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Abstract: Error bounds for nonlinear filtering are very important for performance 
evaluation and sensor management. This paper presents a comparative study of three error 
bounds for tracking filtering, when the detection probability is less than unity. One of these 
bounds is the random finite set (RFS) bound, which is deduced within the framework of 
finite set statistics. The others, which are the information reduction factor (IRF) posterior 
Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are 
introduced within the framework of finite vector statistics. In this paper, we deduce two 
propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is 
tighter than the IRF PCRLB, when the target exists from the beginning to the end. 
Considering the disappearance of existing targets and the appearance of new targets, the 
RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing 
the uncertainty of target existence. The theory is illustrated by two nonlinear tracking 
applications: ballistic object tracking and bearings-only tracking. The simulation studies 
confirm the theory and reveal the relationship among the three bounds. 

Keywords: posterior Cramer-Rao lower bound (PCRLB); detection probability;  
target state estimation; random finite set (RFS); information reduction factor (IRF) 
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1. Introduction 

In the Bayesian framework, the complete posterior density of the state is necessary, in order to 
obtain the optimal recursive random state estimate for a classical nonlinear filtering problem by using 
various sensors [1], but this problem has no analytic closed-form solution. Therefore, in practical 
applications nonlinear filtering by some form of approximation is performed, such as sequential Monte 
Carlo estimation [2]. Although a closed-form solution is absent, the best achievable second-order error 
performance for nonlinear filtering can be limited by an effective error bound [3]. 

Error bounds for nonlinear filtering can be applied in many fields. Firstly, error bounds can be used 
as a performance evaluation of suboptimal nonlinear filters and as a judgment of the effects of 
introduced approximations. For example, error bounds were applied in the cases of bearings-only 
tracking by a moving platform carrying sensor [4] and ballistic target tracking [5]. Secondly, an error 
bound was also applied as a tool in sensor system design [6], as it provides a guide to best achievable 
performance and help in sensors management. 

There is a long history of the development of the error bounds for nonlinear filtering. Initially, the 
Cramér-Rao lower bound (CRLB) was introduced as a bound of the estimation when the state 
dynamics are deterministic, and a comprehensive review of pre-1989 attempts are presented in [7]. In 
1998, [8] was considered as a key development for recursive calculation of the Fisher information 
matrix (the inverse of the CRLB) with further extensions applicable to a larger class of nonlinear 
models given in [9]. Because the state dynamics are modeled as being a stochastic vector with process 
noise, the bounds of [8] and [9] are referred to as Posterior Cramér-Rao lower bound (PCRLB). The 
PCRLB in [8] and [9] relies on the assumption that the probability of detection PD = 1 and the false 
alarm probability PFA = 0. 

The assumptions of the sensors where PD = 1 and PFA = 0 are unrealistic in target tracking 
applications. The realistic scenarios are the cases where PD < 1 and PFA > 0, but this introduces an 
additional level of complexity for any estimation method, because it is necessary to consider the effect 
of the uncertainty in the sensor measurement origin, in addition to the uncertainty in the random target 
state. In [10], the effect of uncertain measurements is to multiply the Fisher information matrix by a 
constant factor less than unity, and this factor is referred to as the information reduction factor (IRF). 
Another PCRLB has been introduced in [11] for nonlinear filtering in the case where PD < 1 and  
PFA = 0. The solution is based on the enumeration of all possible miss/detection sequences. The bound 
has been proved as the exact bound via numerical simulations [12]. The method to calculate this bound 
is named Enumeration Method (ENUM). ENUM PCRLB is tighter than IRF PCRLB, but the 
computational complexity of ENUM PCRLB grows exponentially with time. Therefore, as discussed 
in [12], ENUM PCRLB is computationally feasible for a small prediction time, while IRF PCRLB is 
more suitable to an extended prediction time. 

All the bounds mentioned above are based on the assumption that the target exists from the 
beginning to the end. However, the appearance of the target varies with time in many practical 
situations. Moreover, we cannot determine whether the target exists or not from the measurements, 
because it is unlikely to know whether there is missing detection or there are false measurements, 
especially in defense and surveillance [13,14]. Traditionally, data association is introduced to solve 
this problem and apply the PCRLB, but it is difficult to ensure that data association is right. Recently, 
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to extend the single-target Bayesian formula to multiple targets, target states and sensor measurements 
are modeled as random finite sets (RFS) [15]. There are many tracking algorithms, such as [16] and [17], 
based on RFS statistics, and they generally have ignored the issue of data association.  

Because both target states and estimates are modeled as RFS, traditional Euclidean distance could 
not be applied for calculating the error. Therefore, a meaningful distance named Optimal Sub-pattern 
Assignment (OSPA) distance in [18] and [19] is defined. This definition has been widely used in 
tracking algorithms and their performance evaluation ([16] and [20]). 

