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Abstract: There are two critical parameters for microbolometers: the temperature 
coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the 
insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for 
infrared detection. We can use SU-8 photoresist for the thermal insulation structure, given 
its low thermal conductance. In this study, we designed a platform structure based on a  
SU-8 photoresist. We fabricated an infrared sensing pixel and recorded a high TCR for this 
new structure. The SU-8 photoresist insulation structure was fabricated using the exposure 
dose method. We experimentally demonstrated high values of TCR from 22%/K to 
25.7%/K, and the measured noise was 1.2 × 10–8 V2/Hz at 60 Hz. When the bias current 
was 2 μA, the calculated voltage responsivity was 1.16 × 105 V/W. This study presents a 
new kind of microbolometer based on cytochrome c protein on top of an SU-8 photoresist 
platform that does not require expensive vacuum deposition equipment. 

Keywords: cytochrome c; temperature coefficient of resistance (TCR); SU-8; 
microbolometer; exposure dose method 

 

1. Introduction 

Infrared devices are becoming increasingly popular in recent years and have many uses, including 
thermography, night vision (military, commercial and automotive), surveillance, fire fighting, and 
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industrial process control. There are two main categories of infrared detecting devices: photon-type 
and thermal-type. Photon-type devices have higher detection performance and faster response speed, 
but need cryogenic cooling to eliminate thermal disturbances caused by dark current. This makes 
photon-type devices bulky, heavy, and expensive.  

Thermal-type infrared detectors absorb incident infrared radiation. This absorption creates  
heat, which changes the physical properties of the sensing material. Although the performance of 
thermal-type infrared detectors is generally inferior to that of photon-type ones, they can be operated at 
room temperature without cryogenic cooling. With the progress in focal plane arrays (FPAs) and 
semiconductor fabrication processes, thermal infrared detectors have gradually overcome some of  
their drawbacks. Now they can be operated at television frame rates and have comparable Noise 
Equivalent Temperature Difference (NETD) to photon-type infrared detectors. Pyroelectric infrared 
detectors [1], microbolometers [2], and thermopiles [3] are three of the most important thermal-type 
infrared detectors. 

The operating principle of microbolometers is straightforward. Sensing materials absorb infrared 
radiation and convert the radiation into heat. With the rising temperature, the electrical resistance of 
the sensing material changes. By measuring the resistance variance of the sensing material, one can 
estimate the temperature of observed objects. In 1993, Wood proposed the concept of thin resistive 
films and FPAs combined with MEMS fabrication processes [4]. The advantages of microbolometers 
include mass producibility, low cost, light weight, lack of need for cooling, and low size. To make a 
good microbolometer, the supporting structure and the sensing material are equally important. To 
achieve better sensitivity, high temperature coefficient of resistance (TCR) sensing materials and low 
thermal conductance (G) supporting structures are required. 

Popular sensing materials are vanadium oxide (VOx), and amorphous silicon (α-Si). 
Conventionally, the TCR of these semiconductors are around −4%/K for VOx [5] and −3%/K for  
α-Si [6]. However, they are toxic and require costly deposition techniques such as chemical vapor 
deposition (CVD) or pulse laser deposition. Yavuz and Aldissi examined the potential for proteins to 
be used as microbolometer sensing materials [7]. Deb reported that cytochrome c thin film on top of 
oxide could have TCR values over 20%/K, the highest on record [8]. These materials possess high 
TCR and could be deposited as self-assembled monolayers (SAM), Langmuir-Blodgett (LB) films, or 
by spin coating, more quickly and cheaply than vacuum deposition techniques for semiconductors.  

To avoid heat losses and the resulting interference, the supporting structure must provide good 
thermal insulation. Sources of interference are conduction, convection, and radiation. When 
microbolometers are encapsulated in an evacuated vacuum package with an IR transmitting window, 
convection and radiation mechanism are minimized, and can be neglected [9]. Conduction dominates 
the system, so both one-level and two-level types must have a supporting structure to inhibit the 
conduction mechanism. The supporting structure provides three functions: mechanical support, an 
electrical conducting path and a thermal conducting path.  

