdatg are denoted by andm respectively.
m, is the value of*" bin of the current frame histogram where each histogramrisiatized first before
matching them. The output range is [-1, 1], where 1 indicatesrfect match while-1 signifies a total
mismatch. IfD. is zero, it signifies a very low correlation value that indesaan illumination change
has occurred or no match is found.

For a 1-dimensional histogram:

N, N,
Np ':b1 ”iZ':b1 mi

De,(n,m) = ~ — NNb (11)
VO ()2 = K).(S2 (my)? — L)

where
Ny 2 Ny 2
b n, 0 my
K= m ) ,andL = Quim mi)” (12)
Ny Ny
and for a 3-dimensional histogram:
N N, N, N, N, N,
N, N, N, DIRAD DHLID DALY PR SALAD DD DHLIE TR
D R S N L e

N, N, N, N, N, 3NbN (13)
VO S0 o (11402 = K)(E N S SO0 (i )2 — L)

De,(n,m) =
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where Ny N, N, 2 Ny, N, N, 2
(> Zj:bl he1 Tijok) andL — (> Zj:bl ket i, j )

14
3Ny 3N, (14)

K =

Since some of the matched vectors are found near the bordee ohage, certain patches may have
some regions with components outside the frame. In thistsim, we set out of bound components
to be low (black), which consequently increases the prdibabi detecting occlusion. The patch with
the highest correlation"®; is taken as the candidate for the object location. Howesf&, 5 should
exceed a predefined thresh@igdor otherwise the second-level test is initiated. The optiakue for7;
is found from extensive simulations to be around 0.73.€.éte the indicator, which takes the value 1 if
the first-level test is satisfied and O if the second-leveligisitiated.

1 (1* level test) if 87" > T3
€4 = o (15)
{ 0 2" level test) if "% 5 < Ts
Figure 5. Procedures for selecting the right patcha) Qriginal patch ) Raw patches
(c) Combined patcheslf Maximum correlation patch.

For the second-level test, both previous and current fraanestransformed from RGB to HSV
colour model. Only the hue channel is utilized where themilation has changed due to the previous
assumption. The reason for utilizing only hue informatiower illumination change is because of its
stability compared with other colour informatior]] By using the same set of possible patches as in the
first-level test, the hue histogram of each patch is obtaiddgn, each correlation value is calculated
using EquationX1) and the patch with the maximum correlation is taken as theidate for the object
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location. The maximum correlation is compared with theghodd valueT, in order to determine if the
object still resides in the frame or not. LE{ represent the label of detecting the object. Figushiows
an example of selecting the right patch between two conseduames.

1 (object is detected) i, > T,
0 (object have leaved the frame)df'7; < 7,
Bmax if €g=0

B3 = { (17)

/617R7G7B If € = ]_

(16)

3.2.2. Probabilistic Approach

For the probabilistic approach, histogram matching is doy@enodelling the relationship between
two histograms as a Poisson distribution as in Equatid8sgnd (L9).
For a 1-dimensional histogram:

Ny —ny; nmz
Do, (nm) = [ <L> (18)

and for a 3-dimensional histogram:

Dp,(n,m) = HHH( ]kn”k ) (19)

i=1 j=1 k=1

A maximum likelihood approach is used to find the matchedp#&bc both colour models. The
likelihoods are modelled by Equatioris8] and (L9) whereS; denotes the matched patch arreépresents
the observation.

Dp, (n, m) for HSV colour model

(X[B4) = (20)
Dp,(n, m) for RGB colour model

Ps = argmax P (X|34) (21)

Ba

There are two candidates for the most likely patch. The dmti® choose the hue colour model
over RGB is made by using a Neyman—Pearson hypothesis3@stllet P(x; Hy) = P(bsrc.B)
P(x; Hy) = P5(B4 ) andn, represent the threshold for the Neyman—Pearson hypotiessidf the test
favours Hy, ¢, is initialized as one. On the other hand,Hf is choseng, is set equal to zero. The
parametee, indicates which colour space is used for position and sizeoshing. The resultant patch
Be from the test will be the final matched patch.

np, — sBn) (22)

Py(Ba,rc,B)
B = { Bara f Ps(Bam) < mPa(Baras)
s =

. (23)
B i Ps(Bam) > mPo(Bara.B)
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3.3. Position Smoothing

Position smoothing is used to adjust the patch’s centroigrexisely fit the object’s centroid.
Sometimes, the calculated patch is slightly misalignedh whe tracked object. This error is prevalent
during illumination change and low ambient illuminationhél adjustment is divided into two cases
depending on the value ef The step sizé used for adjusting the patch translation is determined first
Let 75 denote a weight factor that takes value$ini|.

