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Abstract: In case of an environmental accident, initially available data are often 

insufficient for properly managing the situation. In this paper, new sensor observations are 

iteratively added to an initial sample by maximising the global expected value of 

information of the points for decision making. This is equivalent to minimizing the 

aggregated expected misclassification costs over the study area. The method considers 

measurement error and different costs for class omissions and false class commissions. 

Constraints imposed by a mobile sensor web are accounted for using cost distances to 

decide which sensor should move to the next sample location. The method is demonstrated 

using synthetic examples of static and dynamic phenomena. This allowed computation of 

the true misclassification costs and comparison with other sampling approaches. The 

probability of local contamination levels being above a given critical threshold were 

computed by indicator kriging. In the case of multiple sensors being relocated 

simultaneously, a genetic algorithm was used to find sets of suitable new measurement 

locations. Otherwise, all grid nodes were searched exhaustively, which is computationally 

demanding. In terms of true misclassification costs, the method outperformed random 

sampling and sampling based on minimisation of the kriging variance.  

Keywords: iterative sampling; adaptive sampling; infill sampling; decision analysis; 

environmental monitoring; geostatistics; mobile sensors  
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1. Introduction 

In case of calamities such as the major Fukushima Daiichi nuclear power plant accident in Japan [1] 

or a recent fire at a chemical plant in The Netherlands during which large quantities of polycyclic 

aromatic hydrocarbons were released, authorities have to quickly decide whether or not people living 

in the vicinity of the source of pollution have to be evacuated. After the incident, field crops grown in 

the area affected by deposited pollutants may have to be discarded because they are unsuitable for 

human consumption, while soil remediation may be needed to allow future cultivation [2]. Since 

accidents are rare, usually there is no dense monitoring network in place so that decision making has to 

rely on information initially obtained from a small sample. This situation may improve when  

non-covered regions are ―filled in‖ by additional sampling [3,4] e.g., using mobile sensors.  

The consequences of decisions made about local safety are costly. On the one hand, evacuating and 

cleaning sites are expensive tasks and these costs can be avoided whenever locations are safe. On the 

other hand, not cleaning or evacuating unsafe areas will put the population at risk, which typically 

involves even higher costs at later stages. Thus, the problem faced is twofold: (1) deciding between 

safe and unsafe areas and (2) deciding about when and where to sample so that that the obtained data 

optimally support decision making.  

In contrast to [5,6], who aimed to find targets within a search area, our objective is to create a 

complete map of some environmental variable over a study area. Given this objective, our focus is on 

model-based rather than design-based approaches [7]. While there is a wealth of publications on 

(adaptive) spatial sampling for mapping, most evaluation criteria used so far did not consider the 

sample optimisation problem in direct connection to the decision problem (1) listed above. Typically, 

optimisation has focused on the quality of the estimated covariance function [8–10], minimisation of the 

variance of the prediction error [8,11,12] or it used some information entropy based criterion [13–15]. 

Note that the latter criteria depend on the distance between data points rather than the data values 

acquired, while criteria related to the covariance function only indirectly depend on the data values. 

Recent exceptions are [16–18]. The criterion used by Peyrard et al. [18] implicitly assumes equal costs 

for class omissions (false negatives) and false class commissions (false positives). Heuvelink et al. [16] 

assigned unequal costs to the two types of errors but their method requires extensive Monte Carlo 

simulation for computing the expected costs associated with sampling designs within an iterative 

procedure for searching the optimal set of sample locations. This renders the method computationally 

very demanding. In contrast, Ballari et al. [17] employed indicator kriging for computing probability 

maps of presence (above critical threshold) and absence (below critical threshold) of some 

environmental variable and applied the concept of expected value of information (EVOI) [19–21] to 

decide upon the best sampling locations. EVOI expresses the benefit expected from data collection 

prior to actually doing the measurements [22–24]. Computational complexity in this case mainly 

involves the search for the best locations while the computation of the expected costs is relatively fast.  

