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Abstract: In this paper, a laboratory goniometer system for performing multi-angular 
measurements under controlled illumination conditions is described. A commercially 
available robotic arm enables the acquisition of a large number of measurements over the 
full hemisphere within a short time span making it much faster than other goniometers.  
In addition, the presented set-up enables assessment of anisotropic reflectance and 
emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables 
acquisition of either hemispherical measurements or measurements in the horizontal plane. 
Mounting a thermal camera allows directional observations of the thermal emittance. This 
paper also presents three showcases of these different measurement set-ups in order to 
illustrate its possibilities. Finally, suggestions for applying this instrument and for future 
research directions are given, including linking the measured reflectance anisotropy with  
physically-based anisotropy models on the one hand and combining them with field 
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goniometry measurements for joint analysis with remote sensing data on the other hand. 
The speed and flexibility of the system offer a large added value to the existing pool of 
laboratory goniometers. 

Keywords: reflectance anisotropy; BRDF; emittance anisotropy; laboratory goniometer; 
biophysical parameter retrieval 

 

1. Introduction 

Earth observation in the reflective solar domain can provide a number of key biophysical and 
biochemical products of vegetation, such as the fraction of absorbed photosynthetically active 
radiation, leaf area index, canopy structure, chlorophyll content and water content. The first two have 
been identified as essential climate variables (ECVs) by the Global Climate Observing System 
(GCOS) Steering Committee [1] and are key variables that are both used in surface process models and 
retrieved from remote sensing observations in the reflective solar domain. Various algorithms are used 
to derive these products, but they still mostly relate to nadir or directionally normalized observations [2]. 
There are only a few products that rely on estimates of the bidirectional reflectance distribution 
function (BRDF), for instance products from NASA’s Moderate Resolution Imaging Spectrometer 
(MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) [3,4]. 

For operational Earth observation applications multisensor data usage will be required to increase 
the number of observations within a given time period, particularly relevant in regions with frequent 
cloud cover [5]. This will result in an increase of high-quality data in time-series for monitoring 
activities. However, instability of retrieval algorithms to directional effects will degrade the accuracy 
of derived products. As a result, information on the BRDF of vegetation and soils is relevant for 
normalizing images taken under different illumination and/or viewing conditions [2], but on the other 
hand it has been shown that multi-angular observations provide additional information that can be used 
to improve the accuracy of retrieved products [5–7]. 

The BRDF of surface targets contains information on structure and composition that cannot be 
inferred from spectral properties alone [8]. The BRDF as defined by [9] is the ratio of the radiance 
reflected in a specific direction to the incident irradiance for a given illumination-viewing geometry 
and wavelength. The BRDF can be modelled by performing BRF (bidirectional reflectance factor) 
measurements at different viewing and illumination angles [10]. The BRF is the ratio of the radiance 
reflected from a target to the radiance from a lossless isotropic (Lambertian) surface for a given 
illumination-viewing geometry and wavelength. When using, for instance, a Spectralon reference 
panel instead of a lossless surface, this ratio has to be multiplied with the reflectance of the reference 
panel at the same illumination-viewing geometry and wavelength. 

Modelling the BRDF of targets using sampled BRF measurements can be done either in an 
empirical way or through physically-based models. Most research until now faces the problem of too 
few directional sampling combinations for optimally fitting a BRDF model. Multidirectional 
reflectance measurements acquired under controlled laboratory conditions can solve this problem 
because a large amount of directions can be sampled. Examples of such a laboratory set-up are the 
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European Goniometric Facility (EGO) of the Joint Research Centre [11], the Field Goniometer System 
(FIGOS) of the University of Zurich that can also be used in the laboratory [12], the Sandmeier Field 
Goniometer (SFG) of NASA Ames, which is based upon and nearly identical to the FIGOS design [13], 
the Israeli Goniometric Facility (IGF) of the University of Tel-Aviv [14], the University of Lethbridge 
Goniometer System (ULGS) [15] and the Compact Laboratory Spectro-Goniometer (CLabSpeG) of 
the Catholic University Leuven [16]. Some of these can also be applied in the field under natural 
conditions, but all systems are (a) limited in the flexibility of the system in terms of hemisphere size 
and measurement positions, and (b) taking a long time for sampling a full hemisphere, which causes 
problems for plants susceptible to changes in leaf angle and orientation due to changes in turgor in the 
plant tissue and changes in soil due to dehydration. All these goniometers measure reflectance 
anisotropy; we are aware of only one system that can also measure the anisotropy of thermal  
emittance [17]. However, this system is designed for field measurements and the azimuth angle has to 
be set by hand. 

