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Abstract: This paper develops the technologies of mechanical characterization of 
CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical 
properties, such as Young’s modulus, and mean stress, through the external electrical circuit 
behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of 
bridge-type test-key subjected to electrostatic load and initial stress is derived based on 
Euler’s beam model and the minimum energy method. Then one can use the aforesaid closed 
form solution of the pull-in voltage to extract the Young’s modulus and mean stress of the 
test structures. The test cases include the test-key fabricated by a TSMC 0.18 μm standard 
CMOS process, and the experimental results refer to Osterberg’s work on the pull-in voltage 
of single crystal silicone microbridges. The extracted material properties calculated by the 
present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm 
regarding the dimension effects of test-keys. This mechanical properties extracting method 
is expected to be applicable to the wafer-level testing in micro-device manufacture  
and compatible with the wafer-level testing in IC industry since the test process is 
non-destructive. 
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1. Introduction 

Due to the excellent development of the complementary metal oxide semiconductor (CMOS) 
technology, many micro-electromechanical systems (MEMS) devices such as comb-fingers [1], 
micro-mirrors [2], and resonators [3], the so-called CMOS-MEMS, can be fabricated by standard 
CMOS processes. The main advantage of CMOS-MEMS is batch production. Apart from the electrical 
testing of circuits, the MEMS-side still requires the mechanical testing of micro-sensing or -actuating 
components. However, there is no standard mechanical testing method for CMOS-MEMS devices. 
Characterization of the mechanical properties of CMOS-MEMS devices is important since their 
performance depends on the constitutive properties of the thin film made by the CMOS process. It is 
known that the properties of thin films are different from those of bulk materials, depending on the 
fabrication process. Moreover, large residual stress may induce failure of the micro-devices and 
circuits. Therefore, the material properties, such as Young’s modulus and residual stress, should be 
controlled as early as possible to ensure the repeatability for each device.  

The property-extraction methods for large-scale implementation in MEMS fabrication require 
additional measurement and actuation equipment or complicated test structure designs. These methods 
are not compatible with IC metrology technologies. From the mechanical viewpoint of MEMS devices, 
the important thin-film material parameters are Young’s modulus [4–15], residual stress [7,9,15–18], 
Poisson’s ratio and shear modulus [15], residual strain [8,19], and hardness [20]. Among these 
mentioned parameters, Young’s modulus and residual stress have attracted the most attention. By 
using appropriate actuation and measurement techniques, these material properties can be extracted by 
determining the deformation or dynamic response of the test microstructures subjected to given 
external loads. Table 1 summarizes six different actuation methods and eight different measurement 
methods for extracting material properties in MEMS devices.  

The electrostatic method employs a bias voltage to deflect the microtest structure downward to the 
ground plane [4,5,8,21]. The vibration method adopts comb drivers, piezoelectric shakers, or acoustic 
waves to vibrate the microtest structure [6,22]. Pulsed laser light can also be used to excite micro 
beams [23,24]. The force/pressure method uses the probe of atomic force microscope(AFM) or a 
nanoindenter to apply a force on the micro test structure or apply barometric pressure on the test 
membrane [12,13]. The thermal method heats the test structure to deform it [15], yet the heating time, 
and the uniform temperature field are critical issues in this testing method. The pre-deformation 
method does not need any actuation as it makes use of the deformation induced by large initial  
stresses [16,17,19,25]. In [16] the detection film on a cantilever beam firstneeds to be deposited, and 
then the variance of curvature is observedto determine the residual stress. Interferometers are a very 
common apparatus for measuring deformations or vibrations. For example, in some literatures [4–6] 
the optical signal or dynamic response is detected to extract the mechanical properties of test 
structures. These methods are manual, and need operators to judge the output signal. AFMs and 
scanning electron microscopes (SEMs) can also be used to measure the deformation. In [18] the 
difference of test beam length due to the residual stress effect is measured, but the detection signal is 
too small to identify the strain, therefore a specific apparatus is needed to enlarge the output signal.  
In some literature X-Ray diffraction (XRD) is used to measure the indentation imprint [14,20].  
The pull-in method detects the pull-in voltage of micro test structures [9,26,27]. Besides, a micro 
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tensile test [10] is used to determine the Young’s modulus, but the test samples need to be fabricated in 
specific shape to fit the clamping apparatus of the tensile tester. Nanoindenters [28] are also a common 
technique for extracting Young’s modulus and hardness of thin films. Nevertheless, this method can’t 
extract the residual stress of thin films. The modified Stoney’s equation (Equation (1)) [29] to evaluate 
the film stress is proposed as follows: 

