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Abstract: An infrared ceiling sensor network system is reported in this study to realize
behavior analysis and fall detection of a single person in the home environment. The
sensors output multiple binary sequences from which we know the existence/non-existence
of persons under the sensors. The short duration averages of the binary responses are shown
to be able to be regarded as pixel values of a top-view camera, but more advantageous in the
sense of preserving privacy. Using the “pixel values” as features, support vector machine
classifiers succeeded in recognizing eight activities (walking, reading, etc.) performed by
five subjects at an average recognition rate of 80.65%. In addition, we proposed a martingale
framework for detecting falls in this system. The experimental results showed that we
attained the best performance of 95.14% (F1 value), the FAR of 7.5% and the FRR of
2.0%. This accuracy is not sufficient in general but surprisingly high with such low-level
information. In summary, it is shown that this system has the potential to be used in the
home environment to provide personalized services and to detect abnormalities of elders
who live alone.
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1. Introduction

In recent years, human behavior analysis such as person tracking and activity/action recognition
has progressed significantly [1–7]. They are becoming indispensable for providing many kinds of
personalized services in response to the implicit/explicit demands of users. Due to the rapid development
of sensor devices and the downsizing of computers and electronic devices, the research of human
behavior analysis is not limited to that by the use of cameras anymore, but also can be realized by
many kinds of sensor devices [4–7].

To provide personalized services in daily life, we need to recognize what the activity of individual
user is, and to localize where it happens. In other words, activity recognition and localization are both
necessary. However, elderly people, even young people, would not be comfortable to be observed for a
long time, or to be required any cooperation for giving some information to the systems. In this situation,
therefore, there are some important issues we have to concern, e.g., the elimination of disturbance to our
daily life or cooperation requirement to the users.

One of the greatest dangers for aged people living alone is falling. More than 33% of people aged 65
years or older have one fall per year [8]. Almost 62% of injury-related hospitalizations for seniors result
from falling [9]. Also, the situation will further exacerbate if the person cannot call for help. Therefore,
reliable fall detection is of great importance for elders who live alone.

Nowadays, the major fall detection solutions use some wearable sensors like accelerometers and
gyroscopes, or help buttons. However, elders may be unwilling to wear such devices. Furthermore, the
help button would be useless when the elders are immobilized or unconscious after a fall. Another way
of fall detection is to use video cameras. In that case, however, the privacy of the elders is not preserved
anymore. They would be uncomfortable to be observed for a long time in the home environment.

To overcome these limitations, in this study, we consider such a system that has little physical or
psychological disturbance to our daily life. The sensing devices are supposed to be unnoticeable, and the
process of behavior analysis and fall detection is expected to improve the extent of privacy protection
of users with respect to cameras. The change of light conditions during the day and at night should not
affect the performance. The differences between sensing devices and cameras are summarized in
Table 1.

Table 1. Differences between cameras and sensing devices.

Item Sensing devices Cameras

Place to use Anywhere in a room Indoor and outdoor
Recognize accuracy Lower Higher
Number of users Small Large
Privacy protection Strong Weak
Light condition No special condition Stable light
Obstacle condition Movable obstacles No obstacles
Establishment cost Low and flexible High and fixed
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2. Related Works

There are many studies about human behavior analysis realized by image processing [10–12].
Moeslund reviews recent trends in video-based human capture and analysis, as well as discussing
open problems for future research to achieve automatic visual analysis of human movement [10].
Image representations and the subsequent classification process are discussed separately to focus on
the novelties of recent research in [11]. Chaaraoui provides a review on Human Behaviour Analysis
(HBA) for Ambient-Assisted Living (AAL) and aging in place purposes focusing especially on vision
techniques [12]. Such systems using cameras can always obtain high-level precision of recognition under
a suitable light condition, but at home or at office, misrecognizing does not cause a serious problem.
Rather, psychological/physical disturbance can be problematic.