While the work of Ballari et al. [17] demonstrated the use of EVOI assessing a static phenomenon 

using measurements of a single sensor per time step, this paper aims to extend their methods by:  

(1) allowing for simultaneous measurement by multiple sensors and (2) supporting the mapping of  

spatio-dynamic fields. We first describe the EVOI method including its extensions and underlying 

geostatistical interpolation and next demonstrate and evaluate it using synthetic data sets.  
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2. Methodology 

2.1. Expected Value of Information 

EVOI is estimated as the difference between expected costs at the present stage of knowledge and 

expected costs when new information becomes available [19–21]. Figure 1 shows a decision tree with 

square nodes indicating decisions for measuring the phenomenon by putting a sensor at some location 

and decisions on whether to map presence or absence of the phenomenon using the information at 

hand. It concerns local EVOI, i.e., it concerns a single location on the map. Chance nodes (circles) 

indicate the outcome of random events once a decision has been made. For example, if a measurement 

is made, the device may indicate presence (sensed) or absence (               ) of the phenomenon. The 

probability of obtaining a positive sensor signal at the location, Pr(sensed), is computed from sensor 

specifications and the prior probability of presence and absence using Equation (1): 

                                                                             (1) 

where                      is the probability that a the sensor correctly gives a positive signal if the 

phenomenon is above the critical threshold and                                                  is 

the probability that the sensor gives a false warning. The latter probabilities are assumed to be 

documented in the sensor specifications (i.e., sensitivity and specificity of the sensor) and they are 

useful for representing measurement error. The prior probabilities Pr(present) and Pr(absent) are 

computed from previous data, starting from an initial sample and accounting for conditional 

dependence between data points, as explained in the next section. Formally we could thus also use the 

notation Pr(present | previous data). These probabilities are subjective in the sense that they depend on 

the acquired data as well as on the computational method and its parameters (see Section 4.1). 

In this work, decision making was assumed to be based on Bayes actions, i.e., minimisation of 

expected loss. In other words, we assume rational decision making. Measurement with a sensor thus 

only makes sense if the expected loss of the upper branch of Figure 1 is lower than the expected loss of 

the lower branch (for now we neglect the costs of measurements). If only misclassifications involve 

costs, the expected cost of the lower branch is calculated by Equation (2): 

                                                                                  (2) 

where min(.) is a function returning the minimum of its arguments and costfalse negative and costfalse positive 

are the costs of misclassification. The conditional probabilities shown in Figure 1 are calculated with 

Bayes’ rule, as in Equation (3) for example:  

                     
                               

           
 (3) 

Hence, the expected cost of the upper branch was calculated by Equation (4):  

                        

                                                               

                                         

                                                                        

                               

(4) 
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Figure 1. Decision tree showing decisions to place a sensor (sensor) or not (sensor        ) and to 

map presence or absence of a phenomenon (e.g., concentration pollutant exceeds a critical 

threshold).  

 

EVOI thus corresponds with the difference between E(costlower) and E(costupper), where lower refers to 

the lower branch of the decision tree (i.e., without sensor) and upper to the upper branch (i.e., with sensor).  

For mapping, however, we are concerned with a study area and aim to find the optimal additional 

sample locations as the new configuration that maximises global EVOI and thus minimises 

E(costupper), i.e., the accumulated expected misclassification costs. When mapping an area based on 

point observations, one considers observations not only to carry information on their locations but also 

about some neighbourhood. Points should thus not be considered in isolation because their joint 

distribution matters. The accumulated expected misclassification costs were computed by creating 

maps for each potential outcome                          at the set of new sensor locations using indicator 

kriging (see next section) and multiplying the expected costs for these situations with the joint 

probability of their occurrence.  

Computation of this joint probability employed indicator kriging as well, within an iterative 

procedure. Writing S1 = s1 as shorthand for the outcome                          at a sensor location indexed 
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by the number 1 and explicitly acknowledging the conditioning on previous data, the joint probability 

of outcomes at multiple locations was obtained using the probability chain rule (Equation (5)): 

        
                                        

                        

 

   

 (5) 

where     
        denotes the joint outcome S1 = s1, ..., Sn = sn and n is the number of  

sensor measurements. The iteration starts by computing                          , next 

                                                                                        , and so on. 

Of course, as soon as an intermediate conditional probability approaches 0, further computation of the 

probability of that joint outcome is useless, so it was stopped and calculation of the corresponding 

expected costs was skipped.  