For the problem of the error bound in the framework of finite set statistics, [18] has given a  
non-recursive bound. In our work [20], we use random set models and OSPA to deduce a recursive 
error bound for a tracking system, and the bound is named RFS bound. When the RFS bound is 
deduced, the disappearance of existing targets and the appearance of new targets are taken into 
account. This problem is very important in defense and surveillance [13], since the uncertainty of 
targets has a great impact on the calculation of error bounds. 

The paper presents a comparative study of the RFS bound in [20] and the PCRLBs in the case 
where detection probability PD < 1, such as IRF PCRLB and ENUM PCRLB. We discuss this problem 
in two cases, one is when the target exists from the beginning to the end, and the other is when new 
targets might appear and existing targets could disappear. For the first case, we deduce two 
propositions. They prove that the RFS bound is equal to the ENUM PCRLB with four conditions and 
is always tighter than the IRF PCRLB. For the second model, these three bounds are hard to compare 
directly both quantitatively and qualitatively. Fortunately, their relationship is illustrated by two target 
tracking applications: ballistic object tracking and bearings-only tracking. Finally, these theoretical 
results are confirmed by simulations. Moreover, these examples reveal that the RFS bounds are tighter 
than the IRF PCRLB and ENUM PCRLB as the scan number increases, by introducing the uncertainty 
of target existence. 

It is noted that the result in this paper is for the condition of sensors where PD < 1 and PFA = 0. The 
detection event given by a false alarm is omitted because the probability of false alarm is much smaller 
than the detection probability, such as in a typical radar system Pd = 0.9 and PFA = 10−6, as indicated  
in [11] and [12]. The case where PD < 1 and PFA > 0 will be examined in future work. 

In this paper, Section 2 introduces some background knowledge about the dynamic and sensor 
models, the PCRLB and the main theoretical results of ENUM PRRLB and IRF PCRLB. Section 3 
reviews the basic knowledge of random set statistics, the random set dynamic and measurement 
models and the RFS bound. Section 4 compares these three bounds in two cases: when the target exists 
from the beginning to the end; and when targets might appear or disappear. Section 5 is devoted to the 
application examples: the tracking of ballistic missiles in the re-entry phase and bearings only tracking. 
Conclusions are given in Section 6. 

2. The Bounds for Random Vector Estimation with PD < 1 

2.1. State and Measurement Radom Vector Models 

For a discrete-time nonlinear filtering problem, the target state is modeled as a random vector, and 
the state dynamic equation is given by: 
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 (1)

where xk ∈ Rm is the target state at time step k, m is the dimensionality of the target state, fk is the state 
transition function, and wk is a zero-mean white Gaussian process noise, with covariance matrix Qk. 

The sensor measurement model is a function of the target state, in which there is a single sensor and 
a single measurement at each time step. There are no false alarms PFA = 0, while there can be missed 
detections PD < 1. Each target only generates one measurement, and when the target is detected, the 
measurement equation is given by: 

 (2)

where zk ∈ Rr is the observation at time step k, hk is the non-linear observation function, and vk is a 
zero-mean white Gaussian noise, with covariance matrix Rk. 

2.2. The PCRLB 

The covariance of the estimate of xk is is an unbiased state estimator based on the sequence of 
sensor measurements {z1,···,zk} before time step k. This estimator has a lower bound expressed as 
follows [21]: 

 (3)

where Jk is referred to as the Fisher information matrix (FIM), and the Pk = Jk
−1 is the PCRLB. The 

inequality in (3) means that the difference Ck − Jk
−1 is a positive semi-definite matrix. 

As in [11], for the state dynamics equation in (1) and the measurement equation in (2), the recursive 
formula of FIM is as follows: 

 (4)

where: 

 (5)

 (6)
 (7)

 (8)

The matrices Fk and Hk are respectively the Jacobians [8] of nonlinear functions fk and hk, which are 
defined as: 

 (9)
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 (11)

where x is an m-dimensional estimated random parameter. 
The initial FIM is calculated from the prior probability function p0(x0): 

 (12)

2.3. Information Reduction Factor PCRLB 

For the case where PD < 1, as in [10], the effect of potential missed detections is to scale the 
measurement error covariance by a factor 1/PD. In the terminology of [10], this scale factor is referred 
to as an “information reduction factor (IRF).” Hence, the recursive FIM is given by: 

 (13)

Then, the PCRLB calculated by IRF method is denoted by Pk (IRF), and is given by Pk (IRF) = Jk
−1. 