Existing solutions for fall detection can be divided into two groups. The first group uses sensors
to measure the acceleration and body orientation to detect falls. Some of them only analyze
acceleration [13–19]. Lindemann [13] installed a tri-axial accelerometer into a hearing aid housing,
and used thresholds of acceleration and velocity to detect falls. Mathie [14] used a single tri-axial
accelerometer to detect falls. Prado [15,16] put a four-axis accelerometer at the height of the sacrum
to detect falls. The acceleration of falls and activities of daily living (ADLs) were studied in [17].
Especially, it was shown that acceleration from the waist and head were more useful for fall detection
than that from wrist. Bourke [18] put two tri-axial accelerometers at the trunk and thigh. Four thresholds
were derived and exceeding any of the four thresholds implied an occurrence of fall. In one of our
previous works, the speed information was used for fall detection [19]. However, the robustness of the
speed thresholds is not sufficient.

Some of them analyze both acceleration and body orientation for fall detection [20–22]. Bourke [20]
detected falls using a bi-axial gyroscope sensor based on thresholds. Noury [21] used a sensor with
two orthogonally oriented accelerometers to detect falls by monitoring the inclination and its speed.
A fall detector consisting of three sensors was developed in [22] to monitor body orientation, vertical
acceleration shock and body movements. The common drawback in all these studies is to require the
users to wear some sensors. As already stated, many people, especially elders, may feel uncomfortable
to wear such devices. There are also some commercial health monitoring products that use a help button
to report emergency. However, elders may not be able to do anything after a serious fall. Therefore,
automatic fall detection using non-wearable devices is still challenging.

The second group uses video cameras to detect falls [23–25]. An unsupervised method was proposed
in [23] for detecting abnormal activity using the fusion of some simple features. In [24], learned models
of spatial context are used to detect unusual inactivity. Williams used a distributed network of smart
cameras to detect and localize falls [25]. By using video cameras, however, the privacy is easily violated.
At least, some people would feel uncomfortable to be observed for a long period.

Another important fact is that, images including the users may not be obtained occasionally due to
the existence of obstacles such as tables, sofas and chairs. To overcome this occlusion problem, some
researchers [24,26] mounted the camera on the ceiling. Lee [26] detected falls by analyzing the shape
and the 2D velocity of the person. However, the privacy-preservation problem has not been resolved
yet. In our study, we consider a fall detection system that imposes as little physical or psychological



Sensors 2012, 12 16923

disturbance as possible to our daily life. It is desired that the sensing is unnoticeable from users and the
process of fall detection preserves their privacy.

We use a ceiling sensor network of infrared sensors to analyze human behaviors and to detect falls.
Twenty infrared sensors were installed on the ceiling in a corner of a lab room as an experimental
environment. The novelty of this study is that we regard this 4 × 5 sensor network as a “top view
camera” that has a very poor resolution in principle: 20 pixels with binary values/levels. To increase the
intensity level, we take a short-duration average of observed binary values at each pixel. To increase the
spatial resolution, we take an expectation over positions of active sensors. In this paper, on the basis of
those “pixel values”, eight activities are recognized. In addition, such a technique is further applied to
fall detection of a single person.

3. System

In the simulated home environment, we attached “pyroelectric infrared sensors”, sometimes called
“infrared motion sensors”, to the ceiling [27]. This sensor detects an object with a different temperature
from the surrounding temperature. The photographs of the sensor module and the interconnection of
sensor nodes with cables are shown in Figure 1. Such infrared motion sensors are easy to set up at a low
cost. The light condition does not affect the performance. Thus, this system can be used in the day and
at night.

Figure 1. The sensor module and the interconnection of sensor nodes with cables.

A hand-made cylindrical lens hood with diameter of 11 mm and length of 30 mm was used to narrow
the detection area of each sensor (shown in Figure 1). We set the detection distance of each sensor to
75 cm, from which we can guarantee that a moving person can be detected all the time. The side view
of the detection area of a sensor adjusted by the paper cylinder is shown in Figure 2.

In this study, we rearranged the sensor layout of this system in order to simulate a small room. The
twenty sensors were attached to the ceiling (300 cm × 375 cm) so as to cover all the area and not to
produce any dead space. The average distance between sensors is 75 cm. Figure 3 shows the layout
and the arrangement of the sensors. A data collection system was built by C++ program in this study
to collect the sensor values. A binary response from each sensor can be read at a sampling rate chosen
from 1 Hz to 80 Hz.