It can be easily seen that computational demands increase dramatically with the number of locations 

to be simultaneously optimised. For example, with two simultaneous observations, four expected cost 

maps and their probabilities need to be computed for each pair of measurement locations being 

evaluated while the solution space increases by a factor 0.5(m−1), with m being the number of 

potential sample locations (e.g., number of grid nodes). Nearly optimal solutions may be obtained 

within a fraction of the exhaustive computational cost using a search heuristic such as simulated 

annealing or a genetic algorithm. 

2.2. Indicator Kriging 

Indicator kriging is a pragmatic approach for mapping the probability that a random variable,  

say Z exceeds some defined threshold, which has its origin in the early 1980s [25,26]. The basic idea is 

that the original random variable is transformed into a set of variables which attain the values 0 or 1 

depending on whether or not the corresponding cut-off value is exceeded. Next, conventional 

geostatistical methods [26–29] are used on the indicator variables, i.e., semivariance models are 

determined for the indicator transformed data and the latter are linearly interpolated using some form 

of kriging. The semivariance model describes the spatial dependence structure of the indicator variable 

as a function of distance and direction (the latter if anisotropy is considered) while kriging is a linear 

spatial interpolator that explicitly accounts for spatial correlation among observations of the variable. 

We used ordinary kriging, which implies that the unknown spatial mean (i.e., total area where the 

threshold is exceeded) was estimated from the data. After solving order-relation problems [26,27],  

i.e., predicted indicators are outside the [0, 1] interval or indicators corresponding to successively 

higher thresholds do not increase monotonically, the distribution of the original variable is recovered. 

Criticism on indicator kriging includes the invalidity of using additive linear models on indicator 

transformed data [26]. Computational and methodological simplicity, however, contribute to its 

continuing popularity. 

For our purpose, we defined a single threshold at the critical level of the pollutant. Therefore the 

order relation problem only concerned conformance to the [0, 1] interval. Resuming the notation used 

earlier and noting that we do not observe the phenomenon itself but rather measure its presence with a 

sensor that is prone to measurement error, the indicator transform was realized as expressed by 

Equation (6): 
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  (6) 

where zk refers to the usually unobserved true state of the random variable Z at location k. So the data 

concern the probability of a positive sensor measurement while computation of (global) EVOI requires 

the probabilities of the true state of the phenomenon, Pr(present) and Pr(absent), see Equations (1)–(3). 

The nugget of the semivariogram—if modelled—represents both measurement error and short-range 

spatial variation, where sensor specifications may be used to identify both components. Model-based 

geostatistics allows distinguishing between measurements and the random variable of interest itself 

during the prediction stage, as discussed in [30] (p. 139).  

For computation of global EVOI, the two possible states of zk at each sensor location were 

considered and these were combined with the previously measured data. So with n sensors there are 2
n
 

potential joint outcomes to be evaluated. Once the new sensor configuration had been selected by 

maximisation of global EVOI, new data were obtained by actually measuring the field representing 

reality through evaluation of Equation (6).  

2.3. Regression Kriging with Indicator Data 

Often, geostatistical interpolation is not only based on observations of the target variable; in case 

auxiliary data are available, hybrid interpolation techniques which combine different data sources 

can be used to improve prediction. If the auxiliary data exhaustively cover the study area, regression 

kriging [31,32] is a widely accepted option. In that case, first regression analysis is applied for fitting 

and predicting a general trend of the mean response of the target variable on the auxiliary data. In the 

second step, local deviations from the trend are interpolated by simple kriging, with zero mean and 

using a semivariogram of the residuals between the regression response and the data. The final 

prediction is the sum of the regression response and the simple kriging results. Details can be found 

in [31]. Regression kriging readily accommodates generalised linear models, as is needed when dealing 

with indicator data which are bounded to the [0, 1] interval. For these data logistic regression [33] is the 

method of choice. 

2.4. Spatio-Temporal Kriging  

Space-time geostatistics enable data analyses and prediction by taking into account the joint spatial 

and temporal dependence between observations [34–36]. From a practical point of view, which is also 

supported by theory [34], the temporal dimension can be interpreted simply as an extra dimension to 

be included in the distance metric which is used in the semivariance structure. If the spatial, temporal 

and combined spatio-temporal components of the data generating process are assumed stationary and 

mutually independent, the sum-metric semivariance structure is obtained [34,36]:  

                                 
     

   (7) 

where γ denotes the semivariance, h is a lag distance, the subscripts s and t refer to space and time 

respectively and α is a geometric anisotropy ratio a that is needed because of differences between the 
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units of distance in space and time. We used this approach in the dynamic case study, which is detailed 

in Section 3.2.  