We present a laboratory goniometer facility that is designed to assess the anisotropic reflectance 
behaviour of soils, leaves and small canopies under controlled illumination conditions. Advantages are 
the high measurement speed and the possibility of adjusting measurement distance depending on 
zenith/azimuth angle. In addition to a spectroradiometer, it is also able to carry a thermal camera. This 
laboratory goniometer system has been realized by Wageningen University (see Section 2).  

In the following sections we first describe the system. Next, three showcases with some first results 
are presented. As first case, the capacity to get fast reflectance measurements over the full hemisphere 
is illustrated. Subsequently, the flexibility of the system in terms of measurement set-up for doing 
image simulation by performing measurements in the horizontal plane is shown. Finally, mounting 
another sensor is illustrated by showing results for the thermal anisotropy of a vegetation target. At the 
end of this paper an outlook is presented with respect to BRDF modeling and the upscaling to a remote 
sensing level. 

2. The Laboratory Goniometer System 

The core of the goniometer system is an industrial robot arm, on which an ASD FieldSpec 3 
spectroradiometer and/or a NEC thermal camera can be mounted (Figure 1). In the following 
subsections the components of the system will be described. 

2.1. Kawasaki Robot 

The robotic system consists of a Kawasaki FS10E industrial robot, which can be programmed to 
reach every point within a 155 cm working radius due to the presence of six movement axes. It has a 
lifting capacity of 10 kg, which is enough to support simultaneous mounting of both a spectrometer 
and thermal camera. The position repeatability is ±0.1 mm, which is of major importance to obtain 
reliable repetitive measurements. The use of a robotic positioning system was also recommended 
before [12], because it is fast and highly reproducible. On average, taking a measurement and  
moving to the next position takes about 10 seconds. As a result, the target can be assumed constant 
while sampling a full hemisphere, which is an advantage compared to most other existing  
laboratory goniometers. 
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Figure 1. (a) Laboratory set-up with a Spectralon reference panel before covering the 
instruments with black materials; (b) laboratory set-up during the measurements: the walls 
are covered with panels that are painted with black latex and the floor, ceiling and the robot 
are covered with black PVC foil. 

 
(a) (b) 

In order to be used as a goniometer, the robot arm can be fully programmed in two modes: the 
“hemisphere mode” for hemispherical measurements and the “scan mode” for measurements in the 
horizontal plane. In the hemisphere mode there are a number of options, where the most common  
set-up is to measure view zenith angles from −90° to +90° off nadir. In this set-up the radius of the 
hemisphere can be varied from 25 cm up to 100 cm, although some positions cannot be reached at 
larger hemisphere sizes. Theoretically, one can measure an unlimited number of positions of the 
hemisphere. Positions are programmed in such a way that we also can take measurements close to the 
hot-spot, making sure that the robot itself is not in between the illumination source and the target 
(avoiding shadow casting by the instrument itself). The hot-spot position refers to the position where 
illumination and observation direction coincide precisely. 

The flexibility of the robot system even allows the positioning of the sensor below the horizontal 
plane, thus allowing measurement of the amount of light passing through an object. In the scan mode 
the sensor is moved in the horizontal plane, where grid spacing and height above the surface are (even 
per point) programmable.  

2.2. Illumination 

A 1,000 W Quartz Tungsten Halogen (QTH) lamp is used as artificial light source, with focused 
output beam [18]. QTH lamps are visible and near-infrared light sources used in reflectance 
spectroscopy because of their smooth spectral curve and stable output. In the near future we will study 
the need of further illumination improvement by using a collimator. 
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2.3. Sensors 

Spectral reflectance measurements are performed with an ASD Fieldspec 3 spectroradiometer. It 
performs reflectance and radiance measurements in the range of 350–2,500 nm. The spectral sampling 
interval is 1.4 nm at 350–1,000 nm, and 2 nm at 1,000–2,500 nm. The instantaneous field of view 
(IFOV) of the instrument can be selected as 1°, 8° or 25° using fore-optics. The hemisphere can be 
sampled continuously up to a few degrees from the hot-spot position. Since both the spectroradiometer 
and the illumination source have a conical field of view/illumination, we actually measure a biconical 
reflectance factor [19]. The steering of the robotic arm and the reading of the spectroradiometer are 
fully automated in such a way that biconical reflectance measurements are obtained at a fixed, 
predefined distance from the target at predefined positions (viewing angles).  

In addition to reflectance measurements, thermal emittance can be measured with a NEC TH9100 
Infrared Thermal imager. It is a thermal-infrared imaging camera, operating monospectrally in the  
8–14 μm region. The camera has a temperature resolution of 0.02 K (with signal-to-noise 
improvement) and with an IFOV of 1.2 mrad it creates images of 320 × 240 pixels. So, in addition to 
the reflectance anisotropy, also the thermal anisotropy properties can be measured.  