0 = T5(min(Bw, 5n)) (24)

3.3.1. Deterministic Approach

The translation test for adjusting the patch location iqrered in four directions as shown in
Figureb, i.e., leftward (3¢), upward (), rightward (3¢) and downward£¢). The solid line patch is the
original position while the dashed line patch is the patelndtated by a step size value. The statistical
properties of these patches are retrieved depending ep Yadue. For,; equal to 1, the RGB histograms
for each patch are built and its correlation with the presirame patch’s histograms is calculated.

Figure 6. Patches coordination for location smoothia I eft side translationkf) Upward
translation €) Right side translationd) Downward translation.

£
i i
| ]
| i
]
| |
| ]
|
| ]
| ]
| ]
| ]

-— —_—

@ (b) © (d)

Every correlationD;) of the four new patches3¢, 3¢, 3¢, 39) and the original patch3;) correlation
(D™ are compared. The new patch location is selected basedeanakimum correlatiorD,™
among them. If the original patch correlation is the maximthe position will remain the same. If any
of the new patch’s correlation is the maximum, the detectdipis shifted toward that corresponding
direction. The new maximum correlation is reset when thelpet moved. The procedures are repeated
until the maximum correlation among the new patches is less the original patch correlatiof"®
is stored for later usage during the shrinkage and expatssbn

D" = max{D¢", D¢’, Dc, De} (25)

5 { Bs if Dcmax > Dcori
8 =

max if D max - D ori (26)
7 C >~ LC

For the case of; equal to 0, only the hue channel histogram is generatechidsteRGB histograms.
The remaining steps follow the same procedure as beforeattnelation is calculated and used for the
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position smoothing comparison. All four new patch locasi@re tested, and the stopping criterion is
when the maximum hue correlation among the new patchessisHasa the original patch correlation.

3.3.2. Probabilistic Approach

In the probabilistic approach, the same four new candidattehes are created for adjusting the patch
position as shown in Figur6, representing translations in four directions of the pigatch (3s)—
leftward (34), upward(3), rightward(55) and downward3¢). Histograms of each of the five patches,
including the original position patch are obtained, andrtfaimum likelihood is used to find the new
location. Likelihood is derived from the relationship betmn the previous and current frames’ histogram
as in the Equationsl@) and (19). Let 3;, denote the output of position smoothing.

Py(X|) — Dp, (n,m)if e, =0 27)
R Dp,(n,m)if e, =1
P10 = argmax P(X|fy),1 € {a,b,c,d} (28)

v

For each iteration, the pivot position is reinitialized sting 5 = (19, S0 that all four new translated
patches for the next iteration are built aroustd. The algorithm is iterated until the estimated patch
position remains the same as shown by the decision/ryle

0 ( stop the iteration) i =
L5:{ ( stop ) 1B = B6 (29)

1 ( continue the iteration) ify # ¢

3.4. Sze Smoothing

This section focuses on adjusting the size of the patch gatthbeovides a good fit to the tracked
object. Generally, the apparent size of the object becongggebas it moves closer to the camera and
smaller as it moves away. However, size increment and dexrebetween consecutive frames should
not be very large. Based on this assumption, we limit theeschhnge for size smoothing by at most
a factor of% between two consecutive frames. Figurshows an example of applying size smoothing
in PBOD. The algorithm is still divided into two sections, i depend on the value as the colour
space and parameters used are different. Eight new patdatiedifferent sizes are utilized for the size
smoothing test. The sanaised in position smoothing is applied to adjust the patah $tbur shrinkage
and four expansion pattern patches are obtained by eitb&asting from or adding to one of the patch
corners by a step size value. Fig@shows the shrunk patches¥(, 3%,, 3¢,, 3{,), while the expanded
patches are shown in Figueg(3,, 525, 555, B%).
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Figure 7. Sample output of position and size smoothing algorittan @riginal object
(b) Blue box: Output of patch matching, Red box: Output of posismoothing and Green
box: Output of size smoothing.

(a) (b)

Figure 8. Patterns for shrinkage patch)(Left side shrinkagelk() Upper side shrinkage
(c) Right side shrinkaged] Lower side shrinkage.

(a) (b (c) (@

Figure 9. Patterns for expansion patch) (Left side expansionh) Upper side expansion
(c) Right side expansiordj Lower side expansion.