 
(1)

where the σ is the residual stress of thin film, E/(1 − ν) is the biaxial modulus, h is the thickness of the 
substrate, t is the thickness of thin film, and R is the radius of curvature of substrate. However, this 
method needs to determine the biaxial modulus of the thin film first, and it is hard to deal with the case of 
local areas with extreme variation of radius of curvature. Among these aforementioned techniques,  
the most common test structures are beams and diaphragms. Ring-type test structures [15] have also 
been reported, but their underlying fundamental principles are very complicated and they are difficult 
to fabricate. A viable test method “must be usable at the wafer level in a manufacturing environment, 
require only readily available test equipment, and it should be supported with documented 
structure-design, data-acquisition and data-analysis methods, and calibrated models for quantitative 
interpretation of results” [9]. Out of the known methods, the best candidate for meeting the 
aforementioned requirements was judged to be the measurement of the electric-circuit behavior of the 
microstructures subjected to electrostatic loads. Compared to the prior art correlated with complicated 
or even empirical manipulation of numerical means, this paper builds simple and valid approximate 
analytical models of the CMOS-MEMS test-keys for extracting mechanical properties. These properties, 
such as Young’s modulus, and mean stress, are investigated, through the external electrical circuit 
behavior of the CMOS-MEMS test-keys. 

Table 1. Summary of actuation and measurement methods for extracting material properties. 

Measuring 
methods 

Actuating methods 

Electrostatic Vibration
Pulsed 

laser light
Force/ 

Pressure 
Thermal Pre-deformation 

Interferometer [4,5,8,21,30–32] [6,22] [23,24] [7,10,33] [15,30–32] [16,17,19,25] 
Nanoindenter    [14,20]   

AFM    [12,13]   
SEM    [11]   

μ strain gauge    [18]   
XRD    [14,20]   

V-F converter [34]      
Pull-in [9,26,27,35]      

  

)1()1(6 2

3

h
tRt

Eh

+−
=

ν
σ



Sensors 2012, 12 17097 
 
2. Electromechanical Behavior of the CMOS-MEMS Bridge Test-key  

A conceptual diagram of a micro bridge is shown in Figure 1. The beam is of length L, width b, 
thickness h, and is separated from the ground by an initial gap g. As actuated by a constant drive voltage V, 
the electrostatic force causes a position-dependent deflection w(x). The following assumptions are made 
to simulate the bridge: 

(1) The bridge is homogeneous and with uniform cross section. 
(2) The bridge is within the Euler-Bernoulli model. 
(3) The stress gradient is neglected. 
(4) Small deflection and ideal fixed boundary conditions. 

Figure 1. Schematic of the micro fixed-fixed beam. 

 
2.1. Energy Expression 

The mechanical strain energy of an infinitesimal beam element is: 

 
(2)

The total mechanical strain energy of the beam, as shown in Figure 1, can be expressed as: 

 

(3)

where b, E, h, I, L, and w represent the beam width, Young’s modulus, thickness, area inertia moment 
of beam cross section, beam length, and deflection, respectively. In the integrand of Equation (3),  
the first term is the strain energy induced by initial stress (σ0) and the second term is the bending strain 
energy induced by external loads. The fringing fields are considerable and must be taken into account 
when modeling the electrostatic loads. For an infinitesimal beam element with length dx,  
the differential capacitance dC is given as [36]: 

 
(4)

where ε and g represent the permittivity of dielectric medium and the initial gap between test beam and 
ground plane, respectively. Hence, the total electrical potential energy Ue is given by: 
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(5)

where V is the applied bias voltage. In Equation (5), the first term is ideal flat plate capacitance,  
the second term is a length-dependent adjustment parameter, and the third term is the fringing field 
capacitance due to beam thickness. Then, the total system energy U equals the sum of mechanical 
strain energy and electrical potential energy, i.e., 

 

(6) 

It should be mentioned that nonlinearities are simplified with only in the electrostatic part of the 
model. Indeed, the beam structure is assumed linearly elastic, without any consideration of geometrical 
nonlinearity in virtue of large deformation. Expanding the electrostatic terms in Equation (6) by 
Taylor’s series with respect to the initial equilibrium position, i.e., w = 0, and truncate the fifth  
and higher order terms since (w/g)n 1 for n 5. Therefore, the total system potential energy  
U becomes: 