2.4. Enumeration Method PCRLB 

In [11], the authors worked on the problem of calculating the PCRLBs for the cases where PD < 1 
and PFA = 0. They introduced the detection/miss-detection sequences to determine the PCRLB. Here Si 
is a detection/miss-detection sequence. 

The uncertain target dynamics is as: 

 
(14)

where dk + 1(Si) is defined in: 

 (15)

Then, as introduced in [11], the PCRLB calculated by Enumeration method is denoted as 
Pk(ENUM), and is given by: 

 (16)

At time step k, there are 2k possible scenarios Si. Therefore, Pk(ENUM) is the average over the 
scenario dependent bounds Jk(Si)−1. 

3. The Bound for Random Set Estimation with Pd < 1 

3.1. Random Finite Set 

Random finite set (RFS) is a random variable which takes value as a finite set [18]. The element of 
this set is an unordered random variable and the number of elements is random and finite. Finite set 
statistics (FISST) were developed by Mahler and are widely considered as an effective tool for multi-target 
tracking systems. In the perspective of modeling the tracking system, two types of RFS are often used: 
Poisson RFS and Bernoulli RFS. Based on the model of Poisson RFS, a filter named Probability 
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Hypothesis Density (PHD) filter [15] is applied in several fields [16,17]. However, PHD is a first-order 
statistical moment of the multi-target posterior probability, but not the posterior probability itself. 

The filter derived from Bernoulli RFS attracts substantial interest and is used widely recently [18,20]. 
As in [18], here a Bernoulli RFS on a space S is defined by two parameters b and ψ, where  
0 ≤ b ≤ 1 and ψ(•) is a density on X: 

 (17)

where the f(X) is the density of the RFS X in the space of finite sets.  
For the function g taking value on the set X, the set integral of this function is: 

 (18)

The expectation of the function h on a RFS of density g is: 

 (19)

For the error between the set X and its estimation , we should first define the distance 
between these two sets. This distance is based on the optimal sub pattern assignment (OSPA)  
metric [19]. For there is a single sensor and a maximum of a single measurement at each time step, the 
measurement set is Z and the OSPA error is defined as in [18]: 

 (20)

where: 

 (21)

 (22)

 (23)

 (24)

For the cardinality of X and the estimation set  may be zero or one, (22) and (23) are defined 

to the error in cardinality mismatches. 

3.2. State and Measurement Radom Set Models 

The state dynamics and measurement model are as similar as what in [20]. Since the target in either 
in “present” or “absent” state, the state of the target is modeled by Bernoulli RFS as introduced in (17). 

For the dynamical model, the Markov transition density is defined by: 

 (25)
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and: 

 (26)

where r ∈ [0,1] represents the probability of the state of the target at time step k + 1 surviving from 
the state at time-step k or remains empty. It means, conditional upon Xk = {xk}, that this target 
disappears with a probability of 1 − r. If there is no target at time-step k, a new target would bear with 
a probability of 1 − r. The target surviving probability is r means that the cardinality of target state set 
remains one form time k to k + 1 with a probability of r, while the probability of keeping no target is r 
means that the cardinality keeps zero form time k to k + 1 with a probability of r. Therefore, r is called 
maintenance probability of the cardinality of target state set. is the probability density of a 
transition from xk state to xk + 1, which can be calculated by (1). 

The prior probability function of the state set is also Bernoulli RFS: 

 (27)

where b ∈ [0,1] represents the probability of the target existing initially, which is named as initial 
existence probability. 

The probability of detection is PD < 1. The sensor measurement model is:  
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 (29)

where is the measurement likelihood when the target is existing and detected, which can be 

calculated by (2). The measurement likelihood in (28) indicates there is some uncertainty in detection, 
and (29) means there is no false observation.  

3.3. Random Finite Set Bound 

In [20], the authors worked on the problem of calculating the PCRLBs for the cases of PD < 1 and 
PFA = 0. They proposed the possible time-sequence of observation-sets is given as follows: 

 (30)
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(32)

For certain time-sequence of observation-sets , the error bound  is as follows: 

 (33)

where: 

 (34)

Pk,n is the bound and Jk,n is the FIM, for time-sequence of observation-sets . 
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As defined in (32), the measurement is empty  corresponds to the sequence number  
1 ≤ n ≤ 2k, at time step k + 1. The reason of (37) is the estimator can have two possible assignments for 
the case where the measurement , which are:  

 (41)

and:  

 (42)

where estimation  is the prediction, whose bound is calculated by (14), when . 
Therefore, the lower bound on the estimate error will be the minimum of the bounds on the  
two estimations.  