(@) (b) (e) (d)

3.4.1. Deterministic Approach

We first consider the case whetgequals to one in which RGB channels are used for building the
histogram. A parameter is calculated as the weight in determining the size pattern.

a=0.1x (1—-D" (30)

A test to determine the size pattern is performed to find outttwr the object is expanding or
shrinking. Here, only shrinkage patterns are considere@B Ristograms are generated for all new



Sensors 2012 12 15653

shrinkage patterns. Then, the histogram’s size is norebefore correlations between the new patches
and the anchor patchy are calculated. Le¥s; and N, denote the number of pixels inside patches from
the previous and current frames respectively. Each hiatodpin valuef is adjusted by the ratio ¥z,

to NBI-

Hnew — (%) Hold (31)

The average correlation among the channels for each pataicglated. The weighted correlation
D¢ between the new shrinkage patches are used to determineehgastern. The weighf; is used to
find D¢, which are comprised db."® and the average @, of the shrinkage patches.

De = To(De™) + (1 — T)(De) (32)

Then the weighted correlation is compared with the maximometation Oc4,) from the location
smoothing to determine the size pattetsg,

_{—um%>pw8 -

1if De < Dey,

For L equal to one, RGB histograms of each of the new patches aegajed as shown in Figuée
The histograms are normalized before the correlationsdmtvthe new patches and the previous frame
patch are calculated. Each patch correlation is comparbd"®. For each side, EquatioB4) is used
to decide whether expansion will occur or not. The size up@atndependent of the other expansion
patches; any side can be expanded as long as it meets theeragnt. Letl; be the decision label.

A value of one denotes that the size is expanded while zeruofigig that the size will remain constant.
Thus, both left and right side patches can be updated at the sae as shown in Figurko.

0 if DC& < (Dcmax —
= { , Bi € {5?275%27552751112} (34)

1if DC& Z (Dcmax — a)

Figure 10. Example of the patch expansia®)(c) Original patch ) Result if the right and
left side expansion are trud)(Result if the left and upper side expansion are true.

(@) (® (@ (@
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Algorithm 2 Deterministic PBOD

Require: patch matching
(a) For each patch, obtaiP.; based on RGB space
(b)If SR > Ts

€g=1
Else

€ =20
End If

(€) If ¢; = 0, start2™? level test
(d) For2™? |evel test, obtairD., for each patch
(e) Selectsy’y as the candidate patch
Ensure: position smoothing
(a) Select colour space basedgneither RGB or HSV
(b) Determine the step sizé,
(c) Construct the translated pately, 52, 3¢, 54
(d) Find maximuniD,
(e)While g3 = g Do
If Dcmax > Dcori
Bs = Be
Else
By = B
End If
End While
Ensure: size smoothing
(a) Determinex as the size factor
(b) Obtain size pattern based Gnhistograms either to use shrinkage or expansion pattern
(c) Normalize histograms size for fairer histogram matghin
(d) If D¢ > Deg,
Utilize shrinkage patch patterns
Else
Utilize expansion patch patterns
End If
(e) Switch
Case(shrink)
If D' < (D™ — @), Liz=0ElseL;3 =1
Case(expand)
If Do/ < (D™ + @), L1y =0ElseLy, =1
End Switch
(f) Reiterate the process until the patch has converged éotaic size or number of iteration
has exceedeg cycles.
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For the shrinkage pattern, the patches used are shown imeFRguThe same steps used in the
expansion pattern are applied but with a different deciside Ls as shown in Equatior8). A more
stringent threshold is used in the shrinkage test is to @uhe homogenous texture problem. This is
because the test will give good correlation even though bect size is not shrinking.

0if D D™+
:{ e ) e (oAl B ) =

1if ’D(;ﬁj Z (chmax_l_ a)

For the case of; equal to zero, the same set of algorithms are used but instéx@B channels, only
the hue channel is applied. The parametés replaced withv; anda,. Both parameters are predefined
values, as it is hard to find good closed form expression femtllue to the complexity of the scene
when the illumination changesy; is applied during the test for determining the size pattetmle o,
is applied during the shrinkage and expansion test. Theidigostops when there is no size change
or the iteration has exceeded two times. Full pseudo-codéhéodeterministic approach is given in
Algorithm 2.

3.4.2. Probabilistic Approach

For the probabilistic approacls;, is used as the pivot point for creating all the new patches. A
Bayesian approach is used to decide the final patchdizeom among the nine patches, including the
original patchs;.