 

(7) 

2.2. Approximate Analytical Solution to Pull-in Voltage 

The exact solution for the electrostatic-actuated beam is difficult to obtain since it is a nonlinear 
system with the nonlinear electrostatic force coupled with the structural deflection. Thus, such problem 
is often solved by the approximate analytical solution. Using the assumed mode method [38],  
the deflection function w(x) is expressed as: 

 
(8) 

where φi(x) is the ith mode and the coefficient ηi to be solved is the associated modal participation 
factors. Then substituting the assumed deflection function into the system energy expression, one can 
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structures, it essentially satisfies the boundary conditions and the homogeneous part of the governing 
equation of a dynamic system. Thus, the natural modes form the foundation for forced response 
calculations in structural dynamics [38]. The first natural mode of a fixed-fixed beam is adopted since 
the electrostatic loads are attractive forces and the deflection is much similar to the first natural mode 
of fixed-fixed beam. The first natural mode of a fixed-fixed beam is [38]: 

 (9) 

where the coefficients ζ and λ satisfy the following equations: 

, and  
(10) 

Substituting Equations (8) and (9) into Equation (7) yields: 

 

(11) 

The system is in static equilibrium when the first-order derivative of the total potential energy U 
with respect to the coefficient η equals zero, i.e., dU/dη = 0, then one have: 

 
(12) 

Where cj (j = 0–3) are shown as below: 
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stable or unstable is determined by the second-order derivative of the total potential energy with 
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the total potential energy with respect to η also equals zero, i.e., d2U/dη2 = 0, then one has: 
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Substituting Equation (14) into Equation (12) gives: 

 (15) 

Equation (15) is a cubic equation of η and can be solved by Cardan solution[39]. The real number 
root of Equation (15) gives rise to the coefficient ηPI at pull-in as: 

 

(16) 

Substituting Equation (16) into Equation (14) gives the approximate analytical solution to the 
pull-in voltage VPI as: 

 
(17) 

As shown in Equation (17), the pull-in voltage contains two terms, the first one is dependent on 
initial residual stress, and the second one is dependent on beam flexibility. The pull-in voltage 
increases as the increasing of initial stress (σ0) or Young’s modulus (E). A beam is considered as wide 
beam as b/h  5. Wide beams exhibit plane strain conditions; therefore, the Young’s modulus (E) 
should be replaced by the equivalent Young’s modulus  = E/(1 –ν2) and the residual stress (σ0) 
should be replaced by the equivalent residual stress 0= σ0(1 –ν2). Therefore, Equation (17) yields: 

(18) 
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quantitatively to realize the idea of extracting mechanical properties from pull-in voltage of the test 
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fringing filed capacitance model. The equilibrium equation, Equation (18) yields: 
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(20) 

 
(21) 

For a given beam with the pull-in voltage VPI, there are two unknowns in Equation (19), i.e., 
0 and . Therefore, one needs two test beams with different length to get the two unknowns. For the 

two test beams made of the same material, but with different length, they have the same Young’s 
modulus and mean stress but different pull-in voltages and different S and B parameters. Then, one has 
two equations: 

 
(22) 

By rearranging Equation (22), the mean stress (σ0) and Young’s modulus ( ) are given as the 
following matrix operational form: 

 
(23) 

One can extract Young’s modulus ( ) and mean stress (σ0) easily by substituting the measured 
pull-in voltages of the two test beams with different length into Equation (23). 

3.2. Algorithm Verification 

Osterberg [9] had measured pull-in voltages of numerous fixed-fixed beams with different lengths. 
The authors selected Osterberg’s measured data of two arbitrary test beams and substituted them into 
the algorithm to verify the validity of the present method. Table 2 lists the geometrical parameters and 
pull-in voltages of the selected fixed-fixed beams which are made of mono-crystalline silicon.  
There are two groups of fixed-fixed beams listed in Table 2; each group contains six beams of 
different lengths. The difference of the two groups is only the crystalline plane of cross section.  
The first group is in the (100) crystalline plane while the second one is in the (110) crystalline plane. 
The author selected two beams from each group and substituted the measured data and beam 
dimensions into Equation (23) to extract Young’s modulus ( ) and mean stress ( 0). Note that the 
cross-section of the beams of group 1 are in the (100) crystalline plane while that of the group 2 are in 
the (110) crystalline plane. The Young’s modulus of mono-crystalline silicon in (100) and (110) are 
138 GPa and 168 GPa, respectively. The mean stresses of the two beam-samples are 10 MPa [9].  