3. Case Studies 

3.1. Static Field  

Pollution of the environment by, for example, deposited radionuclides or polyaromatic 

hydrocarbons after some calamity can be represented by a static field if autonomous changes to the 

system are slow in comparison to the length of the measurement campaign and subsequent 

management of the problem. To illustrate the EVOI approach on a static field, a synthetic data set was 

constructed by applying a threshold at 20, say ppm, to a stationary Gaussian random field of 100 × 100 

grid cells of unit size with mean 20 (ppm) nugget 1 (ppm
2
) representing short range variability and an 

isotropic spherical structural spatial correlation component with range 40 spatial units and a partial sill 

(semivariance) 16 (ppm
2
). Sensor data were simulated by sampling the synthetic data (Equation (6)), 

with                          . The initial sample consisted of 16 points on a regular grid. Sensor 

data were interpolated by ordinary indicator kriging assuming a spherical indicator semivariogram 

without nugget, a range of 20 spatial units and a sill of 0.25 (no unit). Notice that (1) the 

semivariogram differs from the one that generated the data and (2) measurement errors were 

considered negligible at the prediction stage. All computations were performed in R [37,38] using the 

geostatistical package gstat [29].  

Three scenarios were considered for adding new measurement locations to the original sample:  

(1) add a single measurement at a time at the location leading to the highest global EVOI, moving 

the sensor with the lowest cost (in this case Euclidean distance); 

(2) select two sensors and add measurements from two locations simultaneously by scanning the 

area that can be reached by each sensor within a single time step. Again the solution leading to 

the highest global EVOI is chosen at each time step; 

(3) add two sample locations simultaneously by scanning the complete area for the highest global 

EVOI and move the sensors with lowest cost distance. To speed up computations, a genetic 

algorithm, i.e., the package genalg for R [37]) was used.  

The costs of misclassification were arbitrarily set at 2 and 3 cost units for false positives and false 

negative, respectively. As indicated above and similar to other work [11,12,15,16,18], the required 

semivariogram models were assumed to be given at the start of the adaptive part of the survey. Under 

practical circumstances such a situation may arise when the semivariogram is estimated from the initial 

sample or using data from an earlier comparable survey.  

Maps generated by EVOI optimisation (scenario 1) were compared with maps interpolated  

using measurements obtained by: (1) random sampling and (2) sample locations determined by 

minimisation of the kriging variance [12]. To that end, 100 binary fields were simulated using the 

procedure described above but—to avoid confounding effects—assuming perfect sensors,  

i.e.,                                                   . The true accumulated misclassification costs 

after adding 16 additional measurements were computed by comparing the final predicted maps with 

the corresponding true binary field on a pixel-by-pixel basis and multiplying any error with the 
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respective costs of misclassification. Differences between the mean misclassification costs were tested 

by t-tests of paired differences. Furthermore, measurement scenarios (2) and (3) were compared on the 

basis of expected and true accumulated misclassification costs.  

3.2. Dynamic Plume 

A dynamic plume of some pollutant which affected a 400 × 400 m area of Wageningen University 

campus was simulated. The plume was composed of a deterministic part, i.e., a point source Gaussian 

plume which was rotated in a sinusoidal fashion with a peak amplitude of 0.1π radians and a period of 

4 h. The Gaussian plume was simulated assuming a pollutant release of 30 kg/s at an effective height 

of 350 m above the ground and a wind speed of 5 m/s. A stochastic component representing both 

background levels and random deviations from the deterministic model was added to the waving 

plume. This component consisted of a spatio-temporal Gaussian random field with a mean of 50 ppm 

and a semivariance structure as detailed in Table 1. The critical level was set at 65 ppm at any moment 

in time (i.e., no dose but an instantaneous level). This implies that the stochastic component 

contributed substantially to the total contaminant levels in the study area.  

Table 1. Semivariance structure of the Gaussian random field added to the deterministic plume.  

Component Shape 
a
 Sill (ppm

2
) Range α (m/min) 

γs Sph 200 320 m - 

γt Sph 50 35 min - 

γst Sph 50 150 m 7.14 
a ―Sph‖ denotes a spherical shape.  