Recursive relationships of all above auxiliary elements are derived rigorously in [20]. First, 
according (14) and (32), when time-step k ≥ 0, n = 2k + 1, the FIM Jk + 1,n obey the recursion: 
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When k ≥ 1: 

 (49)

Then the recursive form of bound recursions is turned up, and we obtain the recursive Pk,n. 

4. Comparison of Three Bounds 

This section presents a comparison of the RFS bound, the IRF PCRLB and the ENUM PCRLB, as 
introduced in the previous sections. This problem is discussed in two cases. Section 4.1 introduces the 
first case, where the target exists from the beginning to the end. Section 4.2 is devoted to the other 
case, where the new targets might appear and existing targets could disappear. In Section 4.1, we 
firstly deduce a comparable form of the RFS bound. Then, this form of bound is applied to compare 
with ENUM PCRLB in Section 4.1.2, while it is also used to compare with IRF PCRLB in Section 
4.1.3. In Section 4.2, these three bounds are compared directly both quantitatively and qualitatively. 

4.1. Case I: Target Exists form the Beginning to the End 

4.1.1. Comparable form of Random Set Estimation Bound 

All PCRLBs are based on the assumption that the target always exists. In order to compare the 
bound in [20] to PCRLB, we firstly introduce the relationship between the bound and the probability of 
the state set is not empty: 

Proposition I: if both the 
Condition1: 

 (50)

and 
Condition2:

 
 (51)

are satisfied, the bound calculated in the framework of random finite set is as follows: 

 
(52)

where: 
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Proof: 
Assume that: 

 (53)

As the number of the scans of measurements increases, Condition 2 should be met easily. Then 
from (53), with the Condition 2, we can deduce that: 

 
(54)

then: 

 
(55)

Combining the definition of pk + 1,n in (40), it is easy to derive that: 

 (56)

Because of Condition 1 that , it is clear that: 

 (57)

As defined in (38) and (39), the inequality (57) means that: 

 (58)

Then, the bound for a time-sequence of observation-sets  is: 

 (59)

Proposition I denotes that, when the probability of not empty state set is more than which of empty, 
the bound is in the form that .  

4.1.2. Comparison of Enumeration PCRLB and Random Finite Set Bound 

The calculation of PCRLB is based on the assumption that the target exists from the beginning to 
the end. Moreover, there is no false alarm. For the RFS bound, as defined in (40), this assumption 
means that the state set is impossible to be empty: 

 

(60)
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Therefore, the bound calculated by (37) is simplified as: 

 (61)

Then, the calculation of Pk + 1(RFS) in (35): 

 
(62)

As indicated in (47), the probability  can be divided into four parts, and thus the bound 

can be written as a sum of four parts: 

 

(63)

Although we have the recursion of the conditional probability as (49), the 
relationship between this conditional probability and the model parameters should be more clear, in 
order to compare this bound to the PCRLB. Such relationship is denoted as follows: 

At time step k + 1, for the sequence number 1 ≤ n ≤ 2k − 1, if it is satisfied that: 
Condition 3: the maintenance probability is the unity as: 

r = 1 (64)

Condition 4: the initial probability is the unity as: 

b = 1 (65)

Then the conditional probability  is as follows: 

 (66)

Proof:  
For the case where the false alarm probability PFA = 0, under the assumption that there is always 

one target, the probability of no measurement is equal to the missed—detection probability, i.e., 1 − PD. 
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Additionally, when , using (48), it is clear that pk + 1,n = 0,1 ≤ n ≤ 2k. 

From (63) and (66), we obtain that: 

 
(67)

As in [11], the probability of occurrence of a particular detection/miss sequence  is given 

by:  

 (68)

where the number of detections in a particular sequence  is ∆k,n. 
Rewrite the EUNM PCRLB in (14) and (16) as follows: 

 

(69)

Therefore, we can now show the relationship between Pk + 1(RFS) and Pk + 1(EUNM) as follows: 

Proposition II: For the case of PD < 1 and PFA = 0, relying on Condtion1, 2, 3 and 4, the following 
result is true: 

 (70)

Proof: By Proposition I and , we obtain the form of RFS bound as (67). 

(70) is obvious from (67) and (69). This means that Pk(RFS) reduces to Pk(ENUM) with time, when the 
target exists from the beginning to the end. 

4.1.3. Comparison of Information Reduction Factor PCRLB and Random Finite Set Bound 

In [12], for the case where PD < 1 and PFA = 0, the authors indicated the relationship between the 
ENUM PCRLB and IRF PCRLB as: 

 (71)
when the following conditions are met: 
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Condition 6:  

 (73)

It is obvious that Condition 5 and Condition 6 are satisfied when we get the recursive bound for 
random finite set in [20].  