Tables 3 and 4 list the extracted Young’s modulus ( ) and mean stress ( 0) of mono-crystalline 
silicon in (100) and (110), respectively. It is shown that the extracted values of the present algorithm 
agree well with the average extracted value of Osterberg’s results [9], but with better convergence than 
Osterberg’s algorithm. The variety of standard deviation VSD of the extracted Young’s modulus ( ) are 
all within 1% which are almost tenth of the deviations of Osterberg’s results [9] for both 
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mono-crystalline silicon in (100) and (110). Besides, the VSD of the extracted mean stress ( 0) are all 
within 2%, which are also almost tenth of the deviations of Osterberg’s results [9] for both 
mono-crystalline silicon in (100) and (110). 

Table 2. Geometrical parameters of the mono-crystalline silicon beam samples and the 
measured pull-in voltages [9]. 

Parameters Values 
Permeability of free space ε (F/m) 8.85 × 10−12 
Initial gap g (μm) 1.05 
Beam width b (μm) 50 
Beam thickness h (μm) 2.94 
Length L of group 1 175 400 225 450 275 500 
Measured pull-in voltage VPI (V) 77.38 16.9 47.79 13.78 32.65 11.56 
Length L of group 2 175 450 225 500 275 550 
Measured pull-in voltage VPI (V) 85.22 14.78 52.68 12.4 36 10.61 

Table 3. Extracted Young’s modulus and mean stress of the mono-crystalline silicon in 
(100) crystalline plane and the comparison with Osterberg’s work [9]. 

Length (μm) 
The values extracted 

by this work 
M-test [9] 

L1 L2 E (GPa) σ0 (MPa) E (GPa) σ0 (MPa) 
175 400 135.35 9.97 

138 ± 4 10 ± 2 225 450 135.21 9.68 
275 500 134.40 9.66 

Average (Xave) 134.99 9.77 138 10 
Standard Deviation (ΔX) 0.42 0.14 4 2 

Variety of Standard Deviation VSD (VSD = ΔX/Xave) 0.31% 1.45% 2.90% 20.00% 

Table 4. Extracted Young’s modulus and mean stress of the mono-crystalline silicon in 
(110) crystalline plane and the comparison with Osterberg’s work [9]. 

Length (μm) 
The values extracted by 

this work 
M-test [9] 

L1 L2 E (GPa) σ0 (MPa) E (GPa) σ0 (MPa) 
175 450 166.88 9.50 

168 ± 6 10 ± 1 225 500 168.16 9.53 
275 550 167.40 9.69 

Average (Xave) 167.48 9.57 168 10 
Standard Deviation (ΔX) 0.53 0.08 6 1 

Variety of Standard Deviation VSD (VSD =ΔX/Xave) 0.31% 0.87% 3.57% 10.00% 
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capacitance sensitivities with respect to applied bias voltages. Pull-in will occur when the capacitance 
shows a sharp increase. Through the capacitance-voltage measurement and the material property 
extraction algorithms mentioned above, one can obtain the material properties of the test 
microstructure. The principle of capacitance-voltage measurement is introduced as the following.  
The main idea is to measure the circuit capacitive reactance XC to yield the capacitance C.  
The capacitive reactance is Xc = 1/(2π·f·C) where XC, f, and C represent the circuit capacitive reactance, 
the testing signal frequency, and the capacitance, respectively. The input driving voltage is a small AC 
testing signal riding on a large DC bias voltage which induces the structural deflection. Then the 
capacitance can be calculated from the circuit capacitive reactance. It should be mentioned here that 
the frequency of the AC testing signal must avoid the resonance frequency of the test microstructure; 
otherwise the capacitance will show a large fluctuation. The Agilent E4980 precision LCR meter is 
used to measure the capacitance-voltage (C-V) variation of the test microstructure, as shown in Figure 5.  

Figure 5. Schematic of the experiment setup for pull-in voltage detection. 

 

The frequency and level of the AC testing signal must be set properly since they will affect the 
accuracy of the capacitance measurement. The authors chose the root mean square value of the test AC 
signal level as 25 mV and the frequency 1 MHz. The integration time is set to medium (MED).  
The instrument parameters setting are listed in Table 5. 

Table 5. Measurement conditions. 

