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Abstract: The human hand has multiple degrees of freedom (DOF) for achieving  

high-dexterity motions. Identifying and replicating human hand motions are necessary to 

perform precise and delicate operations in many applications, such as haptic applications. 

Surface electromyography (sEMG) sensors are a low-cost method for identifying hand 

motions, in addition to the conventional methods that use data gloves and vision detection. 

The identification of multiple hand motions is challenging because the error rate typically 

increases significantly with the addition of more hand motions. Thus, the current study 

proposes two new methods for feature extraction to solve the problem above. The first 

method is the extraction of the energy ratio features in the time-domain, which are robust 

and invariant to motion forces and speeds for the same gesture. The second method is the 

extraction of the concordance correlation features that describe the relationship between 

every two channels of the multi-channel sEMG sensor system. The concordance 

correlation features of a multi-channel sEMG sensor system were shown to provide a vast 

amount of useful information for identification. Furthermore, a new cascaded-structure 

classifier is also proposed, in which 11 types of hand gestures can be identified accurately 

using the newly defined features. Experimental results show that the success rate for the 

identification of the 11 gestures is significantly high. 
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1. Introduction  

Aside from the conventional sensors and vision methods, the use of biological surface 

electromyography (sEMG) sensors is a low-cost method for detecting and identifying human motions, 

such as hand and limb motions. The electrical activity of muscle fibers during a contraction generates 

the sEMG signals, and then the electrodes attached to the skin record the sEMG signals in a  

non-invasive manner [1]. The corresponding human motions can be detected and recognized by 

detecting certain muscle contraction patterns, and the detected motion can be remotely duplicated 

using artificial limbs or robotic hands [2]. However, the challenge still lies in the detection and 

recognition phases. Low-cost sEMG sensors have been applied in the rehabilitation field to control 

prosthetic legs [3] and prosthetic arms [4–10]. 

In particular, the identification of human hand motions is relatively difficult because the hand has 

more degrees of freedom (DOF) than the other limbs, and the muscles responsible for finger activation 

are densely distributed. Current sEMG prosthetic hands in the market are far less dexterous than the 

human hand, and they are only capable of achieving a limited number of motions, such as hand open 

and close. Many researchers have concentrated on improving the dexterity of sEMG prosthetic  

hands [11–14], such that the discrimination of two to six multiple patterns can be achieved. The current 

study aims to develop an accurate sEMG-based sensing system by describing methods for identifying 

multiple gestures to reduce the recognition error, which is typically high as the number of predefined 

gestures increases. Two new methods for feature extraction and a new method for classifier design are 

proposed to reduce the recognition errors. 

The placement of sEMG electrodes is a critical issue for the successful identification of hand motions. 

Since a user knows in advance the distribution of the corresponding muscles for the hand motions, 

existing systems are designed such that the sEMG electrodes are pasted on the skin surface right above 

the corresponding muscles. Thus, identification is highly dependent on proper alignment and failure in 

doing so results in false identification. Moreover, identification is highly inefficient and inconvenient 

because users typically have no knowledge about muscle distribution. Recent studies [15,16] have 

designed and developed multi-channel sensor rings to solve the problem above. The multi-channel 

sensor ring is a kind of redundant sensor that provides a vast amount of useful information. In the 

current study, the sEMG sensor is designed as a half wristband covering the posterior side of the 

forearm, and thus the user can easily wear the sensor ring on the wrist just like a watch. 

Feature calculation, which is how useful characteristics from the raw sEMG signals are interpreted, 

is another critical issue related to successful identification. For traditional placement of sEMG 

electrodes, the methods for feature extraction include temporal features [17] for the non-complex and 

low-speed motions and the temporal-spectral features, e.g., short-time Fourier Transform (STFT) and 

short-time Thompson Transform (STTT), which can provide more transient information for the 

complex and high-speed movements [12,18,19]. For multi-channel sensor rings, the methods for 
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feature extraction include the extraction of the ratios of temporal- and spectral-features among the 

different channels [15], and six temporal-features directly used for motion classifier [16]. The 

advantages of using temporal features include fast computation time and easy implementation. 

However, temporal methods are force- or speed-sensitive, indicating that their values display large 

variations when the user moves with different forces or speeds given the same gesture or posture. 