Therefore, for the case where PD < 1 and PFA = 0, relying on Condtion 1, 2, 3, 4, 5 and 6, the 
following result is true: 

 (74)

All above proofs are in the case of PD < 1 and PFA = 0. 
When the probability of detection is zero or unity, such as PD = 1 or PD = 0, as indicated in [12], all 

the three bounds are identical: 

 (75)

where the Conditions 1, 2, 3 and 4 should be satisfied. 

4.2. Case II: Target Appears or Disappears with Probability 

All PCRLBs are based on the assumption that the target exists from the beginning to the end. 
However, the existence of the target is difficult to be deterministic, with phenomena such as target 
spawning, new-born targets or disappearing ones. This problem finds lots of applications in defense 
and surveillance [13,14], where it is unknown whether the target exists or not and the aim is to 
determine the existence of the target and its state from the sensor measurement [18]. In the traditional 
framework, the problem is solved by data association, but data association is complicated and is still an 
open question for some applications. For example, when a target has disappeared but there is a false 
detection, we might mistakenly use the PCRLB to limit its error. 

In fact, there are many tracking algorithms, such as [15], [16] and [17], based on RFS, and they 
have generally ignored the issue of data association. For these algorithms, the state of targets and the 
sensor measurements should be modeled as RFS. Moreover, the target uncertainties, such as spawning,  
new-born and disappearing targets, are all described by different RFSs. At the same time, the 
uncertainties of observation, such as PD < 1 and PFA > 0, are also modeled by RFSs. Therefore, the 
bound deduced in the framework of the finite set statistics is more suitable than PCRLB, when there 
are abundant uncertainties of target dynamics and sensors detection.  

Although the RFS bound Pk(RFS) is different with ENUM PCRLB Pk(ENUM), the comparison 
between them is difficult. On one hand, as discussed in Section 4.2, if the target always exists, RFS 
bound Pk(RFS) is similar with the Pk(ENUM), when four conditions are met, but in this case, the 
meaning of RFS bound Pk(RFS) is reduced. On the other hand, when targets might appear or 
disappear, RFS bound Pk(RFS) is different with PCRLB, and thus the meaning of Pk(RFS) is 
significant. Unfortunately, when targets appear or disappear with certain probability, Pk(RFS) and 
Pk(ENUM) cannot be compared directly by quantitatively. 

The quantitative comparison is difficult. The reason is that the RFS bound and ENUM PCRLB are 
calculated by different models. The model for calculating Pk(ENUM) is given in Section 2.1, while the 

( ) is positive definite for all k i iS SJ

( ) ( )k kRFS IRF>P P

( ) ( ) ( )k k kRFS ENUM IRF= =P P P
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model for Pk(RFS) is shown in Section 3.2. For the models in Sections 2.1 and 3.2, though the state 
dynamics are the same and the measurement likelihood functions are also similar, when the target 
exists and it is detected, these two models are still different. The reason is that the model of Pk(RFS) 
can take the target appearance or disappearance into account, but the model of Pk(ENUM) cannot. 
Such a difference leads to that the recursions of  are different. For example, to obtain 
Pk(RFS), the probability of certain time-sequence of observation-sets  is calculated by (47) 
and (49), which is a function of the maintenance probability r, the detection probability PD and the 
conditional probability at k − 1 step . But, when Pk(ENUM) is calculated, the 
probability is only decided by the detection probability PD as in (68), and moreover, it is  
not recursive. 

The qualitative comparison analysis is also difficult. If we only considered the uncertainty brought 
by new-born and disappearing targets, the RFS bound Pk(RFS) should be bigger than PCRLB. 
However, when sensor measurement is empty, the estimation can possibly be empty. In this case, if the 
target state is empty, the error is zero, as defined in (24). Therefore, the uncertainty brought by 
measurement is reduced, and thus the Pk(RFS) might be smaller than PCRLB. In conclusion, the 
uncertainty of target existence and the method of calculating estimation error have the opposite effect 
on the RFS bound Pk(RFS). 

Although it is hard to determine that the bound Pk(RFS) is more than PCRLB or not, for targets 
appearing or disappearing, there are abundant application cases, which could show the relationship 
between the bound Pk(RFS) and PCRLB. 

5. Application Examples 

In this section, two examples are used to illustrate previous results. In the first case, we give an 
example to show how the four conditions in Section 4 influence the relationship between the RFS 
bound Pk(RFS) and PCRLB, when the target exists from the beginning to the end. Then, by both the 
two cases, we discuss the relationship between Pk(RFS) and PCRLB with varying the parameters of 
RFS model, when targets might appear or disappear. 