Negative photoresist SU-8 was developed by International Business Machines Corporation (IBM). 
It is widely used in high aspect ratio structures, sacrificial layers of MEMS structures, micro-fluid 
channels and bio-MEMS due to good mechanical strength and good bio-compatibility. Conventional 
microbolometers use long, thin legs to reduce thermal conductance. Figure 1 shows a common concept 
for microbolometer thermal insulation.  
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Figure 1. Concept of microbolometer thermal insulation. 

 

Microbolometer supporting structures are usually made from low thermal conductivity materials, 
such as SiNx or silicon dioxide. Reducing thermal conductance is necessary for increasing sensitivity. 
Thermal conductance is proportional to thermal conductivity; Table 1 shows thermal conductivities of 
several insulation materials. The thermal conductivity of SU-8 photoresist is 0.2 W/mK [10]; therefore, 
SU-8 photoresist has lower thermal conductivity than SiNx and silicon dioxide. This advantage 
provides the motivation to create a new SU-8 photoresist thermal insulation structure. 

Table 1. Thermal conductivity of microbolometer structure materials. 

Materials Thermal Conductivity (W/mK) 
Silicon 149 

Polycrystalline Silicon 13.8 [11] 
Amorphous Silicon 1.8 [12] 

Silicon Nitride 29 
Silicon Oxide 1.38 
Epoxy SU-8 0.2 [10] 

Cytochrome c protein has a higher TCR than existing VOx, while SU-8 photoresist demonstrates 
lower thermal conductivity than existing silicon nitrides. We propose a new microbolometer that 
consists of cytochrome c protein sensing material and a SU-8 photoresist insulation structure. With the 
high self-absorption of protein in the mid-infrared range (high TCR) and low thermal conductance, 
these improvements should inspire further research to create a new type of microbolometer. 

2. Experimental Results of Cytochrome C on an SU-8 Photoresist Suspended Structure 

2.1. SU-8 Photoresist Thermal Insulation Structure  

SU-8 photoresist has good mechanical properties, so it can be fabricated with a standing structure 
like conventional microbolometers, to reduce thermal conductance and heat capacitance. Based on this 
idea, we proposed a platform structure to meet the thermal insulation requirement. Figure 2 shows the 
top view and side view of this platform thermal insulation structure. 

The main difficulty in constructing a platform structure is to create the free-standing top of a  
multi-layered structure [13]. There are several possible methods. The most popular is the sacrificial 
method, wherein the first layer is deposited using a sacrificial material, then a second layer is created 
on top of the first one. Unfortunately, SU-8 photoresist interacts with some materials, such as AZ-4620 
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positive photoresist. The SU-8 photoresist solvent dissolves most potential sacrificial layers. The 
second method is a direct-writing technique with a proton beam or a laser. This method can be used to 
expose only the top part of the SU-8 photoresist, but the tool is expensive and not commonly available. 
Third is the UV exposure dose method. The layer thickness is very sensitive to the exposure time and 
post-exposure baking (PEB) time [13], which makes using this method to create accurate shapes and 
thicknesses at the beginning quite challenging. We will show how to control these parameters to create 
a new thermal insulation structure for microbolometers. 

Figure 2. Platform thermal insulation structure as designed. 

 

Figure 3 depicts the basic process for using the exposure dose method to make the platform 
structure. We spun SU-8 photoresist on a silicon dioxide substrate and soft-baked it in step (a). Second, 
we used mask I to expose the legs only. The PEB was applied to the exposed photoresist. We did not 
develop the SU-8 photoresist in this step (b). The third step is the most critical; we used mask II to 
expose the top part (membrane). The exposure time must be shorter than the previous step to guarantee 
a free-standing structure. Since the exposed SU-8 photoresist has long molecular chain cross-links 
causing solidification of the material, we can use a microscope to distinguish the difference between 
exposed part and non-exposed part. Finally, we dipped wafers into SU-8 photoresist developer in  
step (d), and the platform structure was made.  

Figure 3. Schematic diagram of exposure dose method for making platform structure. 