There are some characteristics of this sensor equipment room. A moving person often makes multiple
sensors active at the same time. To the contrary, the sensor sometimes cannot be active if the person is
motionless or moves only slightly, such as when reading a book or watching TV. Therefore, when there
is no active sensor, we assume that the person has been staying at the previous position without moving.
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Figure 2. Side view of the detection area adjusted by a paper cylinder.

Figure 3. Layout of the home environment and the infrared sensors (top view).

4. Sensor Network as a Low-Resolution Camera

The infrared ceiling sensor system simply produces 20 (4 × 5) binary values at a sampling. We
regard our sensor system as a “top view camera” and the sensor responses as a “top view image.” The
basic specification of this virtual camera is the resolution of 4 × 5 pixels with 2 sensitivity levels. Our
basic idea is to increase the sensitivity by accumulating the binary values over a short duration, that is,
by lengthening the exposure time of the virtual camera.
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Let si,j(t), (i = 1, · · · , 4, j = 1, · · · , 5) denote the sensor active status (0 or 1) of the sensor locating
at (i, j) at time t. When the sampling rate isH (Hz), we define the “pixel value” pi,j(t) at time t(> H/2):

pi,j(t) =
1

H + 1

t+H/2∑
u=t−H/2

si,j(u) (1)

It is clear that pi,j(t) ∈ [0, 1]. That is, we take the average of binary responses over one second
around time t. If a person stays near location (i, j) for a long time with a noticeable large motion, the
corresponding pixel value pi,j takes a large value close to one.

A moving person can make multiple sensors active according to his/her moving speed. Therefore, we
can estimate the current location of the moving person from the sequence of active sensors.

We suppose that there are N (≤ 20) active sensors at time t, and they are indicated by their location
indices (i, j). Let their pixel values be pi,j(i = 1, · · · , 4; j = 1, · · · , 5). Then under the assumption that
only a single person is in the room, we estimate the location of that person at time t by the weighted
average as:

(xt, yt) =

∑4
i=1

∑5
j=1(i, j)pi,j(t)∑4

i=1

∑5
j=1 pi,j(t)

(2)

We empirically evaluated the accuracy of Equation (2). A subject was instructed to do a series of
activities in the home environment (walking, tidying the table, sitting on sofa, switching TV programs,
leaving the room, in this order) during about 20 s. We set the sampling rate to H = 20 (Hz) to collect the
data of si,j(t). Some of the “top view images” are shown in Figure 4. An example of varying sum of the
20 pixel values,

∑4
i=1

∑5
j=1 pi,j(t), is shown in Figure 5. The value of sum can be thought as the degree

of the strength of activities.

Figure 4. Top view image sequence of a series of activities (the duration of walking, tidying
the table, sitting on sofa, switching TV programs, leaving the room). Each image is selected
in every two seconds. The gray level corresponds to the pixel value (darker is higher), each
white dot shows the estimated position by Equation (2) at time t.

In Figure 4, we see that the trajectory of a moving person can be almost captured successfully. By
accumulating binary values from a short duration, we enhanced the intensity level of sensors spreading
over [0,1] (Equation (1)), and by taking the weighted average of the positions of active sensors, we
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succeeded to improve the spatial resolution (Equation (2)). Figure 5 shows that we can distinguish to
some extent different activities from the average intensity.

Figure 5. Activity strength (the sum of the 20 pixel values) of a series of activities in the
home environment. Different colors show different activities.

5. Behavior Analysis

In this experiment, we recognized different activities using the “pixel values”. The examined activities
of daily living (shortly, ADLs) include “walking around”, “tidying the table”, “watching TV on the sofa”,
“reading books on the sofa”, “taking drinks from the fridge”, “using a PC”, “lying on the sofa” and
“sweeping the floor”. Each activity can be associated with a specific location (sensing area) as shown in
Figure 6, though some locations overlap largely to the others. The subjects are five students belonging
to our laboratory (four males and a female). We divided the 5 sets of “pixel values” of five subjects
into 4 for training and one for testing. As a result, the average recognition rate was calculated by a
5-fold cross-validation. The classifier was a support vector machine (SVM) with a radial basic kernel
with default parameter values. The ground truth was given manually from a video sequence recorded by
a video camera that is used for reference only.

Four different sets of features, F1–F4, were examined. The results are shown in Table 2. The largest
feature set F4 including time-difference information was most useful for the recognition and brought a
recognition rate of 80.65%. Table 3 shows the confusion matrix of eight activities. The ground truth and
the recognition results using F4 are shown in Figure 7.