The deterministic part of the plume (thus excluding the stochastic deviations) was assumed to be 

given at the prediction stage. Accordingly, the deterministic plume was available as an auxiliary data 

source to support mapping presence/absence of the dynamic plume. To this end regression kriging with 

logistic regression on the deterministic plume was employed. Though methodologically feasible, no 

other explanatory variables were used in the regression model. For practical reasons, the regression 

coefficients were assumed to be static; they were determined just once based on the initial state of the 

true plume using a sample of 441 observations on a regular grid. The regression coefficients were 

determined by maximum likelihood. Residual variation was modelled by a spatio-temporal Gaussian 

random field.  

For predicting the spatio-temporal residuals, the response of the logistic regression model of the 

corresponding moment in time was subtracted from realised previous measurements and potential 

current measurement outcomes. The interpolated residuals were subsequently added to the logistic 

response and truncated to the interval [0, 1] to compute the probabilities of presence and absence. 

Table 2 lists the parameters of the semivariance structure assumed at the prediction stage.  

Previous observations of spatio-temporal residuals contain information on the next state since by 

construction the residual field is spatially and temporally correlated. However, unlike the static case, 

repeated measurement at the same location adds information to the system, since the temporal correlation 

is less than 1. With n sensors in the area and m potential locations to be visited there are  
 
 
 unique 

sensor configurations. For example, with 16 sensors and a potential sample location every on a grid 



Sensors 2012, 12 16282 

 

 

with a node spacing of 18 meters over the study area, there are     
  

 = 7.426995e+28 possible 

combinations of sensor locations. Each of these configurations has 2
16

 = 65536 potential outcomes of 

the sensor measurements, which renders exhaustive search over all possibilities prohibitively 

expensive. In this example, search space was substantially reduced by allowing only a single 

measurement location per time step to be changed; the other 15 sensors remained stationary. For each 

of the 16 sensor locations of the previous time step we tested alternative locations and the 

configuration having the lowest accumulated expected misclassification costs was selected. Initial 

sensor locations were again chosen on a regular grid. 

Table 2. Semivariance structure used for predicting residuals for the dynamic plume.  

Component Shape 
a
 Sill (-) Range 

b
 α (m/min) 

γs Exp 0.085 33 m - 

γt Exp 0.025 12 min - 

γst Exp 0.025 50 m 7.14 
a ―Exp‖ denotes an exponential shape; b Range parameter: practical range is approx. 3 × the listed value.  

The true misclassification costs accumulated over time and space achieved by EVOI sampling were 

compared with those obtained by: 

(1) each time step randomly selecting one sensor and measuring at a single randomly selected 

vacant location. The other 15 sensors stay and measure at their previous location (Random1);  

(2) random relocation of all sensors at each time step (Random16);  

(3) repeated measurement at the initial regularly spaced sample locations (Fixed).  

The random sampling methods (1 and 2) were repeated 1,000 times.  

4. Results and Discussion 

4.1. Static Field  

Figure 2(a) shows the synthetic data, while Figure 2(b) shows the probabilities of presence 

interpolated from the initial sample of 16 sites. It can be observed that measurement of the point at the 

second row from below and third column from the left produced a random measurement error value 

when Equation (6) was evaluated. Figure 2(c) shows the map of global EVOI, i.e., EVOI computed 

after aggregating expected misclassification costs for observations made at each grid location, 

separately. The best location thus corresponds to the highest global EVOI. Not surprisingly, this occurs 

between observations differing in value (indicated by the arrow). If minimisation of kriging variance 

would have been used as the optimisation criterion, site selection would have been independent of the 

measured values. 
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Figure 2. Static field. (a) Presence (red), absence (green) and initial sample (white dots). 

(b) Probability of presence; the point at the third row from above and third column from 

the left was incorrectly measured (random measurement error). (c) Global EVOI; the arrow 

points to the location having highest global EVOI. Probability and EVOI were computed 

from the initial sample of 16 regularly spaced points (a).  

   

(a) (b) (c) 

Figure 3 shows an example of an optimised sensor configuration after the 17th observation was 

made (16 initial and 1 infill measurements) on a backdrop of the probability of presence of the 

phenomenon (cf. Figure 2(b)).  

Figure 3. Configuration of initially regularly spaced sensors after two iterations with a 

single observation per step (scenario 1). First sensor 2 moved (white arrow) and a 

measurement was made, next sensor 5 moved (black arrow) but the measurement has not 

yet been made.  