P ) Ps (5;
Py(Bul) = DB g g pe s g ) (36)
P5(x)
SinceP(x) is equal for all nine patches:
P5(B11|x) o< Ps(X|8:)P(B:), Bi € {Bro, P11, --- aﬁfh Bla, - - - aﬁfg} (37)

The value ofe, determines what type of histogram is built. €lf equal to zero, a 1-dimensional
hue histogram is used, while fey equal to one, a 3-dimensional RGB histogram is applied. igefo
any comparison is performed, the histogram size must firstdsmalized. The normalization of the
histogram size follows the same Equatid@i)(as the deterministic case. Once again, the histogram
relationship between the previous and the current framzhpatare modelled by a Poisson distribution.

{ Py(n,m)if e, =0
Ps5(x[8) = . (38)
Ps(n,m)if e, =1

Two sets of prior probabilities are used. These depend orthghéhe size of the detected object
inclines towards expansion or shrinkage. The selectionsoiitable prior probability is very important,
as the likelihood of shrinkage is usually large even wherotiject expands. Thus, we apply lower prior
probabilities to shrinkage candidates if the size is insirga In order to determine which set of the
prior probabilities to use, again a Neyman—Pearson hypahest is implemented, wheré, and H;
represent the expansion and shrinkage hypotheses. Ohlyoeigdidate patches are used (four shrinkage
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patches + four expansion patches) for this test where the Bansson distribution as in Equatid@s] is
used. The maximum probability among the expansion patdmesents thé/, probability, while the
maximum probability among the shrinkage patches represbati; probability.

[t]P(X; Ho) = fggix P5(X|ﬁi)a pi € {5?27 ce aﬁflz} (39)
P(x; Hy) = max P5(X8), B; € {Bh, .., B} (40)

Let 7, be the threshold for the Neyman—Pearson test.

- P(X7 Hl)
NP, = m > 12 (41)
P(£%Pa9 if [ is true
Ps5(B8) = . 42
() { P if H, is true (#2)

After the prior probability is obtained, each of the ninegbets posteriofPs(510|X), Ps (5%, |X),
o Ps(BEX), Ps(B%]%), .. ., Ps(84,|x)) is calculated. Each side of the bounding box can be expanded
or shrunk independently based on thedecision rule. Each side size is altered depending on whethe
the new posteriors exceed the original size postefigrequal to one indicates that the size is updated,
while Ly equal to zero indicates that the size remains constant.

0if P5(Bio|X) < P5(s]%)
Ly = 76@6 ﬁa7"'7ﬁd7ﬁa7"'7ﬁd 43
9 { 1 If P5(610|X) > P5(6Z|X) { 11 11 12 12} ( )
Probabilistic PBOD will follow the same rules as determiigiPBOD, which allows each side
to be independently updated as shown in Figli@e The iteration is terminated if no change is
detected. Algorithm 3 denotes the pseudo-code of the pridiabapproach from patch matching to
size smoothing.

4. Simulation Results and Discussion

The accuracy and effectiveness of PBOD were validated oiggly, in which the simulations are
divided into three subsections:

1. Histogram matching performance
2. Deterministic and probabilistic PBOD
3. Probabilistic PBOD, Kernel tracker and SIFT-based teack
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Algorithm 3 Probabilistic PBOD

Require: patch matching
(a) CalculateDp, andDp, for all patches
(b) Find gM® for bothDp, andDp,

(c) Apply Neyman—Pearson to decide between RGB and HSV ce|mace
If H, istrue

Be = argmax Dp,
i
Else
Be = argmax Dp,
i
End If
Ensure: position smoothing
(a) Select colour space basedgn
(b) Determine the step sizé,
(c) Construct the translated pataly, 3, 3¢, 34
(d) For each patch, histogram matching is modelled by Poidgiribution
(e) Apply maximum likelihood for position adjustment
(f) While g1y = ¢ Do
Pro = ar%ngax P(X|fy)
End While
Ensure: size smoothing
(a) Obtain prior probability by using Neyman—Pearson test
(b) Obtain null hypothesig{,
maxyg: Ps(X[5:), Bi € {By, - -, Bia}
(c) Obtain alternative hypothesid;
maxygi P5(X|8;), B; € {Bi, .-, B}
(d) If H, is favoured
select2™? set of priors
Else
selectl*! set of priors
End If
(e) For each patch, obtain posterior probability by usingd3arisk
(f) Normalize all histograms size for fairer comparison