In Table 3, the element of row a and column b indicates the rate that activity a was recognized
as activity b. We see that most of the “lying” are misrecognized to “watching TV” at 68.39%. The
reverse-way misrecognition (“watching TV” to “lying”) is seldom seen probably due to the imbalance of
data amount. Such a large amount of error is mainly because these two activities share the same location
(bottom two ellipsoids in Figure 6). On the contrary, “walking around” and “sweeping the floor” are not
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so confused (confusion rates of 33.65% and 12.11%, respectively) even though they share a large part
of the same location. One possible reason is that there is a difference on speed, so that time difference
information included in F4 contributed to distinguish them.

Figure 6. Areas associated with each activity. Different colors show different activities.

Figure 7. The ground truth and recognition results of five users spending 4–5 minutes in the
detection area. Different colors show different activities.



Sensors 2012, 12 16928

Table 2. Examined feature sets and recognition rates.

No.Feature set (no. of features) Expression Description Rec. rate

F1 Pixel values (20) pi,j Pixel values from 20 sensors 80.41%
F2 Sum (1)

∑
i,j pi,j Sum of all pixel values 28.75%

F3 F1+F2 (21) pi,j ,
∑

i,j pi,j Pixel values and the sum 73.04%
F4 Three frame pixel values (60) (pi,j)t−1, (pi,j)t, (pi,j)t+1 Pixel values at times t− 1, t, t+ 1 80.65%

Table 3. A confusion matrix between eight different activities by feature set F4.

Walking Tidying Watching TV Reading Taking drinks Using PC Lying Sweeping

Walking 53.37 2.57 1.68 3.04 1.80 2.55 1.34 33.65
Tidying 1.09 98.21 0 0 0 0.10 0 0.59
Watching TV 0.85 0 97.69 0 0 0 1.27 0.19
Reading 0.22 0 0 99.78 0 0 0 0
Taking drinks 5.22 0 0 0 94.78 0 0 0
Using PC 0.87 2.01 0 0 0 85.14 0 11.98
Lying 1.11 0 68.39 0 0 0 30.05 0
Sweeping 12.11 0.92 0.24 0 0.31 0.55 0 85.87

6. Fall Detection

6.1. Martingale Framework

Detecting a fall in our system is carried out on the basis of the changes of pixel values. The processing
speed to realize online detection is a requirement to be achieved. Therefore, in our study, we use a
martingale framework to detect falls from a stream of pixel values [28].

Before we introduce the martingale framework for fall detection, we describe first a fundamental
building block called the strangeness measure, which assesses how much a data point is different
from the others. In the situation of fall detection, the steaming data is unlabeled and thus the strangeness
of data points is measured in an unsupervised manner. Given a sequence of vectors of pixel values
Pt = {P(1),P(2), · · · ,P(t)}, P(t) = (p1,1(t), · · · , p4,5(t)), the strangeness st of the current vector P(t)
with respect to the previous series of vectors Pt is defined by

st = ||P(t)− c|| (3)

where c is the cluster center, that is, c = 1
t

∑t
u=1 P(u), and || · || is the Euclidean distance.
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Using the strangeness measure described above, a martingale, indexed by ε ∈ [0, 1] and referred to as
a randomized power martingale [29], is defined as

M (ε)
n =

n∏
t=1

(εq̂ε−1
t ) (4)

where the q̂t’s are computed from the p̂-value function

q̂t({P(1),P(2), · · · ,P(t)}, θt) =
#{r : sr > st}+ θt #{r : sr = st}

t
(5)

where sr is the strangeness measure at time r defined in (3), where r = 1, 2, · · · , t, and θt is uniformly
and randomly chosen from [0,1] at every frame t. The initial martingale value is set to M (ε)

0 = 1, and ε
is set to 0.92 according to the reference [28].

In the martingale framework for fall detection, when a new frame is observed, hypothesis testing takes
place to decide whether a fall occurs or not, under the null hypothesis H0 “no fall” against the alternative
H1 “a fall occurs.” The martingale test continues to operate as long as

0 < M (ε)
n < λ (6)

where λ is a positive real number that a user specifies. The null hypothesisH0 is rejected whenM (ε)
n ≥ λ,

noticing a “change.” Then a new martingale starts with M (ε)
0 = 1.