 

 

The manipulation of the mask I exposure dose is quite straightforward, using appropriate exposure 
time for the legs to become strong enough. For a 45 μm high structure, the mask I exposure time was 
40 seconds; for a 10 μm high structure, the mask I exposure time was 24 seconds. However, the 
control of the mask II exposure time for formation of the top part is very critical. If the exposure time 
is too long, the excessive UV dose will make the structure a solid cube, not a platform. If the exposure 
time is too short, rupture or distortion could happen; the long molecular chains in the SU-8 photoresist 
will not cross-link well, making the membrane very fragile.  
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Because the platform thickness could have a great impact on heat capacitance, we were very careful 
about how the exposure dose affected the thickness of the SU-8 photoresist platform. From our results, 
to get a stable platform structure, the mask II exposure time should be more than 1.6 seconds. We 
made four stable platforms with different mask II exposure times, which were: (a) 2.2 seconds,  
(b) 2.8 seconds, (c) 3.4 seconds, and (d) 4 seconds. Figure 4 shows SEM pictures (25° tilt angle with 
respect to the substrate surface) of these four stable platforms. These graphics are all successful 
platforms, without any rupture and any distortion. When a specimen tilts, the real thickness has cosine 
dependence with the measured one. In our case, the real thickness should be the thickness in the 
picture divided by cos (25°). We enlarged Figure 4 and measured the membrane thickness. In Figure 5, 
we can see the relationship between the membrane thickness and mask II exposure time. This will be 
very helpful for future attempts to create an SU-8 photoresist insulation structure. 

Figure 4. SEM pictures of different stable platforms. 

 

 

Figure 5. Scatter plot of platform thickness and mask II exposure time. 

Platform
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2.2. Result of Cytochrome C Protein Applied to SU-8 Photoresist Suspended Structure  

Our cytochrome c was purchased from Sigma-Aldrich® and used without further purification. A 
Phosphate Buffer Solution was made by dissolving monopotassium phosphate (KH2PO4) and 
dipotassium phosphate (K2HPO4) in solution. Each solution was first prepared with a concentration of 
1 M. Then we added them to have a 0.1 M potassium phosphate solution at pH 6.8. The protein 
solution was prepared by adding cytochrome c, water and the phosphate buffer solution with the ratio  
2 mg:1 mL:1 mL. The concentration of protein was about 80 μM. 

We used a 2 cm × 2 cm silicon substrate and put the 200 nm silicon oxide on top. The substrate 
surface was first cleaned with acetone (ACE), isopropyl alcohol (IPA), and deionized (DI) water by 
ultrasonic agitation. After simple cleaning, it was washed with SPM (H2SO4-H2O2 = 3:1) and dried in an 
oven (150 °C for 10 minutes). The concentrations of H2SO4 and H2O2 were 96% and 30%, respectively. 

For the lift-off process, the height of the sacrificial stencil layer such as AZ-4620 (20 μm) must be 
greater than the height of the SU-8 photoresist platform. Considering the process of patterning the 
electrodes and the stability of the structure, we chose 10 μm high platform structures to meet these 
requirements. The difficulty of making a 10 μm high platform structure by the exposure dose method 
is stiction: the fundamental tendency of small devices to stick together. To reduce this, the strength of 
the platform must be increased. There are two methods to enhance the strength of the platform. The 
first is increasing the time of PEB; the second is increasing mask II exposure time. Because increased 
PEB time enhances the strength of the whole structure, the part for removal under the platform would 
remain and the geometry would not be as desired. To build a strong structure and still remove the 
unwanted material, a proper PEB time is needed. We implemented the following steps: The diluted SU-8 
photoresist was made by adding SU-8 2000 thinner into SU-8 3035 at weight ratio 3:10. The SU-8 
photoresist was spun at 500 rpm for 5 seconds and then at 1,100 rpm for 40 seconds. The height of the 
structure was about 10 μm. The first mask exposure time was 24 seconds with 160 W lamp power,  
10 mW/cm2 intensity of a 405 nm UV light source (SUSS MicroTec MJB4 mask aligner); the PEB 
time was 1.5 minutes at 65 °C and 5 minutes at 95 °C. For low heat capacitance, the membrane should 
be as thin as possible, but the structure must be strong enough to be stable. With the help of Figure 5, 
we know how much exposure dose will create a thin platform structure. Using the mask aligner to 
align the mark, the mask II exposure time for the platform part was 2.4 seconds. For a better yield rate, 
the PEB time was 1.5 minutes at 65 °C and 4 minutes at 95 °C. Because the SU-8 photoresist 
developer must completely dissolve the unwanted photoresist, we developed it in SU-8 photoresist 
developer for 5 minutes, dipped the wafer into an IPA solution to stop the developing process, and then 
dipped the wafer into water. The device was completely dried with a nitrogen gun. The SU-8 
photoresist structure was hard-baked in an oven at 150 °C for 5 minutes. This step completed the 
platform structure. Figure 6 shows a side-view SEM image (25° tilt angle with respect to the substrate 
surface) of our platform structure. The real height of the platform structure is 11.5 µm and the 
thickness of the top part is 2.7 µm.  
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Figure 6. SEM pictures of one leg and enlarged view of platform. 