5.1. Ballistic Object Tracking on Re-Entry 

Online estimation of the kinematic state of a ballistic object re-entering the atmosphere is an 
important problem. This section used a simple motion model as in [12]. In order to simplify the model, 
we use Euler approximation with a very small integration step  to get the dynamic equation: 

 (76)

where T is the sampling scan and  is an integer, so the relationship between discrete-time 
indices k and l is . The state vector is xl = [hl vl βl], where hl is the object height, vl is the 
velocity and βl is the ballistic coefficient. Other parameters in the state equation are as follows: 

(77)
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(78)

 
(79)

The exponentially decaying model of air density is adopted as , where γ = 1.745 

and . The covariance matrix Ql of process noise is given by: 

 (80)

The radar measures the height of target with zk and at regular intervals of Ts. The measurement 
equation is:  

 (81)

Where H = [1 0 0], and the variance of measurement noise is given by R = σ2 
r . 

The prior distribution is assumed Gaussian with covariance, and the initial FIM is calculated as in (12): 

 (82)

where σ2 
β  is selected to cover all possible values of the ballistic coefficient.  

The Jacobian defined by (9) is given by:  

 (83)

where: 

 (84)

(85)

 (86)

Following parameters are applied in this example. The initial target state vector x0 = [55,000 m  
300 m/s, 22,500 kg/ms2]. The integration time τ = 0.1s and the sampling interval T = 1 s. The variances 
σr = 300 m and σβ = 10,000 kg/ms2. 

Here we set e1 = e0, and thus the Condition 1 is met. In this example, we always set b = 1 in (27). In 
other words, the Condition 4 is met. Condition 5 and 6 are also satisfied in this case. 

Figures 1 and 2 show the root-mean-square error (RMSE) bound between two sets Xk and 
 in (a) height and (b) velocity for twenty scans, when the target exists from the beginning 

to the end. The solid lines show the RFS bound Pk(RFS). The dashed lines represent the PCRLBs, 
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where Pk(ENUM) is shown by the blue one and Pk(IRF) is shown by the red one. All above bounds are 
calculated at PD = 0.9. The black dashed line is the bound for the detection probability PD = 1. 

In Figure 1, the two solid lines show the bound based on RFS model Pk(RFS), and the maintenance 
probability maintains r = 1. This means the target exists from the first scan to the last one, and thus it 
meets the Condition 3. 

Figure 1. Comparisons of bounds when the target exists from the beginning to the end with 
different setting cardinality mismatches: (a) Height (b) Velocity. 

(a) (b) 

When we compare the two solid lines, Figure 1 shows the influence of Condition 2. The green  
solid line is for the case where the Condition 2 is satisfied except in the initial steps, because we set  
e1e1

T = e0e0
T = P0. Therefore, as the scan number increases and measurements become more, the 

Condition 2 is satisfied. In this condition, we can see that Pk(RFS) shown by the green line is equal to 
Pk(ENUM), as discussed in Section 4.1. If there is e1e1

T = e0e0
T = 0.5P0, the Condition 2 is not met, as 

shown by the purple solid line. At the beginning, the purple line is below the green one, because its 
cardinality mismatches e0 and e1 are smaller. But after these scans, the purple line is more the green 
one. In conclusion, by the influence of wrong settings e0 and e1, Pk(RFS) shown by the purple line is 
not equal to Pk(ENUM), since the selection of  in (37) is mistaken. After 13 scans, they are equal. 

Although we were unable to prove the convergence of the two bounds, there is an intuitive 
explanation. Because the target exists from the beginning to the end, and the detection probability is 
high (PD = 0.9), with the scans increasing, the probability  is much more bigger 

than the probability  in (36). It means the FIM  

provides more contribution than  to the calculation of RFS bound Pk(RFS). The wrongly setting 

e0 and e1 becomes less important with time, and eventually, both Pk(RFS)s shown by the green and 
purple lines become similar. 

In Figure 2, the three solid lines show Pk(RFS), with setting e1e1
T = e0e0

T = P0. Thus the Condition 2 
is satisfied as the scan number increases. When we compare the three solid lines, Figure 2 shows the 
influence of Condition 3. The green solid line is for the case where the existence of the target is 
deterministic (r = 1), we can see that Pk(RFS) shown by the green line is equal to Pk(ENUM), as 
discussed in Section 4.1. When r < 1 and b = 1, it means the target disappear with the probability 1 − r, 
the purple line and the yellow line are unequal to the green line or PCRLB Pk(ENUM). As discussed in 
Section 4.2, when the target might disappear, Pk(RFS) and Pk(ENUM) cannot be compared directly by 
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quantitatively. The reason why RFS bounds and PCRLBs intersect with each other will be further 
discussed in the next example. 

Figure 2. Comparisons of bounds when the target disappears with different maintenance 
probability r: (a) Height (b) Velocity. 