(g) If P5(ﬁ10|X) < P5(ﬁi|X), ﬁz € {6?17---76%76?27---aﬁfQ}

Size remain constant

Else
size is updated based on selected side
End If (h) Reiterate the process until the patch has converged édairt size or

number of iteration
has exceedeg cycles.
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We have selected 150 image pairs from various videos frontu¥ey which contain challenging
scenes between two consecutive frames. Some of the chedléhgt reduce accuracy and precision of
the tracker are illumination changes, shadows, non-rigpigat, blur and partial occlusion. The size
of the frame varies from 32& 240 to 960x 720. The target object is not just a human, but also
includes book, animal, ball and many more for both indoor anidloor environments. However, only
one object is tracked each time, since we limit the algoritbsingle object tracking. Our tracked object
varies in size from frame to frame and from video to video, imck the smallest size ¥ x 6, and
the largest size 1841 x 365. Generally, a bigger tracked object will tend to performtéetue to the
smaller number of candidate patches after patch smootfiingy also tend to overlap with the ground
truth after the patch matching process, which later will Ine-tiuned by position and size smoothing.
For a small size object, the possibility of overlapping issier compared with the bigger object, which
diminishes the advantage of having position and size smmapprocesses. Tableshows the parameters
used by our algorithm. For both likelihood tests, we founttbat0.0001 gives the best result. In order
to get a decent result, it is recommended thatind 7, should be within[0.00005, 0.0005] based on
our repeated simulations, whilg and 7; between0.6 to 0.75 will give good results.7; is used to
determine either to continue the test to HSV space or juptat&®GB space, whil&; is the threshold to
indicate that the object is already out of the frame. So atation value of).7 and above will give good
results for both tests, where less stringent value will teNRGB space while a more stringent value will
favour HSV space. Step size will be determined/pyand we use 0.1 scale of the tracked object’s size.
Smaller step size will give better accuracy but total nundfeterations will be bigger anglice versa.

Te is used to weight the contribution of maximum correlatiod amerage correlation for size smoothing
procedures in deterministic PBOD. We reduced the effecepeddency on maximum correlation alone,
as sometimes it may be obtained from noisy or blur patch byngcthe averaging components.5 is
chosen as it gives good balance between both componentdst\aelyze the effect of the histogram’s
size (V, = 25,50, 75) where various methods of histogram matching are used fichpaatching as
shown in Table.

Table 1. Parameters used by our algorithm.

Parameter Value

m 0.0001
o 0.0001
T 0.6
T 0.6
T 0.7
Ta 0.7
T 0.1
Ts 0.5

Ny 50
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Table 2. Comparison of the average distance error among histogratthing methods:
A: correlation, B: chi-square, C: intersection, D: Bhaltaxyya and E: Poisson for various
histogram’s size.

Method A B C D E

Total no. of histogram’s bin: 25 bins

Average Rp (%) 26.51 22.35 26.88 22.37 19.16
Total no. of histogram’s bin: 50 bins

AverageRp (%) 28.62 19.93 20.87 20.17 16.36
Total no. of histogram’s bin: 75 bins

Average Rp (%) 2111 17.27 17.84 18.04 15.02

The algorithm performance is measured by calculating trei@an distanc€ between the centroid
(Q:,) of the simulation result and the manually determined gdawuath (2.,...;,) of the detected object.

&= \/ sim truth (ngm Q?Tuth) (44)

In terms of average processing speed, the method byelvah performs the best with one frame
per second (fps), followed by deterministic PBOD, prokiabd PBOD and SIFT-based tracker with
0.27 fps, 0.23 fps and0.22 fps respectively. The method by Yahal. has the lowest computational
burden, since the search scope is limited to the neighbodrtata only, while the other three methods
search the whole frames selectively by finding possible &mtp. Computational time for SIFT-based
approach is slower because of the complex histogram of gmadind the longer descriptor used
for matching as compared with PBOD, which uses simple histngmatching. Tabl& shows the
computational limit based on Big-O notation for all four ineds.

Table 3. Big-O notation for the algorithms.

Method T(n)

Deterministic PBOD 1 O(n?®) + 7 O(n?)
Probabilistic PBOD 2 O(n?)

Yanet al. 30(n*) +80O(n)
SIFT based approach O((2n)?) + 2 O(n?)