 

After the hard-baking step, the structure was strong enough to continue the fabrication process. For 
a microbolometer, we must pattern the electrode on two legs of our structure to get the electrical 
signal. Figure 7 shows how to deposit metal on the SU-8 photoresist structure. The structure and 
substrate surface were cleaned with acetone, isopropyl alcohol, and de-ionized water again. We put it 
in the oven at 120 °C for 3 minutes. We used AZ 4620 positive photoresist for the lift-off process. We 
spun AZ 4620 at 500 rpm for 5 seconds and then at 1,100 rpm for 40 seconds. The height of the  
AZ 4620 was about 20 μm, and could totally cover our platform structure. The AZ 4620 was soft-baked in 
an oven at 110 °C for 100 seconds. We used the third mask to expose the AZ 4620, to define the electrode 
pattern we wanted. We used oblique‐angle 30° e-beam evaporation processes twice for different legs. 
Each side’s deposition thickness was 50 nm aluminum. We dipped our test chip into acetone for the 
lift-off process. Then, the test chip was cleaned up with isopropyl alcohol and de-ionized water again. 
We successfully deposited aluminum on upper left part and lower right part of our SU-8 photoresist 
platform thermal insulation structure. Figure 8 shows a SEM picture of the platform structure with 
aluminum patterned. The edge of the aluminum line has risen upward mainly due to the surface 
topology of the photoresist AZ-4620.  

Figure 7. Schematic drawing of oblique-angle 30° e-beam evaporation and lift-off process. 
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Figure 8. SEM picture of SU-8 photoresist platform structure with metal patterned. 

 

Surface modification could improve the adhesion of the protein from Sigma (C2506, ≥95%  
SDS-PAGE, equine heart) on the SU-8 surface. We changed the SU-8 photoresist surface from 
hydrophobic to hydrophilic using a UV/ozone treatment. The reason why the protein attached more 
readily to the SU-8 photoresist could be the change of electricity affinity between functional groups. 
We assumed the peptides of protein have interactions between the C=O and phenol group. These 
interactions provide attractive forces between the cytochrome c protein and the SU-8 photoresist 
structure. To make sure the protein was successfully deposited onto the SU-8 photoresist mesa, we 
took SEM pictures of fabricated chip in Figure 9. The SU-8 photoresist surface became more 
hydrophilic under more UV/ozone treatment time, so our chip was subjected to 10 min of UV/ozone 
for surface modification. Finally, we spun the protein film, dropping the protein solution onto the SU-8 
photoresist structure, waiting for 60 seconds, then spinning at 1,000 rpm for 20 seconds [14]. 
Afterwards, we dried the chip for one day in an ambient environment.  

Figure 9. SEM of protein layer on top of SU-8 photoresist mesa under UV/ozone treatment. 