(a) (b) 

5.2. Bearings-Only Tracking 

This example is similar to the bearings-only tracking case in [12]. This system can be applied in 
various sensors, such as electro-magnetic (EM) equipment, electronic warfare devices (ESM) and 
passive sonar [12]. 

The observer, named ownship, is a moving platform carrying sensor. Its state vector is  

denoted as and assumed known. The target vector is denoted as 

. The relative state vector is defined as: 

 (87)

where  is the relative target position and  is its velocity. The dynamic equation is as 

follows: 

 (88)

where  is denoted in: 

 (89)

and the effect of a mismatch between the observer and the target motion model is accounted by : 

 (90)
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The sensor measurement equation is:  
 (91)

where: 

 (92)

The measurement noise vk is a zero-mean white with covariance . The Jacobian of  

hk(xk) is calculated as: 

 (93)

The initial FIM is , where the standard deviation of position is cr and 

standard deviation of velocity is cv.  
The errors in cardinality mismatches are: 

 (94)

Ownship is moving as a uniform circular motion. The dynamic equation of the observer is given by: 

 (95)

 (96)

The initial target state vector xt 
1 = [−25 km 150 m/s 20 km 100 m/s]T and the initial observer state 

vector xo 
1 = [−30 km 200 m/s 50 km 0 m/s]T. The time interval is T = 20 s. The initial target state 

standard variance is cr = 10,000 m cv = 100 m/s. The angular velocity is ω = 1.0125°/s. The target and 
observer trajectories are shown in Figure 3. 

Figure 3. Bearing-only tracking scenario. 
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Figures 4, 5 and 6 show the root-mean-square error (RMSE) bound between two sets Xk and 
 in (a) y-position and (b) y-velocity for twelve scans. Similar results can be also obtained 

for the x-axis of position and velocity.  

Figure 4. Comparisons of bounds with different detection probability PD: (a) Position in Y 
axes (b) Velocity in Y axes. 

(a) (b) 

Figure 5. Comparisons of bounds with different maintenance probability r: (a) Position in 
Y axes (b) Velocity in Y axes. 

(a) (b) 

Figure 6. Comparisons of bounds with different initial existence probability b: (a) Position 
in Y axes (b) Velocity in Y axes. 

(a) (b) 

In Figure 4, the two solid lines show the bound Pk(RFS) with different detection probability PD, for 
the case where the maintenance probability is r = 0.9 and the initial probability is b = 1. The meanings 
of these two parameters are indicated in (25)–(27). The two long dashed lines represent the PCRLBs 

1
ˆ ( )k kX Z Z
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calculated by IRF method Pk(IRF). The two short dashed lines represent the PCRLBs calculated by 
Enumeration method Pk(ENUM). 

There are many lines in Figure 4, and they are compared in two ways. On the one hand, we can 
compare the two lines of Pk(RFS) with various detection probability PD. It shows that the bounds are 
increased, when the detection probability PD is reduced. Similar results can be seen both for Pk(IRF) 
and Pk(ENUM). Therefore, for the same method, the bigger detection probability PD is, the lower 
estimation bound is. On the other hand, comparing to PCRLB, the RFS bound Pk(RFS) is larger than 
Pk(IRF) and Pk(ENUM) after eight scans. The reason is that maintenance probability is r = 0.9, which 
introduces the uncertainty of target existence. 

In Figures 5 and 6, the two solid lines show the RFS bound Pk(RFS) with different maintenance 
probability is r = 0.9 and r = 0.8. The red long dashed line represents the IRF PCRLB Pk(IRF). The 
blue short dashed line represents the ENUM PCRLB Pk(ENUM). In Figure 5, the initial probability 
remains b = 1. In Figure 6, the initial probability is b = 0.1, and thus there are two different models for 
calculating the RFS bounds Pk(RFS) in Figures 5 and 6. In Figure 5, the initial probability is b = 1 and 
maintenance probability remains r < 1, it means the target appears at the first scan and disappears with 
probability 1 − r in the subsequent scans. In Figure 6, the initial probability is b = 0.1 and maintenance 
probability is r < 1, it means new target appears at the first scan with probability 0.1 and enters in with 
probability 1 − r in the subsequent scans. 

To the RFS bound Pk(RFS), the influence of parameter maintenance probability r is hard to indicate. 
In Figure 5, the initial probability remains b = 1 (same parameter as in Figure 2), and then we get 
something similar to Figure 2, where RFS bounds Pk(RFS) with r = 0.9 and r = 0.8 intersect PCRLB 
Pk(ENUM). But, there are still some differences in these two cases. In Figure 2, the bound Pk(RFS) 
with r = 0.9 is a little more than which with r = 0.8, while in Figure 5, the situation is similar at first 
but is reversed with time. In Figure 6, the initial probability is b = 0.1, RFS bound Pk(RFS) with r = 0.9 
is always a little less than which with r = 0.8. By comparing Figures 2, 5 and 6, it is seen that there is 
no clear relationship between the value of the maintenance probability r and the value of RFS bound, 
but we can see that the RFS bounds Pk(RFS) with both r = 0.9 and r = 0.8 are more than PCRLB 
Pk(ENUM) and Pk(IRF). 