4.1. Histogram Matching

In this subsection, we demonstrated that the most apptephiatogram matching for PBOD is
by using Poisson modelling. Partial of the probabilisticIB which is without position and size
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smoothing is used to validate the best scheme for histogratolimg. Five methods have been tested
on 150 image pairs for various image conditions, includilugmination changes, shadow, non-rigid and
homogenous texture object. Those five methods are:

Correlation distancd)..
Poisson distanc@)p.

Chi square distanc®)y-.
Intersection distancé®);.
Bhattacharyya distancBy.

a ks wbdhe

Correlation distance is based on Bradski and Kaehl8rag in EquationsX1) and (3), which have
been applied in deterministic PBOD. Poisson distance has imeplemented in probabilistic PBOD as
in Equations 18) and (9), which is based on Zulkifley and Moraf]]. Chi-square distance is taken
from Schiele and Crowleyg|, where the zero indicates a perfect match. Similar to 8ac3i.2.1, let
n andm denote previous and current frames’ histograms respégtive; is the value ofi bin of
the current frame histogram where each histogram is nozethliirst before matching process. After
histogram normalization, the range for bathandm; is [0, 1]. In this paper, we have tested thr&g
values, which ar@5, 50 and75.

For a 1-dimensional histogram:
n; —m;
Daz(n,m) =) {Q} (45)
and for a 3-dimensional histogram:

b b b 2
Mgk — Mij,k)
Dglnm) = 3. 303 [t o] (46)

i=1 j=1 k=1

Intersection distance is based on the work by Swain and Bg®} with the output range of [0,1].
It is obtained after normalization process with respech®tbtal number of pixels in the patch. The
method accumulates the minimum bin values between the tstodrams as shown in Equatiod&’)
and 48).

For a 1-dimensional histogram:

Dz,(n,m) me ng,m;) (47)

1

and for a 3-dimensional histogram:

Ny, Np Ny

Dz, (n,m) ZZme Nijes M j k) (48)

i=1 j=1 k=1

Early formulation of Bhattacharyya distance can be tra@adkibo [LO], while current implementation
is derived from Bradski and Kaehlef][ The highest distance, one, indicates a total mismatche\ite
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lowest score, zero, shows the perfect match.
For a 1-dimensional histogram:

Ny
Dp,(n,m)= |1— Z = — (49)
=1 \/§:¢;17”-§:¢£17ni

and for a 3-dimensional histogram:

\/nijk-mijk
Ds(nam>: 1_§:§:§: (50)
° i=1 j=1 k=1 \/23 A% 21 Mg ke E: E: E:k 1 Mgk

Table 4. Centroid distance for histogram matching methods: A: dati@, B: chi-square,
C: intersection, D: Bhattacharyya and E: Poisson.

. _ Number of Image Pairs
Distance Error (Pixel)

A B C D E

0-9 50 50 50 50 55
10-19 46 55 53 56 51
20-29 19 19 17 18 21
30-39 9 7 17 7 8
40-49 10 8 9 8 7
50-59 6 7 6 6 7
60-69 2 0 4 O 0
70-79 3 2 2 3 1
80-89 0O 0 O O 0
90-99 2 1 1 1 0
>99 3 1 1 1 0

Table 4 shows the error distance among the five methods of histogratohimg. The centroid of
the output patches is used as the reference point to cadhiaterror. We ran the algorithm for both
colour models (RGB and HSV), and the minimum distance isrtalece the algorithm for colour space
selection is similar for all the methods. The results shaat the most suitable histogram matching for
PBOD is achieved by using Poisson modelling. Using the Baiskstance, 36.67% of the image pairs
achieved an error distance of less than 10 pixels, whilegbejust managed to get 33.33%. The most
unsuitable method is the correlation distance, which ha&gtivrong detections with error more than 100
pixels. Figurell shows the cumulative distribution of the error distance agnine matching methods.
This again proved that Poisson modelling is the best for PB@D the steepest curve followed by
Bhattacharyya, Chi-square, Intersection and correlatiethod.
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Figure 11. Cumulative distribution of error distance among the hishog
matching methods.
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Distance error relative to the patch siRg, is also calculated to show the magnitude of the distance
error compared with the object size. The average distamoea@&mong the methods is shown in TaBle
We verify the matching test by using three sizes of the histogwhich are 25, 50 and 75 bins. For every
bin’s size, Poisson test results in the lowest averagerdistarror, while correlation method performs the
worst with the highest error for each size. Intersectionscuare and Bhattacharyya test obtains almost
similar error given the same histogram’s size. The table@geals that the error becomes smaller as the
total number of bins increases except for the correlatiothote The reason is that the distinguishing
factor between two similar histograms is widened as the mirmabbin increases, which leads to more
unique feature. Thus, the histogram matching tests have mrobabilities of finding the right patch.
However, there is no free lunch since the computational tmeeases as the number of bins increase.
From our experience, 50 bins are the most suitable setup gieestradeoff between computational time
and accuracy, since the algorithm improves by one percdntfa@nan increment of 25 histogram'’s bin.

