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Abstract: This paper presents a new pattern recognition approach for enhancing the 

selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this 

approach was to accurately classify an odor using pattern recognition in order to enhance 

the selectivity of gas sensor arrays. This was achieved using an odor monitoring system 

with a newly developed neural-genetic classification algorithm (NGCA). The system 

shows the enhancement in the sensitivity of the detected gas. Experiments showed that the 

proposed NGCA delivered better performance than the previous genetic algorithm (GA) 

and artificial neural networks (ANN) methods. We also used PCA for data visualization. 

Our proposed system can enhance the reproducibility, reliability, and selectivity of odor 

sensor output, so it is expected to be applicable to diverse environmental problems 

including air pollution, and monitor the air quality of clean-air required buildings such as a 

kindergartens and hospitals. 

Keywords: gas sensor array; odor monitoring; pattern recognition; artificial neural 

networks (ANN); genetic algorithm (GA); neural-genetic classification algorithm (NGCA) 
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1. Introduction 

Gas sensors are used widely in many different fields such as the prevention of natural disasters, 

environmental monitoring of automobile industry outputs, and other pollution-related industries [1–4]. 

Many types of gas sensors are used for gas detection. In particular, a semiconductor gas sensor is used 

to detect specific gases based on the variation in resistance or thermal conductivity due to absorption 

or desorption on the surface of an oxide semiconductor [5,6]. Semiconductor gas sensors are rapid, and 

they have simple structures with low manufacturing costs. However, they have several weaknesses in 

terms of accuracy and selectivity. Thus, achieving stability and reliability while maintaining the 

advantages mentioned above are very important requirements [7]. Improvements in stability, high 

resolution, repeatability, and economic feasibility need to be implemented to fulfill these  

requirements [8–15].  

In [16], Fau et al. described a new and promising method for implementing micromachined silicon 

gas sensors, which also had very stable baseline resistance and gas sensitivity over time. In [17], the 

features of periodically measured data derived from thermal variation in a system based on a sensor 

were extracted using the fast Fourier transform (FFT), which were used to estimate a single gas 

concentration. In [18], the discrete wavelet transform (DWT) method was used to classify a mixture of 

gases. In [19], improvements in sensor selectivity and accuracy were achieved using a combination of 

a sensor array with a neural network. The signals from multisensors were evaluated using principal 

components analysis (PCA) [20,21] and artificial neural networks (ANNs), while the selection of 

possible features using a genetic algorithm (GA) facilitated classification in [22]. Environmental 

applications such as pollution monitoring and air quality control [23–25] have steadily attracted 

considerable attention because of the growing need for environmental protection in recent years. In 

addition, many recent studies have reported successful applications based on ANNs [26–29] and  

GAs [30,31], which were used in this study. Other pattern recognition approaches have been 

suggested, such as a kernel method, the drift compensation method, and a merged method based on 

maximum margin classification and regression [7,32,33]. Pattern recognition has also been performed 

based on the transient features of a metal oxide sensor’s response to a constant concentration of 

analytes [12]. This feature is available much earlier than the standard steady-state feature, but it 

delivers comparable results in quantification and identification problems. 

In this study, we build a gas monitoring system to process sensed signals and to identify noxious 

gases. The odor monitoring system was designed to detect the patterns in the features of certain gases 

using a pattern recognition method that was developed for accurate data classification while online 

data learning was conducted for accurate prediction. A neural-genetic classification algorithm (NGCA) 

is introduced for pattern recognition; this algorithm integrates GA and ANN and delivers improved 

reliability and selectivity during pattern extraction for noxious gases. We performed data visualization 

via PCA [34] and verified our proposed system by comparing the results obtained using ANN, GA, 

and NGCA. The experimental results showed that our proposed system had a faster response speed and 

higher selectivity with the gas sensor. 
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2. Materials and Methods 

2.1. Odor Monitoring Systems and Data Preprocessing  

Odor monitoring systems that use gas sensors require continuous observation because of the 

presence, movement, or disappearance of odors. In this study, we aimed to construct an environment 

management system for the rapid detection of odors and for finding fundamental solutions by 

analyzing the data and tracking the source. In general, subtle fabrication processes and detailed signal 

processing techniques can guarantee high selectivity, but with a high cost [35]. To deliver high 

selectivity with a low cost, we developed the overall procedure for our proposed system shown in 

Figure 1. 