Given the case that only the type of gesture is of interest, the variations in the temporal features are 

destructive and they affect the success rate of the identification process. Thus, the first contribution of 

the current study to solve the problem above is the definition of a new type of measure, namely, the 

energy ratio feature, which is robust and invariant to different forces or speeds of the same gesture. 

As previously mentioned, redundancy is a major feature of multi-channel sEMG sensor rings. The 

redundant channels of multi-channel sEMG sensor rings generate vast amounts of information, and the 

manner by which this information is harnessed is a new research issue. Studying the relationship 

among different channels is one approach for harnessing the information. Recently, researchers have 

used cross-correlation coefficients to investigate the crosstalk among different channels [20]. Thus, the 

second contribution of the current study is the in-depth investigation on the relationship of the different 

channels to define a new concordance correlation feature. 

The classifier is another critical issue for the successful identification of hand motions. The classical 

method uses statistical classification, which is fast and easy to implement for real-time applications. 

However, the classical method has a low success rate on identifying multiple gestures. Thus, recent 

studies have investigated artificial neural network classifiers [21,22] and neuron-fuzzy classifiers [23,24]. 

These advanced classifiers are typically expensive in terms of computation time, and thus they are not 

feasible for real-time applications. Therefore, the third contribution of the current study is the 

improvement on the statistical classification method by proposing a new cascaded-structure classifier. 

In the following sections, the current study discusses the proposed system and the new methods 

mentioned above in details. Section 2 introduces the proposed system configuration. Sections 3 and 4 

explain the two new extracted features, namely, the energy ratio feature and the concordance 

correlation feature, respectively. Section 5 discusses the new cascaded-structure classifier. Finally, 

Section 6 validates experimental results using the newly defined features and classifier in an attempt to 

identify 11 types of hand gestures. 

2. System Configuration  

Like other sEMG-based systems, the proposed system consists of four common modules as follows: 

(1) the sensor ring, (2) signal conditioning and preprocessing, (3) feature extraction, and (4) motion 

classification, as shown in Figure 1. The sensor ring collects the raw sEMG signals from the skin 

surface of the human forearm, and the signal conditioning and preprocessing module amplifies and 

filters the raw sEMG signals with the downsides of miniature amplitude and noise-mixture. The signal 

conditioning and preprocessing module also converts the conditioned sEMG signals digitally and 

transfers the digital sEMG signals to a PC via radio frequency (RF) devices. The feature extraction 

module extracts the representative characteristics from the conditioned sEMG signals, and the 

classification module identifies the gesture type using the extracted features. 
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Figure 1. Configuration of the sEMG-based sensing system. 

 

The sensor ring and the signal conditioning and preprocessing modules were designed to be 

integrated. The sensor ring was also designed to be compatible with different users, who may have 

slim or robust forearms, as shown in Figure 2. The sensor ring has six channels of input, and each 

input channel consists of a pair of sEMG electrodes. The current study explains the need for the six 

channels of electrodes. Four extensor muscles are known to be responsible for the five-finger 

movements that are clustered on the posterior side of the forearm. The extensor digitorum is 

responsible for the movements of the index, middle, ring, and little fingers, and the extensor pollicis 

longus and brevis are responsible for the thumb. The extensor indicis and extensor digiti minimi are 

also responsible for the movements of the index finger and the little finger, respectively. Theoretically, 

four channels are sufficient for recording five-finger movement if the sEMG electrodes are pasted right 

above the four extensor muscles. 

Figure 2. (a) Multi-channel sEMG sensor ring for slim forearms. (b) Multi-channel sEMG 

sensor ring for robust forearms.  

 

(a)  (b) 

For most users, six channels are enough to cover the circumference of the posterior side. The six 

channels can record the contraction information of the four extensor muscles and also detect other 

redundant information. The six-channel of sEMG electrodes are arranged from the index side to the little 

finger side, as shown in Figure 3(a). Ag/AgCl electrodes by Noraxon with the diameter of 1 cm are used. 