D
Rp = max{ﬁﬂ}ew, ﬁgew} x 100% (51)

4.2. Deterministic and Probabilistic PBOD

This subsection is intended to prove that probabilistic PB@erforms better than deterministic
PBOD. 120 image pairs are used to verify the performanceréifice. Again, Equatior{) is used
to calculate the error distance of the centroid. Tab#hows the comparison of error distance between
probabilistic and deterministic PBOD. Probabilistic PB@ianages to obtain 48.33% detection with
less than 10 pixels error while the deterministic approaeimages only 42.50%. Mostly, probabilistic
PBOD obtains a better result during illumination changesteministic PBOD uses the hierarchical
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approach where RGB space is searched first and if the resaltgyut is within the accepted region, no

HSV space will be searched. On the other hand, probabiB©OD searches both spaces in parallel,
where the best output is selected. If deterministic PBORiobkta reasonably good result in RGB space,
it will not search HSV space where it might obtain better rhatg. Thus, statistical PBOD manages to
obtain better matching in challenging scenes.

Table 5. Comparison of the centroid distance between determiraatiqrobabilistic PBOD.

Number of image pairs

Distance error (pixel)
Deterministic  Probabilistic

0-9 51 58
10-19 31 43
20-29 14 12
30-39 4 2
40-49 2 2
50-59 4 2
60-69 0 1
70-79 2 0
80-89 2 0
90-99 1 0
>99 9 0

Moreover, no error of more than 99 pixels has been observatiégrobabilistic PBOD while there
are nine image pairs for the deterministic PBOD. The avedigfance error relative to the output patch
size is given in Tabl®, which is derived via Equatiorb(). Figure12 shows the cumulative distribution
of the error between both methods. It shows that 50% of thectiens for probabilistic PBOD have less
than 11 pixels error distance, while deterministic PBODuregs at least 14 pixels error. Another reason
for probabilistic PBOD better performance is due to Poissmuelling where we proved before that
it performs the best for PBOD as compared with correlatiotchiag in deterministic PBOD. Poisson
matching performs better during a blur case because it doiepumish severely neighbourhood shift
in histogram’s value. The procedures of position and sizeahing of probabilistic PBOD are in
the sequential manner where the first step of the patch’stdireis very crucial, while probabilistic
PBOD calculates the whole search space first before goingamy direction. The main downside of
searching the whole possible space is longer computatiomal Figurel3is an example of performance
difference between probabilistic and deterministic PBO@er sudden illumination change. Figuiré

shows that both PBOD schemes work well in detecting the é@ddbject even if the object appearance
is very blurred.



Sensors 2012 12 15664

Table 6. Comparison of the average distance error between detestiiaind probabilis-

tic PBOD.
Method Deterministic PBOD Probabilistic PBOD
AverageRp (%) 21.03 10.03
Figure 12.  Cumulative distribution of error distance between prolisis and
deterministic PBOD.
Deterministic PROD Probabilistic PEOD
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Figure 13. Deterministic and probabilistic PBOD under illuminationhange:

(a) Deterministic PBODI§) Probabilistic PBOD.
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Figure 14. Deterministic and probabilistic PBOD for blur object) ©eterministic PBOD
(b) Probabilistic PBOD

4.3. Probabilistic PBOD, Kerndl Tracker and SIFT-based Tracker

In this section, we compare probabilistic PBOD with two oth@ckers,i.e.,, kernel tracker and
SIFT-based tracker. We have tested the algorithms on 12@ péivideo sequences that contain
moving objects in various frame sizes. Kernel tracker regmés the mean shift approach while
SIFT-based tracker represents the feature-based trapgenach. Kernel tracker by Yagt al. [18]
is chosen as the benchmark due to close similarity to ouroagpr The method is based on several
possible sub-templates, which is built optimally befonapéate voting is performed to select the best
match. Their method also performs size smoothing detestizaily by varying the template size on
the scale of [0.95, 1.05]. On the other hand, SIFT-baseddras built to compare our algorithm to
feature-based tracker by tracking matched point in theemuts/e frames. The four corners of PBOD
bounding box are used as the reference points for centrdedilaion. The centroid for SIFT-based
tracker is generated by constructing a bounding box, whses the extreme points in four directions as
shown in Figurel5. Then, the generated bounding box corners are used for timkcalculation.