Figure 1. Pattern recognition system structure.  

 

Our proposed pattern recognition procedure consists of data signal acquisition from the sensor 

array, signal preprocessing with smoothed moving average (SMMA), and NGCA (Figure 1). Signal 

preprocessing and SMMA facilitate data smoothing, noise elimination, and filtering. There is no 

perfect single learning algorithm, so we developed NGCA by integrating GA and ANN. Figure 2 

shows the detailed procedure used by our system. Our system consists of SMMA and feature 

extraction, NGCA (GA function and an ANN function), and an evaluation procedure. The SMMA and 

feature extraction processes perform following two functions: (1) the preprocessing of raw data and  

(2) extracting the specific pattern variation in the data. SMMA identifies and removes noise from the 

measured gas sensor data and returns the mean value while eliminating the oldest data and adding the 

newest data over time, so the filtering result varies with the time interval. As mentioned earlier, the gas 

sensitivity problem is generally not solved using a single identifier, so our proposed NGCA uses 

multiple specialized identifiers to improve the classification performance. The GA function, i.e., the 

first process in NGCA, extracts the data with high fitness after noise filtering. The ANN function was 

implemented using the back propagation algorithm. The final model is constructed based on datasets 

collected during repeated experiments under the same conditions, e.g., sensors, materials, and room 

temperature. Finally, the evaluation procedure compares changes in the rate of the sensing data and the 

new value (final sensing) returned by NGCA in the databases. The NGCA outputs are saved in a 

database to allow comparisons with the true values. 

  



Sensors 2012, 12 16265 

 

 

Figure 2. Flow of the pattern recognition algorithm used for NGCA. 

 

2.2. Feature Extraction and Classification  

The selection of a characteristic pattern vector is an important but difficult task when analyzing the 

odor patterns obtained from gas sensors. In addition to the choice of pattern recognition algorithm 

selected, the individual features that form a pattern have a decisive effect on the recognition rate. The 

analysis of the data obtained from gas sensors is a challenging task because these sensors commonly 

interact with many other gases that have similar molecular structures. Therefore, we developed a 

pattern recognition system based on NGCA, which can classify noisy gas data. The steps in the pattern 

recognition algorithm are as follows: 

Generate the initial population for GA 

Execute the GA algorithm 

Execute the ANN algorithm 

Execute the evaluation procedure  

2.2.1. Generation of the Initial Population for GA  

The initial population used by the GA is created using the following procedure with the original 

values from eight sensors. The tangent gradient (change in rate of the sensors) is obtained after signal 

preprocessing, and it is used by the GA to create new data with a high fitness value. Eight different 

gases (O3, LPG/LNG, NOx, alcohol, smoke, VOC, CO, and NH3) are used as the input features to 

express one chromosome in the GA. All of the sensor values are normalized as real numbers between 0 

and 1 by dividing them with the saturation value (i.e., the maximum value).  
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2.2.2. GA Algorithm 

The fitness, f(x), is used to decide that the preprocessed data in the GA is well noise-reduced. Each 

data point is assigned a particular fitness value based on GA chromosome selection criteria. The fitness 

can be expressed as follows: 

f(x) = x + K * | sin(32x) |, 0 ≤ x < π (1) 

K = window − size 
(1) 

where x is a candidate solution and K is a constant that represents the window size determined during 

the signal preprocessing stage. Equation (1) returns a high score for a large x and a low score for a 

small x. If the fitness value is less than a fitness threshold (=0.5), the GA repeats the genetic operations, 

including selection, crossover, and mutation, to produce a high fitness. 

We adopt an elitist preserving strategy, in which the strongest individual in a population is passed to 

the next generation without any changes. Crossovers are used to generate new data where the values of 

each chosen point selected are exchanged. There are several different types of crossover method, e.g., 

one point crossover, multipoint crossover, and uniform crossover. The crossover points used during 

crossover operations are selected randomly.  