 

The cytochrome c protein thin film on the SU-8 photoresist platform structure shows exponentially 
growing resistance when the temperature rises. We fit curves to the data and used the formula to 
calculate the TCR of cytochrome c. The TCR was calculated as follows: 

1 dRTCR
R dT

= (1)
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where R is the electrical resistance and T is the temperature. To measure TCR performance, the chip 
was set on top of a hotplate, which was connected to a temperature control unit. The chip surface 
temperature was measured by a non-contact thermometer because we were interested in the  
protein surface temperature, not the hotplate temperature. The results of cytochrome c resistance on a  
50 µm × 50 µm SU-8 photoresist platform structure are shown in Figure 10. The data were measured 
for a 10 minute UV/ozone process. The graph reveals that the cytochrome c thin film resistance 
increased exponentially with increasing temperature. The format of resistance expression is the same 
as for semiconductors but with positive TCR. Based on the definition of TCR in semiconductors, the 
TCR we measured was about 22%/K to 25.7%/K. This is a relatively high TCR compared with  
other materials. 

Figure 10. Cytochrome c thin film resistance versus temperature after a 10 min UV/ozone 
process time on an SU-8 photoresist platform structure. 

 

Figure 11(a) shows a schematic of the noise measurement set-up. In the biasing circuit, constant 
voltage from an ABM 9603D power supply was used to bias the bolometer under test. A Stanford 
Research model SR560 low-noise preamplifier was used to amplify the output signal through a 
coupling capacitor. Amplifier gain was set to a factor of 100 with measuring bandwidth of 100 kHz. 
An Agilent model 35670A dynamic signal analyzer (DSA) was used to trace the noise frequency 
spectrum. Both preamplifier and DSA had noise voltages on the order of nV, enabling high-accuracy 
measurements. The device noise was measured taking into account the ambient background noise. The 
measured power spectral density (PSD) for the cytochrome protein was recorded in Figure 11(b). The 
measured noise is 1.2 × 10–8 V2/Hz @ 60 Hz. This noise level is at the same order of magnitude as 
amorphous silicon [15].  



Sensors 2012, 12 16399 
 

 

Figure 11. (a) Schematic drawing of noise measurement setup (using 1 MΩ resistor and  
2 pF the capacitor), and (b) measured noise power spectral density versus frequency.  
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3. Discussion of Protein Microbolometer Performance 

The heat transfer equations are very similar to electrode transfer equations in an electrical circuit. 
We can analyze our structure as a thermal circuit, with thermal conductance analogous to electrical 
conductance. We analyze the structure by dividing it into five parts, and their relationship is 
represented by the circuit shown in Figure 12. We can write the formula: 

5 1 2 3 4

1 1 1
G g g g g g

= +
+ + +

 (2)

where G is the total thermal conductance. The g1, g2, g3, and g4 are for the legs. The g5 presents the 
platform. For the supporting legs, they are the same in height and width and can be expressed as: 

2

1 2 3 4 8σSU
lg g g g
H

= = = =
 

(3)
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The parameter σSU8 is the thermal conductivity of the SU-8 photoresist, l is the width of a 
supporting leg and H is the height of the supporting legs. The platform conductance is calculated  
as follows: 

2 2

5 8
4σSU

L lg
H h

−=
−

 (4)

where L is the width of the plate and h is the thickness of the plate. Hence, by substituting these results 
into Equation (1), we obtain the total thermal conductance of the entire structure:  

2 2 2

8 2 2

( 4 )G 4σ
4SU

l L l
HL hl

−=
−

 (5)

The heat capacitance is related to volume. The volume of this structure is calculated by:  

( )2 2Vol 4L H h hl= − +  (6)

The heat capacitance is stated as: 

ρ××= VolcC  (7)

The parameter c is the heat capacity and parameter ρ is the density. The SU-8 photoresist heat 
capacity equals 1.2 × 103 J·kg−1·K−1. The thermal time constant is equal to heat capacitance divided 
by thermal conductance [4]:  

C
G

τ =  (8)
 

Figure 12. Thermal conductance equivalent circuit. 