The distances between every two channels of electrodes are dependent on the forearm sizes of the 

subjects, because the sensor ring is adjustable for the circumference of the forearm. The distance is 

relatively large for the robust forearms and small for the slim forearms. Using the six-channel sEMG 

electrodes, the signals can be recorded at the sampling frequency of 1 kHz. The raw sEMG signals are 

miniature at the scale from µV and mV, and also noise-mixed. Thus, it is necessary to design the analog 

amplifiers and filters. To avoid interferences caused by long-wire transmission, the sEMG electrodes were 

directly fixed on the analog circuits composed of differential amplifiers and filters. The amplifier 

magnifies the miniature signals to the scale of V. The useful sEMG signals are distributed in the range 

from 20 to 500 Hz, and thus a two-order high-pass filter for 20 Hz and a two-order low-pass filter for  
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500 Hz. Moreover, another notch filter is designed for eliminating 50 Hz noise. After conditioned by the 

analog amplifier and filters, the sEMG signals for ball-grasping gesture are shown in Figure 3(b). Aside 

from the analog circuits, the signal conditioning and preprocessing module also contains 10-bit A/D 

converter and RF communication circuits. The amplified and filtered sEMG signals are converted 

digitally and are transferred to the computer for the following calculation of feature extraction and motion 

classification. All features are calculated in the time window of 500 ms from the movement starting point. 

Figure 3. (a) Six-channel sEMG electrode arrangement. (b) Six-channel conditioned 

sEMG signals for ball-grasping gesture.  

 

(a)       (b) 

3. New Energy Ratio Feature 

The traditional temporal methods for feature extraction include the square integral feature, mean 

absolute value, and cross-zero rate. These methods have been widely used because they are inexpensive 

in terms of computation time. However, their values tend to vary even for the same gesture type if the 

gesture is performed with different forces and speeds, which is considered as one of their major 

disadvantages. In the cases where only distinguishing the gesture type is of interest, the temporal 

methods are not too applicable. Recent studies have designed many multi-channel sEMG sensors that 

have redundant channels to provide more information. The possibility of applying conventional temporal 

methods of feature extraction to multi-channel sEMG sensors is a new research issue. In a previous 

research conducted by the current group [25], the new energy ratio feature was defined based on the 

traditional square integral feature, which is robust to the variations in motion forces and speeds for the 

same type of hand motion. In the current study, the advantages of the newly defined feature over the 

traditional square integral feature are discussed and illustrated using an example.  

3.1. Multi-Channel Energy Ratio Feature 

The traditional temporal method based on the square integral feature is given by: 





N

i

ii tXE
1

2 )( , (1)  



Sensors 2012, 12                            

 

 

1135 

where i represents the i-th channel of sEMG electrodes, )(tX i
 is the time-series sEMG signal of the  

i-th channel, and N is the data number of the time-series sEMG signal from one channel. Equation (1) 

essentially describes the absolute energy of one-channel sEMG signals. 

The energy ratio feature is defined to get the energy ratio of every two channels. Essentially, the 

energy ratio feature describes the energy distribution in multiple channels. The ratio of the i-th channel 

to the 1st channel signals is defined as follows: 

Mi
E

E
RE i

i ,...,2,
1

1  . (2)  

All the ratios of the single-channel to the 1st channel signals are defined as follows: 

 1211 ...,, MRERERE  . (3)  

The ratio of the i-th channel to the j-th channel signals is represented as follows: 
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The normalization 
*

ijRE with reference to the 1st channel signal is given by: 
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The normalization step, which globalizes the ratio of any two channels with the 1st channel as the 

reference, is important. 
*

ijRE  is still a local ratio of the i-th channel to the j-th channel signals, which 

only describes the energy ratio of the i-th channel to the j-th channel signals. ijRE  is a global 

parameter that provides the same weight with the 1st channel as the reference. All the ratios of the i-th 

channel to j-th channel signals with reference to the 1st channel signal are represented as follows: 

  1,...,2,...,,)1(   MiRERERE Miiiij
. (6)  

Combining Equations (3) and (6), the newly defined energy ratio feature can be obtained, with a 

vector formulated as follows: 

 11 ...,...,,  Mi RERERERE . (7)  

where M is the channel number, RE1 is a 1 × (M − 1) vector, and iRE  is a 1 × (M − 1) vector. Thus, RE 

is a row vector with  





1

1

M

i
iM  columns. 

In the present experimental case, six channels were used in total, and thus RE is a vector of 1 × 15 

given by: 

 656454634362326121 ,,,...,,,...,,,...,, RERERERERERERERERERE   (8)  

3.2. Validation of Energy Ratio Feature 

The energy ratio feature was compared with the traditional square integral feature to validate its 

effectiveness. Using the sensor ring in Figure 2, the sEMG signals were collected from a male subject. 