 

Euclidean distance was used for deciding which sensor to move to the next location, but another 

cost criterion could have been used with only minor modification of the algorithm, as was 

demonstrated in [17].  

Figure 4 shows the effect of the two methods to account for sensor constraints as described in 

Section 3.1 (scenarios 2 and 3), with two simultaneously moving sensors. Not surprisingly, both the 

expected and the real misclassification costs were lower when the full study area was scanned in 

P
ro

b
a

b
ility

 p
re

s
e

n
c
e



Sensors 2012, 12 16284 

 

 

search of the best sample locations. In the alternative scenario, the sensors got trapped in an initially 

identified local optimum, as shown in Figure 5, where the area in the upper left will not be found by 

the sensors.  

Figure 4. Effect of the way sensor constraints are taken into account on aggregated 

misclassification costs with two simultaneously moving sensors (scenarios 2 and 3).  

 

Figure 5. Probability of presence after 15 time steps in which two simultaneous sensor 

measurements were added (scenario 2). Each sensor only scanned a limited neighbourhood 

around their current position (indicated by the dashed circle) for the optimal solution, 

which caused them to get trapped. The concentric black-white dots (eyes) indicate the 

newly selected locations.  

 

While the results obviously depend on the choice of the start locations, the figure exemplifies that 

one has to be careful in focusing on sensor constraints for planning adaptive sampling. In doing so, 

highly informative sites may never be visited because they are hidden behind data from earlier 

measurements. In contrast, a global search will identify those relevant sites and, next, sensor 

constraints may be used to find a strategy for reaching their locations. 

Differences between real costs (usually not known) and expected costs (see the right-hand side of 

Figure 4) are indicative of misspecification of the geostatistical model used for computing the 
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probabilities used in Equations (1) and (5). In the global search scenario, the true misclassification costs 

shown in Figure 4 suggest that there was no point in continuing the survey after ten observations had 

been added to the initial sample while the expected misclassification costs still decreased. The opposite 

can happen as well; between eleven and twelve measurements the expected costs stabilised while  

the true costs dropped. Obviously, when mapping a phenomenon in the real world, the true 

misclassification costs are unknown and thus there are no means for comparing real and expected 

misclassification costs. However, newly acquired data can be used to revise the geostatistical model 

and its parameters and hence improve predictions made by the model. The above demonstrates the 

importance of the choice and the parameter settings of the geostatistical model and it also advocates 

cautious interpretation of EVOI as a stopping criterion of a field survey. 

Table 3 lists the reduction of true misclassification costs of the EVOI approach in comparison to 

random sampling and minimisation of the kriging variance after adding 16 measurements to first phase 

samples. The results were obtained based on 100 realisations of a Gaussian random field. Even if the 

mean improvements were small, they were all significantly better than 0 at the α = 0.05 level. During 

the experiment we observed that improvements increased with the number of measurements made [17]. 

This is likely to be caused by the relatively small sample (size = 16) of the first phase; during the 

second phase, initially any location is likely to add information to the system. Later, when the sample 

obtained thus far already holds substantial information, it really matters where to locate a new 

measurement because measurements at suitable locations will provide new information whereas poorly 

chosen sites will hardly or not at all. The relatively small improvement with respect to the kriging 

variance criterion is no surprise since the latter tends to fill data holes while random sampling may 

allocate measurements anywhere on the map.  

Table 3. EVOI improvements with respect to random sampling and minimisation of 

kriging variance.  

Sampling 

Approach 

Mean  

Improvement (%) 

Standard  

Deviation (%) 
Pr(obs. > 0 | true = 0) 

Random 7.1 12.0 2.4e−08 

Min. kriging var. 3.0 9.9 1.6e−03 

4.2. Dynamic Plume 

Figure 6 shows how the dynamic plume and the selected measurement locations evolved over time, 

starting at t = 0, in six time steps of three minutes each. It can be observed that the EVOI approach 

moved the sensors downwind of the predicted plume. Intuitively, this makes sense and it is caused by 

the combined effect of (1) the relatively large contribution of the stochastic deviations from the 

deterministic plume and (2) the ratio of 1.5 between the costs of false negatives (costs = 3) and false 

positives (costs = 2). With less uncertainty, selected locations would tend to cluster near the boundary 

of the predicted plume (the green dots in Figure 6); with a cost ratio < 1 new observations would be 

located more towards the inside of the deterministic plume. Similar effects were also observed in [16]. 
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Figure 6. EVOI sampling of a dynamic plume (ppm), with single sensor relocation per 

time step. The black line delineates the critical level for the deterministic plume; 

black/white dots are the sensor locations.  