2.4. Software 

The total set-up is controlled by the “Control PC” with custom built software. A regular desktop 
computer or laptop can be used, as long as the requirements for connection options are met. The 
equipment is connected with the Control PC (Figure 2) through Ethernet (Robot), Wifi (Spectrometer) 
and Firewire (Thermal camera).  

Figure 2. Topology of the goniometer facility. 
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On the Control PC a project directory is created where all information about the measurement is 
stored, including configuration settings, calibration parameters and the measurement results. Various 
wizards provide measurement options: the instrument selection, the performance of required 
calibrations and the selection of hemispherical or plane measurement coordinates. The measurement 
settings can be saved to an XML file, or imported from previously saved or edited XML files. When a 
position is reached during the measurement sequence, the measurements are performed and directly 
stored. In this way, there is no loss of data if the process has to be aborted during the measurement of 
the full hemisphere or plane. The exact time and position of each individual measurement are stored in 
the file name, while the raw data are stored in separate text files. These text files contain the 
wavelength, digital number, radiance and reflectance for the spectral measurements and absolute 
temperature values for the thermal measurements.  

2.5. Measurement Environment 

To avoid unwanted scattering, the walls of the laboratory are covered with wall panels that are 
painted with black latex. The robot, the floor and the ceiling are covered with black PVC foil as can be 
seen in Figure 1(b). Both the latex and the foil have a reflectance of less than 3% in the visible and NIR. 

3. Results 

In this section we will present three showcases of first results obtained with the laboratory 
goniometer system. In Section 3.1 attention is paid to hemispherical reflectance measurements. Since 
this was the main goal of this goniometer set-up, most attention is paid to these measurements. These 
anisotropy measurements were also used to test the performance of the system. In Section 3.2 an 
example is given showing measurements performed in the horizontal plane. Finally, Section 3.3 
illustrates the showcase of obtaining the thermal anisotropy of vegetation.  

3.1. Hemisphere Mode and System Performance 

40 × 40 cm2 plots with 18 days old lawn grass (Lolium perenne L.) and watercress (Nasturtium 
officinale R.Br.) served as the objects for the biconical reflectance measurements. These targets were 
chosen for their different leaf angle distribution (LAD), because it is expected that this structural 
property has a major effect on reflectance anisotropy. Lawn grass has an erectophile LAD and watercress 
has a planophile LAD. Soil background was a dark mull soil with a 17% organic matter content. 

For the measurements, the sensor−target distance was set at 40 cm. The IFOV of the ASD was set  
at 8°. Measurements on the lawn grass and watercress were taken at an illumination zenith angle  
of 45°. The targets were measured at a resolution of 30° over the full azimuthal plane and of 15° for 
zenith angles from −60° to +60°. Each scan started and ended with a series of measurements over the 
principal plane with a zenith angle resolution of 5°. Around the hot-spot additional measurements were 
taken. Azimuth angles of 240°, 270°, 300° and 330° at a zenith angle of 60° could not be measured 
because the robotic arm was casting shadow on the target at those positions. Per scan, 96 measurements 
were taken at 62 different positions (Figure 3). Before and after each scan, a Spectralon panel was 
measured from nadir for calculating (biconical) reflectance factors. 
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Figure 3. Measurement positions with an illumination zenith angle of 45°. L is the position 
of the light source and H is the hot-spot. 

 

In Figure 4 the spectral signatures of lawn grass are shown for different viewing angles. For clarity, 
these measurements are separated into two graphs, showing the spectral signatures in backward scatter 
direction (Figure 4(a)) and in forward direction (Figure 4(b)). Lowest reflectance occurred closest to 
nadir, because at this position most of the dark soil background was visible. With increasing off-nadir 
viewing angle more leaf layers were visible, yielding an increase in the measured reflectance factor. As 
expected, close to the hot-spot (Figure 4(a)) the highest reflectance values were obtained. For the 
watercress the highest reflectance was also found close to the hot-spot (results not shown), but 
differences between the distinctive angles were less than the differences found for the grass. This can 
be explained by the more erectophile LAD for grass, giving more internal shadow casting within the 
canopy. This shadow is not observed when looking at the hot-spot position, yielding highest 
reflectances at that position. 

Figure 4. Lawn grass reflectance at a 10°, 20°, 30°, 50° and 60° viewing zenith angle in 
the principal plane at an illumination angle of 45°: (a) is the 18 days old lawn grass in the 
backward scatter direction; and (b) is the 18 days old lawn grass in the forward scatter 
direction. In both graphs a measurement from the nadir position (zenith angle is 0°) is 
included as a reference. 