2.2.3. ANN Algorithm  

The gradient generated by the GA is passed to the ANN. After the ANN is built, its outputs are 

compared with the user-defined thresholds. If they satisfy the threshold, the data features are extracted 

using the evaluation procedure and are compared with the data stored in the database during the 

evaluation. Otherwise, the ANN is rebuilt according to the following procedures. The connection 

weights are reinitialized, and the learning pattern pairs are selected. The learning rate and error limits 

are set by changing the connection weights as appropriate. The parameters are set as listed in Table 2. 

After the parameters have been set, the output and error values of the hidden and output layers are 

calculated. An error is calculated by comparing the target value with the output value. In our 

experiments, we used Equation (2) with a revised target value that was suitable for changing the 

connection weight to generate a target value, as follows: 

𝑑 =
  

 𝑌𝑖−𝑃𝑖 

𝑌𝑚𝑎𝑥

𝑚
𝑖=1  

𝑚
 

(2) 

where m is the total data number, Ymax is the output of the max value, Yi is the i-th output, and pi 

represents the i-th predicted value. 

The target value is generated using the difference between the output (y) and the predicted value 

(p). The obtained target value is compared with the output value to calculate the error. The error 

between the output and hidden layers is calculated and learned. The connection weight generated by 

the learning evaluator is saved as new data. This step is repeated until the threshold and the learning 

evaluation results are satisfied. 

After the learning evaluation, the gradients (change in rate of the sensors) of the inputs and the test 

data are estimated as follows (calculate the gradient whenever t is a multiple of K): 
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• The gradient of the test data  

 𝑇𝑡𝑑  𝑡 =
(𝑆𝑡𝑑  𝑡 − 𝑆𝑡𝑑  0 )

𝑡
 (𝑡 ≤ 𝐾) 

and 

 𝑇𝑡𝑑  𝑡 =
(𝑆𝑡𝑑  𝑡 − 𝑆𝑡𝑑  𝑡 − 𝐾 )

𝐾
  𝑡 > 𝐾  

(3) 

 where 𝑇𝑡𝑑  𝑡 = gradient of test_data, Std(t) is the SMMA for the interval t, and K is the window size.  

• The gradient of the input 

 𝑇𝑖𝑑  𝑡 =
(𝑆𝑖𝑑  𝑡 − 𝑆𝑖𝑑  0 )

𝑡
 (𝑡 ≤ 𝐾) 

and 

 𝑇𝑖𝑑  𝑡 =
(𝑆𝑖𝑑  𝑡 − 𝑆𝑖𝑑  𝑡 − 𝐾 )

𝐾
  𝑡 > 𝐾  

(4) 

where 𝑇𝑡𝑖𝑑  𝑡 = gradient of Input_data, Sid(t) is the SMMA for the interval t, and K is the window size. 

2.2.4. Evaluation Procedure  

The evaluation procedure was designed to determine the performance of the NGCA. The evaluation 

procedure compares the sensor values (unseen) for eight gases saved in the database with the data 

created using the NGCA by computing the success rate using a similarity value. The following 

evaluation procedure was used to determine the identity of the sensed gas: 

 Step 1: Data from the input sensors is used for initialization by matching the database data. 

 Step 2: Evaluate the data from the input sensors and the database data. 

  Step 2_1: Calculate the gradient (rate of change of the sensing data) measurement form  

epoch to epoch. 

  Step 2_2: Compare the gradient and the final sensing data in the database. 

Step 2_3: Calculate the success rate. 

Step 3: If at least six among eight gas sensors have the same pattern and more than 80% in all 

epoch, a successful identification is performed.  