Figure 15. Generating centroid for the SIFT-based track®rNlatched points of interest
(b) Constructing a bounding box)(Centroid location is indicated by the blue star.
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Table7 shows the distance error analysis among the methods. RiisbaPBOD performance is the
best with 43.3% of the detected object centroid having less 1.0 pixels distance from the ground truth
centroid. Kernel tracker manages to obtain 37.5% detewutitmless than 10 pixels distance error while
the worst is SIFT-based tracker with just 33.3% detectioverAge distance error relative to the patch
size (Equationg1)) is given in Table8, where the error rate of probabilistic PBOD is just 13.95%l&vh
kernel tracker has 15.88% and SIFT approach has 35.93%.urhelative error distance is given in the
Figure 16, where 50% of the testbed has less than 13 pixels error distan the probabilistic PBOD
while the kernel and SIFT threshold for 50% accuracy are 245dnpixels respectively.

Table 7. Comparison of the centroid distance among Probabilisti©BBkernel tracker and
SIFT-based tracker.

Number of Image Pairs

Distance Error (Pixel) —
Probabilistic PBOD Kernel Tracker SIFT-Based Tracker

0-9 52 45 40
10-19 30 34 19
20-29 19 24 9
30-39 13 6 3
40-49 3 2 6
50-59 0 5 8
60-69 1 1 2
70-79 0 0 0
80-89 0 0 2
90-99 0 0 2
>99 2 3 30

Table 8. Comparison of the average distance error among the PBOMeK&racker and
SIFT-based tracker.

Methods Probabilistic PBOD Kernel Tracker SIFT-Based Tracker

AverageR p (%) 10.03 15.88 35.93

The main reason for our better performance compared witmiétbod by Yaret al. is due to wider
search area. Our method built the candidate patches agtrddcations throughout the whole frame,
while the sub-templates are built on limited search spddbelobject movement is fast, the search area
must be wide enough, or else the candidate template or pallamotvbe generated. Another limitation
for the method by Yamt al. is that the size variation is assumed to be constant in @ttions. The size
of the object may increase or decrease in one direction adly as for the case of a human extending
his hand, where the size increment will be on that partichkand movement. Our method permits
the size smoothing to be performed at certain direction,amhich explains better precision. On the
other hand, a tracker based on feature detection such asv@8liFiot work well if the tracked object
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has a non-rigid shape. SIFT’s signature is built by collegthe neighbourhood data into a histogram
of gradient where any background change will heavily affectvalue. It also performs poorly if the
image is blurred and has shadow noise since the keypoirdtsigéor will be different and no match is
found. This affects the detection and matching accuracheféatures, which will result in inaccurate
observation. Another limitation of SIFT-based trackerisder computational time, where it is heavily
dependent on the number of points detected.

Figure 16. Cumulative distribution of error distance between probstic PBOD, Kernel
tracker and SIFT-based tracker.

140

120

100

BO

60

Cumulative data

440

20

5 15 25 35 45 55 65 75 B5 85 105

Distance error

Kernel Tracker e G |FT-based tracker

Probabilistic PBOD

5. Conclusions

In this paper, we have shown that probabilistic PBOD worksebeompared with the deterministic
approach in obtaining observation for single object tragki Probabilistic PBOD registered 48.33%
detection with less than 10 pixels error while the deterstiaiapproach only achieved 42.50%. Both
PBODs work well in challenging scenes, especially for thebpgms of low image sharpness, moderate
deformation, illumination change, blur, size variatiomdromogeneous texture, by fusing feature- and
template-based approaches. Probabilistic PBOD alsonpesfbetter than kernel tracker by Yanal.
and SIFT-based tracker. The main novelties of probalmlBBOD are (1) a probabilistic approach
to patch-based object recognition, (2) modelling histograatching by using Poisson and Gaussian
distributions, and (3) statistically-based position azd smoothing for better detection accuracy. Robust
observation detection allows the algorithm to improve kreetention, especially during challenging
scenes as the track can still obtain a measurement. Thensysin be further improved by implementing
a stereo vision system as implemented by Marron-Roreesh [38], which results in better detection
and tracking accuracy as compared with a single cameransyste
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