 

(a)  (b) 
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3.2. Scan Mode (Horizontal Plane) 

In this example pine tree (Pinus sylvestris L.) seedlings of about 40 cm height were used. Nine trees 
were positioned 30 cm apart in a 3 × 3 grid. The seedlings had one dominant shoot that is irregularly 
shaped. Due to numerous side branches, an irregular canopy pattern was created. The sensor-target 
distance was set at 40 cm and the IFOV of the ASD was set at 8°. This resulted in a pixel size of  
5.6 cm. Measurements of a 50 × 50 cm2 area were acquired in scan mode, with a grid spacing of 5 cm. 
So, there was a small overlap (about 12%) between pixels. An ASD halogen lamp was mounted nadir 
positioned on the robotic arm to ensure equal illumination of the target at all locations. The area that 
can be measured in this way is much larger than the area that is uniformly illuminated by the QTH 
lamp when fixed in one position. 

Figure 7 shows interpolated surface reflectance measurements at two wavelengths as an example, 
namely 550 nm (in the green) and 900 nm (in the near-infrared). The black dots indicate the positions 
at which the measurements were taken. Due to the dark soil background the upper part of the main 
shoot showed up as bright spots in the figures. This applied both to the green and near-infrared 
wavelengths. Peak reflectance was about 0.03 in the green, whereas it was about 0.12 in the  
near-infrared. The low reflectance in the near-infrared can be explained by the fact that we were 
dealing with a sparse canopy (and thus measuring a great proportion of the dark soil). However, these 
measurements show that the system in scan mode is very well able to capture the spatial heterogeneity 
of this target. The total image cube contains 2,150 spectral bands, although the shortwave infrared 
wavelengths produced noisy results with the described illumination.  

Figure 7. Interpolated biconical reflectance measurements of a 50 × 50 cm2 area covered 
with small pine trees at (a) 550 nm, and (b) 900 nm (illumination angle close to nadir, 
constant view zenith angle = 0° in scan mode). 

(a) (b) 

3.3. Thermal Anisotropy 

As stated before, thermal emittance measurements can be performed in addition to reflectance 
measurements. In this example the thermal anisotropy of a fully grown grass (Lolium perenne L.) 
canopy has been measured with the thermal camera (Section 2.3). In combination with a sensor-target 
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Multi-angular laboratory measurements can be used for exploration of the BRDF effect and, 
subsequently, for validation of BRDF models [21,22]. Most research until now faces the problem of 
too few directional sampling combinations for fitting a BRDF model. Multidirectional reflectance 
measurements acquired under controlled laboratory conditions can solve this problem because a large 
amount of directions can be sampled. Modelling the BRDF of targets using sampled biconical 
reflectance measurements can be done either in an empirical way or through physically-based models. 
Empirical and physical models can be combined in semi-empirical (hybrid) models, which are more 
versatile. Semi-empirical models are often a linear combination of three terms consisting of isotropic, 
surface and volumetric functions [23,24]. These terms are called kernels and therefore these models 
are called kernel-driven or kernel-based models [25]. Inversion of such additive models is relatively 
straightforward. Since linear semi-empirical models have difficulties to describe the complex BRDF of 
vegetation at very high IFOVs, multiplicative semi-empirical models such as the Rahman-Pinty-Verstraete 
(RPV) model [26] might be used. The latter models require iterative inversion but this is relatively 
straight forward and implemented already [27]. Physical RT models rely on physical principles 
describing the interaction of solar radiation with a target, also including the directional effects. 
PROSAIL has become one of the most popular physical RT models due to its ease of use, robustness 
and consistent validation results [28]. PROSAIL or the extended soil-leaf-canopy (SLC) version [29] 
can simulate directionality of observations, but they are still rather simple in that they represent the 
canopy as a horizontally homogeneous turbid medium. More complex 3D radiative transfer models 
such as DART [30] are particularly interesting for simulating BRDF properties. Combining  
semi-empirical and physical models might be interesting because the semi-empirical model simplifies 
the physical model with respect to the variation occurring in the angular sampling of the sensor and it 
might be a way to invert the physical model [25]. This again would favour a hybrid approach. 

Laboratory goniometer measurements have the advantage of control of the illumination conditions 
and diffuse light can be neglected. On the other hand, the light source is at a limited distance from the 
target and as a result the light is not perfectly parallel as it is with the sun as illumination source [22]. 
In addition, when preparing to measure new effects such as single scattering albedo or scattering phase 
functions, very stable and controlled environments like in a laboratory are a requirement, in particular 
when using these methods in scaling approaches [31]. With respect to the target no wind effects are 
present, so the target will not move during the measurement sequence. Field goniometer measurements 
leave targets in their natural environment. Natural illumination by the sun is used. Disadvantage is that 
illumination can vary during the measurement sequence, particularly due to atmospheric effects. Also 
the diffuse illumination component cannot be neglected. Therefore, in the end scaling effects should be 
studied by linking research with laboratory goniometers with field goniometers and remote sensing 
observations [21]. 
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