Function Cp-D 
Testing Signal Frequency 1 MHz 

Testing Signal Level 0.025 V 
Bias Voltage Range 0–40 V 
Bias Voltage Step 0.05 V 
Integration Time Med 

The pull-in voltage is detected by tracking the capacitance sensitivities with respect to the applied 
bias voltages. Two low noise probes touch the two probing pad of test beam, as shown in Figure 5. 
The probes are connected to the Agilent E4980 high precision LCR meter, which can supply a test 
signal of 25 mV/1 MHz riding on the bias voltages ranging from 0 to 40 V. Agilent E4980 exports the 
capacitance-voltage data to a personal computer and tracks the capacitance sensitivities to the applied 
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bias voltage. Figure 6 shows the typical measured capacitance sensitivities results. Pull-in will occur when 
the capacitance is with sharp increase. Therefore, according to the results from capacitance-voltage 
measurement, one can obtain the pull-in voltage of the test beam exactly. 

Figure 6. Typical sensitivities curves of the capacitances with respect to applied bias 
voltages of the test beam. 

 

Table 6 lists the geometrical parameters of the bridge-type test beams which are fabricated by a 
TSMC 0.18 μm 1P6M standard CMOS process. The test beams have the same width, gap, and 
thickness, but different length. One knows that pull-in occurs when capacitance increases sharply. 
According to Figure 6, it is obvious that the capacitance will rise up to ten fold or even hundred fold 
compared to the original capacitance when pull-in occurs. Therefore, one can get the pull-in  
voltage of test beams, and the corresponding data is shown in Table 7, where VPI-ave is the average 
value of measured pull-in voltage for five times of each test beam, and ΔVPI is the corresponding 
standard deviation.  

Table 6. Geometrical parameters of the bridge-type test beams. 

Parameters Values 
Beam width b (μm) 5 
Initial gap g (μm) 1.93 

Beam thickness h (μm) 0.53 
Beam length L (μm) 220−300 

Table 7. The average and standard deviation of pull-in voltage value of each test beam. 

LengthL (μm) Vpull-inVPI(V) Average 
VPI-ave(V) Standard Deviation△VPI 

220 12.27,12.32,12.32,12.47,12.82 12.44 0.20 
230 11.56,11.71,11.76,12.27,12.37 11.93 0.32 
240 10.91,11.41,11.46,11.51,11.56 11.36 0.23 
250 9.76,10.46,10.71,10.91,11.11 10.59 0.47 
260 9.76,10.06,10.16,10.26,10.56 10.16 0.26 
270 9.01, 9.11,9.52, 9.71, 9.96 9.46 0.36 
280 8.81, 8.86,8.86 ,9.16, 9.51 9.04 0.27 
290 8.06, 8.61, 8.86, 8.86,9.51 8.78 0.47 
300 8.06 ,8.11, 8.31, 8.56,8.61 8.33 0.22 
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5. Results and Discussion 

We substitute the experimental results in Table 7 into Equation (23) to extract Young’s modulus 
( ) and mean stress (σ0). Table 8 shows the extracted Young’s modulus ( ) and mean stress (σ0) of the 
two test beams when the length difference (ΔL) equals 50 μm. The extracted Young’s modulus ( ) and 
mean stress (σ0) are 132.01 ± 13.48 GPa and 3.4 ± 0.15 MPa, respectively.  

Table 8. Extracted Young’s modulus and mean stress of structural material fabricated by 
TSMC 0.18 μm 1P6M standard CMOS process. 

Length difference (μm) Length (μm) The extracted values by this work 
ΔL L1 L2 E (GPa) σ0 (MPa) 

50 

220 270 112.75 3.56 
230 280 147.87 3.15 
240 290 140.74 3.41 
250 300 126.68 3.48 

Average (Xave) 132.01 3.40 
Standard Deviation (ΔX) 13.48 0.15 

Variety of Standard Deviation VSD (VSD =ΔX/Xave) 10.21% 4.52% 

This work presents an algorithm for extracting Young’s modulus ( ) and mean stress (σ0) of 
structural materials of CMOS-MEMS devices by detecting the pull-in voltages of two micro 
bridge-type test beams. The overall deviations of the extracted Young’s modulus ( ) and mean stress 
(σ0) of the demonstrated materials are within 11% and 5%, respectively, when the two test beams have 
a length difference (ΔL) equal to 50 μm. The present method is very suitable for the implementation of 
the mechanical characterization of capacitive CMOS-MEMS devices in wafer level testing. The present 
algorithm can easily be written as a programming code and accompanied by an LCR meter to realize 
the wafer-level testing for CMOS-MEMS manufacture. 