The six-channel sEMG signals recorded the activities of the extensor muscles on the posterior side of 
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the forearm. The subject was required to do four gestures, i.e., extending the thumb, index finger, 

middle finger, and the ring and little fingers simultaneously, as shown in Figure 4.  

Figure 4. Four gestures: extending thumb, index, middle, and ring and little fingers. 

 

Each type of gesture was repeated 30 times with varying forces and speeds. For each hand motion, 

the traditional square integral feature using Equation (1) is a 1 × 6 vector. Figure 5(a) shows the 

averages and variations in the square integral features of the four gestures.  

Figure 5. (a) Raw square integral features of the four gestures. (b) Projected square 

integral features of the four gestures. 

    

(a)                                                                 (b) 

For each type of gesture, the square integral features fluctuated around the average within the large 

boundaries formed by the variance when the motion forces varied. Moreover, if the subject exerts an 

even larger force on the middle finger and a smaller force on the index finger, the square integral features 

tend to overlap. Overlap leads to the misclassification between the index and middle fingers. 

Misclassification caused by the overlapped features is apparently seen in the projected space, as shown in 

Figure 5(b). The projected space is obtained by transforming the original six-dimensional feature space 

into the three-dimensional space using the Karhunen-Loeve transform (KLT). Figure 6(a) shows the 

energy ratio features with averages and variances, which were computed using Equation (8). The 

application of the energy ratio feature avoids misclassification because they are stably distributed within 

the relatively narrow boundaries even with changes in the motion forces, as shown in Figure 6(b). As can 

be seen in the figure, the features were distributed separately, and thus no misclassification occurred. 

Overlapped 

area
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Figure 6. (a) Raw energy ratio features of the four gestures. (b) Projected energy ratio 

features of the four gestures. 

  

(a)                                                               (b) 

4. New Concordance Correlation Feature  

The newly booming multi-channel sEMG sensors have redundant channels that provide a vast 

amount of information. The manner by which the information provided by the redundant channels is 

utilized is another new research issue. The cross correlation coefficient, also known as the Pearson’s 

product-moment coefficient, has been used to investigate crosstalk among channels [20]. However, the 

cross correlation only measures the extent of the linear relationship between two variables. If two 

variables have a nonlinear relationship, the value of the cross correlation coefficient is zero, and thus 

the cross correlation coefficient is risky for evaluating the relationship of two variables. Lin [26] 

defined another solution, which is the concordance correlation coefficient that measures the agreement 

between two variables. The concordance correlation coefficient has been widely used in data 

reproducibility studies [26] and image comparison analysis [27]. In previous research conducted by the 

current group [25], the new concordance coefficient feature was defined and applied in the automatic 

relocation of sEMG electrodes. The current study attempts to use the concordance correlation 

coefficient feature for motion identification.  

4.1. Concordance Correlation Coefficient 

The concordance coefficient investigates the agreement between two signals. The concordance 

correlation coefficient of the N-length variables of x and y is defined as follows: 

 222

2

yxyx

xy







 . (9)  

where x and y  are the means of the two variables, respectively. y  has the same formula as x  that 

is given by: 
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where 
x and y  are the variances of the two variables, respectively. y  has the same formula as 

x  

that is given by: 
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(11)  

where xy is the covariance of x and y. xy  is given by: 

  



N

i

yixixy yx
N 1

1
 . (12)  

4.2. Multi-Channel Concordance Correlation Feature 

The concordance correlation coefficient was used to define the concordance correlation feature of 

the multi-channel sEMG sensor. For generalized formulation, the sEMG electrodes in the  

multi-channel sensor ring were assumed to have a total of M pairs. The M-channel sEMG signals were 

represented by an N × M matrix of  Mi XXXX ...,,...,,1 . Each column 
iX  of an N-length 

vector is the time-series sEMG signal of the i-th channel. The concordance correlation coefficient of 

the i-th channel and j-th channel is defined as follows: 

MijMiR
jiji XXXX ,...,1,1,...,1,   . (13)  

For each hand motion, a  





1

1
1

M

i
iM  vector R of the concordance correlation feature can be 

obtained as follows: 

 11 ...,,...,,  Mi RRRR , 
(14)  

where: 

 
MXXXXXX RRRR

13121
...,,,1  , 
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21 
 , 
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11 
 . 