 

In our case, H is equal to 11.5 µm, h is 8.8 µm, L is 50 µm, and l is 10 µm. The thermal 
conductance is 6.6 × 10−6 W/K, and the heat capacitance is 1.22 × 10–8 J·K−1. The thermal time 
constant is around 1.8 ms. 

The voltage responsivity, Rv, is a very important value in microbolometers. Responsivity is the 
ability of the device to convert incoming radiation into an electrical signal. The voltage responsivity is 

Rv V
Q

∂=
∂

, V is the microbolometer read-out voltage, and Q is the sum of the incident radiation. For 

good performance, responsivity should be as high as possible. For non-modulated radiation, the 
voltage responsivity is [9]: 

εRv b bI R
G

β α=  
(9)

where ε is the optical absorption coefficient, β is the fill factor, Ib is the bias current, α is the TCR, Rb 
is the electrical resistance of the microbolometer, and G is the effective thermal conductance.  
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The parameters G, C, β, and τ are determined by structure material and design. The assumed 
parameters [4,8] are listed in Table 2. In Figure 13, our simulation results show the dependence of the 
microbolometer responsivity on bias current. 

Table 2. Assumed parameters for the proposed protein microbolometer. 

Parameter Symbol Value Parameter Symbol Value 
Heat Capacitance C 1.15 × 10–8 J·K−1 Optical F number F 1 

Thermal 
conductance G 6.6 × 10–6 W·K−1 Infrared absorption - 0.8 

Thermal time 
constant τ 1.8 ms Temperature of bolometer Tb 300 K 

TCR α 25.7%/K Resistance Rb (300 K) 1.87 MΩ 
Fill factor  β 1 Bias current pulse time  Tp 65 μs 

Figure 13. Calculated responsivity of the proposed protein microbolometer. 

 

We simulated bias current values between 1 μA to 10 μA in Figure 13. The voltage responsivity of 
our microbolometer is from 0.58 × 105 V/W to 5.8 × 105 V/W. The voltage responsivity is 1.16 × 105 V/W 
for a 2 μA [16] bias current. Performance comparisons between vanadium oxide and protein 
microbolometers are shown in Table 3. The width of the legs could cause significant impact on thermal 
conductance, and the volume of the platform could impact heat capacitance. To improve the 
performance, we would need to decrease our structure size or change the structure’s shape to minimize 
thermal conductance and heat capacitance. 

Table 3. Performance comparison of microbolometer. 

 Protein microbolometer pixel structure 
(present study) Vanadium oxide device [4]  

TCR 25.7%/K −2.3%/K 
Thermal conductance 6.6 × 10–6 W·K−1 2 × 10−7 W·K−1 

Heat capacitance 1.15 × 10–8 J·K−1 3 × 10−9 J·K−1 

Thermal time constant 1.8 ms 15 ms 
Voltage responsitivity  1.16 × 105 V/W 1.45 × 105 V/W 
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4. Conclusions 

We have successfully developed a new fabrication process for a microbolometer using an SU-8 
photoresist platform structure and cytochrome c thin film sensing material. The SU-8 photoresist 
platform structure varied from 45 µm to 10 µm. We investigated how the second mask exposure time 
and post-exposure baking time affect the platform membrane. We also explored the relationship 
between the second mask exposure time and membrane thickness. Our SU-8 photoresist insulation 
structure fabrication process is much easier and cheaper than the present SiNx fabrication process. We 
used high-TCR sensing material, cytochrome c thin film, and measured the TCR on our SU-8 
photoresist platform structure. The thermal conductance was 6.6 × 10–6 W/K, the heat capacitance was 
1.15 × 10–8 J·K−1, and the thermal time constant was about 1.8 ms. The measured TCR was from 
22%/K to 25.7%/K and noise was around 1.2 × 10–8 V2/Hz at 60 Hz. At a bias current of 2 μA, the 
calculated voltage responsivity was 1.16 × 105 V/W. We believe we have shown it is feasible to 
fabricate a new kind of microbolometer based on cytochrome c protein and SU-8 photoresist 
microstructures without using expensive vacuum deposition tools. 
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