  

t = 0 t = 3 

  

t = 6 t = 9 

  

t = 12 t = 15 
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Figure 6. Cont. 

 

t = 18 

No attempts were made to optimise the computer code, which resulted in a run time of several days 

to calculate relocation of a single sensor over the six time steps. We are well aware that this is far from 

realistic and therefore suggest the following improvements:  

(1) re-utilisation of the kriging weights during the analysis of the possible measurement outcomes 

of a sensor configuration. This is feasible because kriging weights are independent of the 

measured values, they only depend on the spatio-temporal configuration of data points;  

(2) using a search heuristic rather than exhaustive search, see also Section 3.1; 

(3) using dedicated compiled software rather than a script running in R. 

Particularly suggestion (2) requires further research which should include finding appropriate 

parameter settings for the optimiser. A suitable search algorithm should also allow for concurrent site 

selection for multiple sensors. As explained in Section 3.2, this greatly affects the complexity of  

the problem.  

EVOI sampling led to lower accumulated real misclassification costs (1.360e+5) than any of the 

alternative considered, as can be observed in Figure 7. Neither of the two random sampling approaches 

produced even a single realization having lower misclassification costs accumulated over space and 

time than EVOI sampling. Figure 7 also shows that the sensor configuration fixed at the initial 

locations was less accurate (misclassification costs = 1.397e+5) than the averages of the two random 

methods (1.392e+5 and 1.396e+5 for Random1 and Random16, respectively). Exploring locations 

beyond the initial configuration reduced the misclassification costs, but completely random sampling 

(Random16) was on average inferior to having only a single sensor exploring vacant sites each time 

tep (Random1). Due to computational complexity this study is inconclusive as to how many, where 

and when sensors should have remained at fixed locations according to the EVOI criterion for the case 

studied. We explained before that this complex problem calls for a suitably parameterized heuristic 

optimizer, which is left for future research. Once this is solved, future research could also explore 

alternative and typically more computationally intensive geostatistical models (see e.g., [30]). 
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Figure 7. Comparison of the accumulated real misclassification costs of four sampling 

approaches. Distributions for Random1 and Random16 were obtained from 1,000 realisations.  

 

5. Conclusions 

The expected value of information (EVOI) approach allocates new observations at locations that 

intuitively make sense. Moreover, comparison with random sampling and sampling aiming for 

minimum kriging variance showed that the expected misclassification costs were significantly reduced 

with EVOI-sampling. The method accounts for data values and specified misclassification costs. The 

latter can be dissimilar for different kinds of errors (i.e., false positives and false negatives). This way, 

site selection is directly affected by information about the spatio-temporal field as it becomes available 

as well as by the decision problem at hand and.  

Constraining potential sample locations to the space that can be travelled by a small set of mobile 

sensors is a flawed strategy since the sensors may get trapped in some area and may thus fail to visit 

highly informative spots that are screened by previous observations. A better approach would be to 

first perform a global search for the highest EVOI and next use sensor constraints for deciding which 

sensors to move to the selected measurement sites.  

With the help of indicator kriging, computation of EVOI for a given set of sample locations is 

computationally inexpensive and methodologically simple. Finding the optimal sensor locations, 

however, remains a very demanding task. This particularly holds when selecting multiple locations 

simultaneously such as in case of monitoring a dynamic spatial field. Meta-heuristic optimisers 

including genetic algorithms and simulated annealing may be useful for these situations, but this 

requires research beyond the scope of the current paper.  

In this work, parameter uncertainty and uncertainty about the geostatistical model were not taken 

into account. However, divergence between the true and the expected misclassification costs after 

adding several measurements indicates that the approach is sensitive to model misspecifications. This 

may be consequential, for example if EVOI is used for deciding whether or not to stop a survey. Model 

parameterisation and dealing with uncertainty in the geostatistical model are therefore other aspects 

requiring further research. 
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