The influence of the initial probability b is obvious. Comparing Figures 5 and 6, it is clear that at 
different scans, the initial probability b gives different contributions to the bound. As discussed in 
Section 4.2, the uncertainty of target existence and the method of calculating estimation error have the 
opposite effect on the RFS bound Pk(RFS). In Figure 6, at first, both the state and the estimation of 
target are empty with high probability, since the initial probability remains b = 0.1. Thus the error is 
zero as defined in (24). We can see that the RFS bounds Pk(RFS) in Figure 6 are significantly low in 
the initial scans. But after seven scans, the uncertainty of target existence contributes more to RFS 
bounds Pk(RFS). At last, the RFS bounds Pk(RFS) in Figure 6 are more than PCRLB Pk(ENUM)  
and Pk(IRF).  

Admittedly, it is impossible to prove all the intersections of the lines in Figures 5 and 6, but it is 
clear that Pk(RFS) is more than Pk(ENUM) after seven scans. These results are similar to the result of 
the first example in Section 5.1, which is shown in the Figure 2. It is easy to conclude that allowing the 
disappearance of existing targets and the appearance of new targets, RFS bound Pk(RFS) is more than 
PCRLBs Pk(IRF)and Pk(ENUM) with time, by introducing the uncertainty of target existence. 
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In Figure 7, we compare all the bounds with the performance obtained from a tracking algorithm in 
Figure 7. Following [22], we simulate a sequential Monte Carlo implementation of the PHD filter. For 
the prediction operator, at the first step, all particles are sampled with uniform intensity. Then, the state 
of the particles transform by (88). The particles are sampled for new target with a probability of 1 − r 
and uniform intensity. For the update operator, the likelihood function is a Gaussian intensity with the 
variance R = σ2 

r . The density of clutter is zero (PFA = 0). The RMSE is obtained by repeated (100 time) 
simulations.  

Figure 7. Comparisons of the performance of PHD filter and the bounds with different 
maintenance probability r: (a) Position in Y axes (b) Velocity in Y axes. 

(a) (b) 

As in Figure 7, it is clear that for the case where r = 0.9, b = 1 and PD = 0.8, the RMSE of this PHD 
filter cannot reach the RFS bound. The reason is that PHD is a first moment of the target posterior 
probability, and PHD filter is a tractable alternative to the optimal filter, but the RFS bound is deduced 
by the target posterior probability directly. Therefore, RFS bound can be reached only by the optimal 
filter in the framework of RFS, which is so computationally challenging that it must usually be 
approximated as denoted in [15]. 

In conclusion, allowing the disappearance of existing targets and the appearance of new targets, 
RFS bound Pk(RFS) is tighter than PCRLBs Pk(IRF) and Pk(ENUM) with time, by introducing the 
uncertainty of target existence. The initial target existing probability b can only influence at the initial 
some steps, but the maintenance probability r plays a leading role with time. Besides, the 
computational complexity of ENUM PCRLB grows exponentially with time. Therefore, when we 
consider reducing the amount of computation, IRF PCRLB is also an alternative. 

6. Conclusions 

The paper is devoted to comparison of the recently reported bounds within the framework of finite 
set statistics and the traditional PCRLB bounds, which are applicable to the case where the detection 
probability PD < 1 and the false alarm probability PFA = 0. This problem is firstly discussed when the 
target exists from the beginning to the end. When the target exists from the first scan to the last one, by 
the proof of two propositions, the RFS bound is similar with the ENUM PCRLB with four conditions 
and is always tighter than the IRF PCRLB. Then this problem is discussed when the target may appear 
or disappear. When the target appears and disappears with certain probability, these three bounds are 
compared by ballistic object tracking and bearings-only tracking applications. The simulation studies 
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confirm the theoretical results and moreover, show that the RFS bound is tighter than the ENUM 
PCRLB and IRF PCRLB with time. It means that, the estimation error cannot reach the PCRLBs, but 
just reaches the RFS bound, when the target appears or disappears with certain probability. 
Additionally, the computational complexity of RFS bound grows exponentially with time. As ENUM 
PCRLB, the RFS bound is computationally feasible for a short time prediction, while IRF PCRLB can 
be applied to a long time prediction. 
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