For the multi-channel sEMG sensor, the defined concordance correlation feature essentially 

describes the homogeneity of every two channels in terms of amplitude and variation. In the current 

case, the sEMG electrodes have six channels, and the sEMG signals of each hand motion are 

represented by an N × 6 matrix of  654321 ,,,,, XXXXXXX  . For each hand motion, a  

1 × 15 vector R of the concordance correlation feature can be obtained as follows: 

 54321 ,,,, RRRRRR  , (15)  

where: 

 
6151413121

,,,,1 XXXXXXXXXX RRRRRR  , 

 
62524232

,,,2 XXXXXXXX RRRRR  , 
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,,3 XXXXXX RRRR  ’ 

 
6454

,4 XXXX RRR  ’ 

 
655 XXRR  . 
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4.3. Validation of Concordance Correlation Feature 

The same experimental sEMG signals for validating the energy ratio feature were used to validate 

the effectiveness of the concordance correlation feature. Figure 7 shows the concordance correlation 

features of the four gestures (shown in Figure 4) that were calculated using Equation (15). The 

concordance correlation features of each type of gesture were shown to be uniform and distributed 

within the narrow boundaries. Moreover, the concordance correlation features of the different gesture 

types were different from one another, indicating that the concordance correlation feature contains the 

discriminatory information for the different gesture types and is applicable for gesture discrimination. 

Figure 7. (a) Raw concordance correlation features of the four gestures. (b) Projected 

concordance correlation features of the four gestures. 

    

(a)                                                                    (b) 

5. Cascaded-Structure Classifier 

The traditional classification methods are statistical classifiers, such as the linear discriminant 

analysis (LDA), K-nearest classifier, Bayes classifier and so on. Statistical classifiers have the 

advantage of fast computation time and they are easy to implement for real-time applications. 

However, statistical classifiers become less efficient for identification when more gesture types are 

introduced because the features are projected into another space, and an increase in the number of 

gesture types will typically produce more overlapping areas for the projecting features. Statistical 

classification methods create a cluster that contains the features of the same type of gesture or generate 

a hyperplane to separate the different gestures. Therefore, misclassification occurs when there are 

overlapping areas between different gestures. 

Avoiding the overlapping areas between different gestures in the projected space is the solution to 

make statistical classification methods applicable for identifying more gestures. The proposed 

classifier divides the classification procedure into several levels. In each level, the different features 

and the different projected spaces, which contain most discriminatory information for the gestures 

included in the level, are located. 

The development of the cascaded-classifier can be concluded in several steps. In the first step, all 

types of hand motions are regarded as individuals. The newly defined energy ratio feature can be used 
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in this level, which represents the energy distribution in the six-channel sEMG electrodes. In this step, 

the hand motions are projected into the reduced-dimensional space and are classified as several 

separable groups. Each group may include only one type of hand motion or several types of motions. 

Group separation is based on the rule that there are the similar energy ratio features within the same 

group, and the different energy ratio features among the different groups.  

In the second step, each separable subgroup is classified independently. If the subgroup includes 

several types of hand motions, these included types of hand motions are regarded as individuals. The 

features need to be recalculated using other methods because the features used in the upper-classifier 

have less discriminatory information for the subgroup. For example, the energy ratio feature is used in 

the upper-level classifier, and it means that the gestures in the subgroup have similar energy 

distribution information. In this level, the concordance correlation feature, which represents the 

different agreements between the channels, can be used to recalculate the features. The features are 

then transformed into a new space because the old space in the upper-level classifier has the best views 

for the separable subgroups but not for the gestures in the subgroup. In this new space, the types of 

hand motions in the subgroup are distributed as separately as possible, and the second-level classifier is 

designed. If the subgroups still include several types of hand motions, the second step is repeated in the 

sub-subgroups until every type of hand motion can be identified separately. The concordance 

correlation features are still used in this level, and the new projection space is found by the rule of best 

discriminatory view in the subgroups.  

6. Results and Discussion 

The experimental results are presented in this section to validate the effectiveness of the newly 

defined features and the proposed cascaded-structure classifier for identifying more types of gestures. 