3. Results and Discussion 

3.1. Gas Sensor Set Up 

We used an array module containing eight different types of gas sensors to measure the odor. If the 

target gas was mixed with other gases, the gas sensor array containing different sensors was more 

efficient when measuring a specific gas than a single element. All of the experiments were performed 

indoors to minimize variation in the environmental conditions, e.g., temperature, humidity, and the 

natural drift of the semiconductors. We successfully improved the recognition rate using NGCA. At 

the same time, it provided more reliable quantitative data on the gas. In the experiment, we used the 

following gases: O3, LPG/NG, NOx, alcohol, smoke, VOC, CO, and NH3. The output signals from the 
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sensors entered the analog multiplexer. Table 1 lists the specifications of each sensor. The output 

signal from each sensor could be controlled using variable resistors in the gas sensor array module. 

Table 1. Specifications of the gas sensors.  

Sensor Property Detecting 

Materials 

Heater 

Voltage 

Circuit 

Voltage 

Road 

resistance 
Power 

Sensor Sensor Model 

O3 MICS-2610 O3 5.0 V Max. 24 V Variable 833 mW 

LPG/LNG GSLS-11 Smoke, Alcohol, Butyl acid 5.0 V 5 V 100 kΩ 680 mV 

NOx GSNT-11 Smoke, Alcohol, Hydrogen, CO 5.0 V 420 mW Variable 220 mW 

Alcohol MQ-3 Benzene, CH4, Hexane, LPG, CO 5.0 V 5 V ± 0.1 Variable less than 750 mW 

Somoke GSAP-61 

HC, VOC, Methane, Butane 

Alcohol, TMA, Toluene, 

Acetaldehyde 

5.0 V 
Less than 

12.0 V 
Variable Less than 760 mW 

VOC GSBT-11 
Alcohol, Butyl acid, Hydrogen , 

Smoke, HC, VOC 
5.0 V 5 V 2 KΩ 360 mW 

CO GSET-11 
Alcohol,  Smoke, Hydorgen 

Butane, HC 
5.0 V 5 V 400 kΩ 450 mW 

NH3 TGS-826 Iso-butane, Hydrogen, Ethanol 5.0 V Max. 24 V Variable 833 mW 

3.2. System Set Up 

The sensing system consisted of a smartphone, a sensor array module, and a server computer. The 

sensor array module contained a ZigBee wireless communication module and eight different 

commercial sensors. The signals from the eight different sensors were ADC-processed by the MUX at  

1 Hz. The digitized sensing values were transmitted to the server computer via ZigBee communication. 

This system used ZigBee communication because it uses very small power and a relatively small data 

size is needed for processing. The sensor computer used the pattern recognition module of the NGCA, 

as shown in Figure 3. The server computer performed the pattern recognition process, and the results 

were sent to users’ smartphone via Wi-fi or using the WCDMA communication protocol so that they 

could recognize the identity of the sensed material. The smartphone used was a Nexus One unit 

(Google Company) with an Android OS while a laptop PC was used as the server.  

Figure 3. Detection system based on a gas sensor array and a smartphone. 
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3.3. NGCA Parameters  

Features were extracted from the filtered data using the NGCA. Of the 50 events measured, 30 

events were used as the training dataset whereas the remainder were used as the test dataset. The data 

were used to train the ANN, which was trained using the back propagation algorithm. We used Matlab 

for the computer simulation. Table 2 lists the parameters used in the experiment. 

Table 2. Parameters used in the experiment.  

[a] ANN Parameter  [b] GA Parameter 

Parameter Value  Parameter Value 

Input 

Hidden layer 

Output 

8 

flexible 

1 

 Population size 

Generation  

Crossover Probability 

1,500 

200 

18% 0.18) 

Learning Rate 0.01  Mutation Probability 1% (0.01) 

Momentum 0.2  Length of Chromosome flexible 

Learning goal 0.0002    

3.4. Experimental Results  

Food such as meat, fish, and shellfish decay rapidly and may cause food poisoning. This experiment 

evaluated the relationship between the odor parameters and the decay time. Samples of fish and meat 

were allowed to decay at room temperature. Odor data were collected from the decaying samples and 

stored in the database each day while the food was kept at room temperature for four days. We 

combined the absolute value of the odor strength and the differences in the measurements during 

pattern recognition. This approach aimed to take advantage of the different measurements from the gas 

sensors because of their different sensitivities to various substances. Figure 4 shows the gas sensor 

outputs for beef and mackerel, where there were similar patterns for the two substances. The x-axis and 

the y-axis represent the time (s) and voltage, respectively.  