Since {Mn : 0 < n < ∞} is a nonnegative martingale and E(Mn) = E(M0) = 1, according to the
Doob’s Maximal Inequality [30], we have

P

(
max
k≤n

Mk ≥ λ

)
≤ 1

λ
(7)

for any λ > 0 and n ∈ N.
It means that it is unlikely for any Mk to have a high value. The null hypothesis is rejected when the

martingale value is greater than λ. In Equation (7) is an upper bound for the false alarm rate (FAR) for
detecting a fall when there is actually no fall. The value of λ is, therefore, determined by the value of
acceptable FAR. For example, we may set λ to 20 if we need FAR lower than 5% as a rule of thumb.

The fall detection algorithm is shown as follows.
Fall detection algorithm. Martingale Test (MT)

Initialize: M(0) = 1; t = 1;Pt = {}.
Set: λ.

1: loop
2: A new frame of 20 pixel values P(t) is observed.
3: if Pt = {} then
4: Set strangeness of P(t): =0
5: else

6: Compute the strangeness of P(t) and data points in Pt.
7: end if

8: Compute the p̂-values q̂t using (5).
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9: Compute M(t) using (4).
10: if M(t) > λ then

11: FALL DETECTED

12: Set M(t)=1;
13: Re-initialize Pt to an empty set.
14: else

15: Add P(t) into Pt.
16: end if

17: t := t+ 1;
18: end loop

6.2. Experiment and Results

Since falls are not normal activities seen in our daily life, we asked the subjects to pretend them. In an
investigation of the fall of elders, Wei [31] found that 85.0% of the falls are during walking, and 62.5%
of the falls happen indoors. Therefore, we set up a virtual “room” in a corner of the laboratory
(Figure 3) and asked the subjects to simulate falls in the middle of walking.

In this experiment, a subject was asked to stay in the room for about one minute every round. During
this period, the subject behaved naturally and did some of activities randomly such as walking, tidying
a table, watching TV, sitting on a sofa, reading books, or taking drinks form a fridge. The subject was
also instructed to behave sometimes fall-like activities such as sitting fast and lying on the sofa. After a
series of activities, the subject simulated a fall during walking. In total, three of subjects performed 65
normal activities, 20 fall-like activities and 50 true falls.

Figure 8. The variation of pixel values when a subject performs some activities. The gray
level corresponds to the pixel value ( darker is higher), the decimal numbers are the
pixel values.

Figure 8 shows the variation of pixel values when a subject performed several activities containing
a fall. Activities performed sequentially were segmented manually. In the pixel values, we see that the
(simulated) fall is different from other activities: fall’s pixel values spread widely. We suppose that the
walking speed of an elder is about 1–1.5 m/s. Due to the characteristic of delay of our infrared sensor
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(a moving person makes multiple sensors active at the same time), when the person is walking before
falling, there will be 2–4 active sensors. The number of active sensors depends on the speed and location
of the person (below one sensor or between two sensors), which can be seen in Figures 4 and 8. When the
person falls after walking, the spread area will be larger due to the stretch of the body, the active sensors
will be more (usually 5–8 active ones). Accordingly, the strangeness of the pixels of fall is distinct
from those of other activities. Figure 9 describes the variation of pixel values, strangeness values and
martingale values in a series of activities in detail. If the pixel values have a large variation in a short
time, then the strangeness value increases and the martingale value increases as well.

Figure 9. The variation of the pixel values, strangeness values and martingale values in
a series of activities.

The performance evaluation of fall detection is made based on two pairs of retrieval performance
indicators, (precision and recall) and (false alarm rate (FAR) and false reject rate (FRR)). They are
defined as

Precision =
Number of Correct Detections of Falls

Number of Detections of Falls
, (8)

Recall =
Number of Correct Detections of Falls

Number of True Falls
,

FAR = 1− Precision, FRR = 1−Recall. (9)

In addition, we use a single performance indicator F1 defined as

F1 =
2×Recall × Precision
Recall + Precision

, (10)
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representing a harmonic mean between precision and recall. A high value of F1 ensures reasonably high
precision and recall.