Eleven types of gestures were defined and six male subjects were selected for the experiment. Each 

finger was labeled using numbers 1 to 5, as shown in Figure 8(a), and the 11 gestures were named 

using the same rule, as shown in Figure 8(b). The extensions of the individual fingers are defined as 

the basic movements, i.e., gestures 1, 2, 3, and 45, as shown in Figure 8(b). Gesture 45 is defined as 

the basic movement when the ring and little finger always move together. Gestures 12, 123, 23, 345, 

and 2345 can be regarded as the combined movements of the basic gestures. Moreover, two types of 

grasping movements were defined, i.e., ball grasp and lateral grasp. Each subject was required to 

repeat each type of gesture 30 times, and 25 samples were used to design the classifier, and the other  

5 samples were used to test the designed classifier. Each subject wore the sensor ring shown in Figure 2 

on the forearm, and the six-channel sEMG electrodes recorded the sEMG signals of the extensor 

muscles distributed on the posterior side of the forearm. 

The sEMG signals are influenced by many factors, such as muscle distribution, forearm size, and 

finger coordination, among others. Thus, different people will generate different sEMG signals. 

Although the sEMG signals were different for different subjects, the development of the classifiers 

followed the same steps instructed in the previous section, where different subjects will have different 

cascaded-classifier structures. The current study discusses the development of the cascaded-classifier 

for one subject in details. Figure 9 and Table 1 show the configuration of the designed cascaded-

classifier for the first subject. 
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Figure 8. (a) Finger label. (b) Eleven predefined gestures. 

 

(a)     (b) 

Figure 9. Configuration of the cascaded-classifier of the first subject. 

 

Table 1. Cascaded-classifier of the first subject. 

Classifier Type Projected Space Feature 

Classifier 1 LDA KLT using gestures 1, 2, 3, and 45 as bases Energy ratio feature 

Classifier 2 LDA KLT using ball grasp and lateral grasp as bases Concordance correlation feature 

Classifier 3 LDA KLT using gestures 3, 123, and 23 as bases Concordance correlation feature 

Classifier 4 LDA 

KLT using the combination of gestures 1, 2, and 

12 and the combination of gestures 45, 345, and 

2345 as bases 

Concordance correlation feature 

Classifier 5 LDA KLT using gestures 1, 2, and 12 as bases Concordance correlation feature 

Classifier 6 LDA KLT using gestures 45, 345, and 2345 as bases Concordance correlation feature 

1

234

5

All gestures

Group 1:

Ball grasp & lateral grasp 

Group 2:

Gestures 3, 123, 23 

Group 3:

Gestures 1, 2, 12

45, 345, 2345

Ball grasp Lateral grasp 

Gesture 3 Gesture 123 Gesture 23

Classifier 1

Classifier 2 Classifier 3 Classifier 4

Classifier 5

Gestures 

1,2,12

Gesture 2

Gestures 

45,345,2345

Gesture 45

Gesture 

2345

Gesture 1

Gesture 12

Gesture 345

Classifier 6
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Initially, the 11 gestures were regarded as individual types. In the top-level classification, the energy 

ratio features of the 11 gestures were calculated. For each hand motion, the energy ratio feature was a  

1 × 15 vector. Since each type of gesture was repeated 25 times for the classifier design, the energy 

ratio feature of each type of gesture was a matrix of 25 × 15. The energy ratio feature of the 11 types of 

gesture is a matrix of 275 × 15. The 275 × 15 feature matrix should be dimensionally reduced initially 

by projecting it into another space before designing the classifier. The necessity for such projection is 

supported by two reasons. The first reason is that each energy ratio feature is 15-dimensional, and thus 

the computation would be expensive if the 15-dimensional feature is directly used for designing the 

classifier. The second reason is that the 15-dimensional feature spaces of all types of gestures have no 

optimal views for classification, that is, the features are not separated as possible from the other types. 

Thus, instead of the conventional principal component analysis (PCA), the method of KLT [28] was 

used to dimensionally reduce the feature matrix and find the best space for type separation and to 

transform the features from 275 × 15 to 275 × 3. The transform matrix was determined using the rule 

of large separation among the basic gestures 1, 2, 3, and 45. Seven other types of gestures were 

transformed into the three-dimensional space above. All 11 gestures can be classified into three groups 

using LDA (Figure 10), which is the detail for designing Classifier 1. 

Figure 10. Classifier 1 in the top-level of the first subject. 