Alcohol, VOC, smoke, and O3 sensors were used to assess the decomposition of meat. In  

Figure 4(a–c), different responses of the sensors and the different mackerel decomposition rates are 

shown where the selectivity of the sensors was too low for the mixture gas. Similar results to the fish 

experiment were achieved with meat, which are shown in Figure 4(d–f). 

In the experiment, we obtained 1,000 datasets, each of which contained an array of sensor values 

during a particular time frame (1–1,000 s). We repeated this experiment 50 times using the same fish 

and meat as in the previous experiment. A single dataset contained the series of values from the eight 

sensors at a specific time. Next, we artificially created a single dataset by averaging the 1,000 

observations in the dataset for each experiment. Figure 5 shows the distribution of 30 training datasets 

in terms of three principle components derived from the PCA. The gas data are the averaged extracted 

patterns from the decay of fish and meat, which were measured for four days. Figure 5 shows distinct 

data distributions of fish and meat. Figure 6 shows the average eigenvalues for each feature in the  

30 training datasets. The eigenvalue of the first feature was significantly higher than that of the  

second feature. 
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Figure 4. Comparison of the output of beef and fish (mackerel). (a) Fresh fish.  

(b) Decayed fish (1 day). (c) Decayed fish (2 days). (d) Fresh meat. (e) Decayed meat  

(1 day). (f) Decayed meat (2 days). 

 

Figure 5. PCA plots of the 30 training datasets showing the three principal components 

derived from the PCA: (a) fish and (b) meat.  

  

Figure 6. Average eigenvalues for the 30-sample training dataset: (a) fish and (b) meat.  
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To identify the substances detected, the data were compared with the data in the database. The 

measured outputs from the same sensors at room temperature with the same parameters were analyzed 

using various algorithms including existing GA and ANN methods, as well as the ANN in NGCA and 

the GA in NGCA (our proposed NGCA methods). To ensure a valid comparison of algorithms, the GA 

and ANN methods included in the MATLAB toolbox were utilized. We also tested the ANN in NGCA 

and the GA in NGCA, i.e., our proposed NGCA methods, which were modified from the GA and 

ANN in MATLAB. Table 3 summarizes the performance of the algorithms, as the success rate with an 

unknown test substance. 

Table 3. Results using ANN, GA, ANN in NGCA, GA in NGCA, and NGCA. 

Comparison ANN GA ANN of NGCA GA of NGCA NGCA 

Result (%) 82% 91% 92% 72% 95% 

The success rate was 82% with ANN, 91% with GA, 92% with the ANN in NGCA, 72% with the 

GA in NGCA, and 95% with NGCA. This showed that the method proposed in this study delivered the 

best matching performance. We confirmed that the mixed ANN and GA method gave a higher success 

rate than ANN or GA alone. Thus, our proposed algorithm delivered accurate results based on pattern 

extraction with a high success rate.  

4. Conclusions 

In this study, we have developed an odor monitoring system that delivered improved pattern 

recognition using our NGCA approach and a semiconductor gas sensor array to detect harmful gases 

and environmental hazards. Our aim was to mitigate the selectivity and reliability problems that occur 

when measuring multiple gases simultaneously. We achieved this aim by using a pattern recognition 

algorithm that combined ANN and GA, which we refer to as NGCA. 

 Our novel NGCA pattern recognition module can extract patterns with greater reliability. The 

proposed system is an intelligent odor monitoring system for monitoring various odors that occur in 

hazardous situations. We tested the performance of our system by monitoring the odors of meat and 

fish samples, which were maintained at room temperature for four days. We found that the data 

patterns of fish and meat varied every on a daily basis. To validate the proposed method, we compared 

the success rate using ANN, GA, and NGCA. Our proposed method, NGCA, delivered a higher 

success rate than GA and ANN. We suggest that our proposed pattern perception approach may be 

applied to various environmental problems such as air pollution. 
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