Since this testing method needs to measure pull-in voltages of two test beams with different length, 
attention should be paid to the appropriate length design of the two test beams. Table 2 lists the 
geometrical parameters and Figure 7 shows the measured pull-in voltages of the fixed-fixed beams 
which are made of mono-crystalline silicon in published work [9]. The author selected any two beams 
and substituted the measured data and beam dimensions into Equation (23) to extract the Young’s 
modulus ( ) and mean stress (σ0). The same procedure is used to deal with the experimental results in 
Table 7, where the test beams are fabricated by a TSMC 0.18 μm 1P6M standard CMOS process. 
According to the extracted results, the extracted values show small standard deviations for large ΔL 
cases but with a large standard deviation for small ΔL cases in two kinds of common structural 
materials, such as the material made by the TSMC 0.18 μm standard CMOS process, and 
mono-crystalline silicon in (100) and (110) orientations. The relationship between the difference of test 
beams (ΔL) and the variation of the extracted values (VSD) by this work is shown in Figure 8.  
It indicates that the variation of Young’s modulus(VSD_E)and mean stress (VSD_σ0) will reduce by15% 
when ΔL is larger than 50 μm, even being as low as 2% for ΔL equal to 225 μm in mono-crystalline 
silicon testing cases. These evidences show that the algorithm presented in this work is robust in 
extracting mechanical properties at wafer-level testing when test keys with appropriate length design. 
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Figure 7. The measured the pull-in voltages of the fixed-fixed beams made of 
mono-crystalline siliconin (100) and (110) orientations in Osterberg’s work [9]. 

 

Figure 8. The variation of the extracted values by this work. 

 
6. Conclusions 

This paper presents a robust algorithm for extracting Young’s modulus, and mean stress of 
structural materials of CMOS-MEMS devices. By detecting the pull-in voltages of two bridge-type test 
beams, and applying the characteristics to the equivalent electromechanical models, and one can know 
the mechanical properties of thin films. The contributions of this paper may be described in detail  
as follows: 

First, the paper has demonstrated the present method with two common structural materials, such as 
the material made by the TSMC 0.18 μm standard CMOS process, and mono-crystalline silicon in 
(100) and (110) orientations. The extracted values by the present method are summarized in Table 9. 
The overall deviation of the extracted Young’s modulus, mean stress, and gradient stress of the 
structural materials made by the TSMC 0.18 μm standard CMOS process are within 11% and 5%, 
respectively. Besides, the deviations of the extracted Young’s modulus and mean stress are within 1% 
and 2% which are almost tenth of the deviations of Osterberg’s results [9] for mono-crystalline silicon 
in (100) and (110) orientations. Second, the study of the robustness of the present method with regards 
to the dimension effects of the test-key is discussed in this paper. For the dimension effects of the 
test-key, the variations of Young’s modulus (VSD_E) and mean stress (VSD_σ0) are discussed. According 
to the results shown in Figure 8, the authors infer that the VSD_E and VSD_σ0will be  
reduced within 15% for ΔL larger than 50 μm, and even within 2% for ΔL larger than 225 μm in 
mono-crystalline silicon testing cases. Therefore, the authors recommend that the two test beams 
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should have a length difference (ΔL) which is larger than 50 μm to decrease the dimension effect. 
Third, the CMOS-MEMS test-key can be set at the scribe line, and removed after testing. Therefore,  
it doesn’t need any extra area to proceed with structural material testing. Fourth, the present method is 
very suitable for the implementation of the mechanical characterization of CMOS-MEMS devices in 
wafer level testing since the testing signals are electrical signals. Moreover, the present algorithm can 
easily be written as a programming code and accompanied by an LCR meter to realize wafer-level 
testing for MEMS manufacture. 

Table 9. The extracted results for common structural materials. 

Common Structural Material The extracted values by this work 
metal 2 made by the TSMC 0.18 μm standard 

CMOS process 
E(GPa) σ0(MPa) 

132.01 ± 13.48 3.4 ± 0.15 
mono-crystalline silicon in (100) 134.9 9± 0.42 9.77 ± 0.14 
mono-crystalline silicon in (110) 167.48 ± 0.53 9.57 ± 0.08 
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