Table 4 shows the details of the performance in precision, recall and F1 for several values of λ.
The receiver operating characteristic (ROC) evaluation is also shown in Figure 10. In F1, we attained
the best performance of 95.14% at λ = 15, which corresponds to FAR of 7.5% and FRR of 2.0%
(Figure 10). It is serious to miss true falls, so we investigated the attainable minimum value of FRR. We
can see in Figure 10 that 2.0% of FRR at λ = 15 is the minimum. This corresponds to one case missing
among fifty falls. In this case, immediately before overlooking the true “fall”, one “lying down” was
misdetected as a “fall” due to its high martingale value and thus a newly started martingale could not
detect the succeeding true fall. In contrast, all cases of 7.5% (=4 false alarms/53 detected falls) were
fall-like activities. Unfortunately, we could not have a lower value of FRR even if we change the value
of λ due to the above-mentioned special case.

Table 4. The performance in precision, recall and F1 for several values of λ.

λ 4 6 10 12 15 18 20

Precision (%) 37.69 43.96 61.04 80.33 92.45 94.00 100.00
Recall (%) 98.00 96.00 94.00 98.00 98.00 94.00 90.00
F1 (%) 54.44 60.31 74.02 88.29 95.14 94.00 94.74

Figure 10. The ROC evaluation for different λ’s.

One example of detection is shown in Figure 11 for λ = 6, 10. By increasing the value of λ from 6 to
10, we can dismiss all false alarms.
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Figure 11. The martingale values when λ is set to 6 (red line) and 10 (blue line).

7. Discussion

In this study, an infrared ceiling sensor network was used to recognize multiple activities and to
detect falls in a home environment. Since the sensor system is installed on the ceiling, it is almost
unnoticeable by the users. It does not require any cooperation from the users. Different from camera
systems, the performance of our sensor system is not affected much by obstacles or light conditions.
Most importantly, the privacy of users is always preserved.

However, in the practical usage, there are some limitations in our system. Our classification method
relies on the assumption that a distinct activity has its own associated location where the activity is
performed. Indeed, many activities are often associated with different locations, e.g., we have a rest
sitting on the sofa, take drinks from a fridge and fall asleep in bed. This study basically aims at detecting
such location-associated activities. Therefore, different activities carried out in the same location can be
detected but it is difficult to distinguish them. However, such confusion usually does not cause a serious
problem for ADL recording. Maybe we can combine such activities into one activity.

The system also utilizes the strength of activities, the pixel values, the area and speed information,
the number of active sensors and time information from one time step before and after, to improve the
performance on classification. These pieces of information make it possible to distinguish two activities
even if they share largely their associated locations, e.g., “walking around” and “sweeping the floor.” The
same information, especially the spread information of active sensors, brought a high level of detection
performance of falls. On the contrary, if the amount is not sufficient, for example, in such cases that
a person lies down on a sofa or falls from a fixed position by dizziness or unconsciousness with slight
motion, it is difficult to generate sufficient strangeness information when he/she falls, our system may
not detect the fall. This behavior of the system is sometimes right and sometimes not. In the current
system, the sensitivity is controlled by the value of λ.
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This system is supposed to be used by the users who live alone, which means that if there are multiple
persons in the room, or even there is a pet like a cat or a dog with the user, this system has to be improved
to cope with such complicated situations.

The ceiling sensor system is also a little inferior in detection capability of vertical moves due to the
ceiling attachment. Therefore, it cannot detect vertical falls in high precision, although such a case is
rare compared with forward/backward falls. To compensate the disability, more kinds of devices such as
a depth camera could be used with this system.

8. Conclusions

In this research, we have developed a ceiling sensor system to recognize multiple activities and to
detect falls in the home environment. The infrared sensors output binary responses from which we know
only the presence/absence of a user. However, the privacy of users is preserved to some extent and no
user cooperation is required in this system. The novelty of this study is that the definition of “pixel
values” makes the sensor network work like a top view camera but improving the extent of privacy
protection with respect to cameras. The experimental results showed that this system can recognize
eight activities and detect abnormalities (falls) both at acceptable rates. The accuracy is not sufficient
in general but surprisingly high with such low-level information. This privacy-preserved system has the
potential to be used in the home environment to provide personalized services and to detect falls and
other abnormalities of elders who live alone.
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