 

 

Up to this point, we still cannot uniquely identify any individual hand movement. Therefore, 

second-level classifiers, namely, Classifier 2, Classifier 3, and Classifier 4, were continuously being 

developed. The current study discusses Classifier 3 as an example, and Classifiers 1 and 3 were 

developed in the same way. Gestures 3, 123, and 23 were included in Group 2. Two problems need to be 

addressed in the development of Classifier 3. The first problem is defining the feature describing the 

difference among gestures 3, 123, and 23. Gestures 3, 123, and 23 have similar energy ratio features, 

making the energy ratio feature not suitable for distinguishing among these three gestures. The second 

problem is finding the projected space in which gestures 3, 123, and 23 are located using the rule of 

largest separation among them. The concordance correlation feature was used to solve the first problem. 

Gestures 3, 123, and 23 were regarded as individuals, and KLT was used to find the projected space in 

which gestures 3, 123, and 23 will have the largest separation and solve the second problem. Gestures 3, 

123, and 23 can be correctly and individually grouped using Classifier 3, as shown in Figure 11.  

Group 1

Group 2

Group 3
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Figure 11. Classifier 3 in the second-level of the first subject. 

 

Figure 12. Classifier 2 in the second-level of the first subject. 

 

Figure 13. Classifier 4 in the second-level of the first subject. 

 

 

Similarly, the gestures of ball grasp and lateral grasp can be correctly classified using Classifier 2, 

as shown in Figure 12. Gestures 1, 2, 12, 45, 345, and 2345 were regarded as two separate types when 

Classifier 4 was developed. The first type includes gestures 1, 2, and 12, and the other type includes 

gestures 45, 345, and 2345. The same procedures as those in Classifier 3 were repeated and the two 
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types can be correctly grouped, as shown in Figure 13. Moreover, the third-level Classifiers 5 and 6 

were continuously developed, and Figures 14 and 15 show the classification results. Classifier 5 can 

identify gestures 1, 2, and 12, and Classifier 6 can distinguish gestures 45, 345, and 2345. At this point, 

the cascaded-classifier was achieved. 

Figure 14. Classifier 5 in the third-level of the first subject. 

 

Figure 15. Classifier 6 in the third-level of the first subject. 

 

The subject was required to repeat each type of gesture five times. A total of fifty-five hand motions 

for the 11 types of gestures were used as the test data. Table 2 lists the success rate of the 11-gesture 

classification. Among the 55 hand motions, one gesture 1 was misclassified as gesture 2. For all of the 

55 test gestures, the error rate was only 1 out of 55 gestures, and thus the success rate was about 98%. 

The identification procedure of the gesture is implemented in Visual C++ program, and results show 

that the computation cost is low. The identification time is approximately 172 ms for one new gesture. 

As comparison, the conventional LDA classifier is also developed for the first subject. Similarly, 

totally 11 gestures are defined, and 25 trials for each type of gesture are used as the training data. All 

types of gestures are regarded as individual and projected in one 3-D space, and LDA classifier is 

designed in this projected space. Similarly 55 hand motions are used for the test set, and the success 

rate was only 46%. The low success rate is because there are many overlapped areas among the 

different types of gestures in the projected space. The method of our cascaded classifier avoids the case 

of the overlapped features in the projected space.  
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Table 2. Success rate of the 11-gesture classification of the first subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / Test No. 4/5 5/5/ 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 

Total success rate 98.2% 

The development of the classifiers for the other five subjects followed the same procedure as the 

first subject. Tables 3 to 7 list the classification results of the other five subjects, respectively. The 

classification results of the six subjects show that the two new features and the new cascaded-classifier 

are effective for identifying more types of gestures. 

Table 3. Success rate of the 11-gesture classification of the second subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / test No. 5/5 5/5/ 5/5 5/5 5/5 5/5 3/5 4/5 5/5 5/5 5/5 

Total success rate 94.5% 

Table 4. Success rate of the 11-gesture classification of the third subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / test No. 4/5 5/5/ 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 

Total success rate 96.4% 

Table 5. Success rate of the 11-gesture classification of the fourth subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / test No. 5/5 5/5/ 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 

Total success rate 98.2% 

Table 6. Success rate of the 11-gesture classification of the fifth subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / test No. 5/5 4/5/ 5/5 5/5 5/5 5/5 4/5 5/5 3/5 5/5 5/5 

Total success rate 89.1% 

Table 7. Success rate of the 11-gesture classification of the sixth subject. 

Gesture 1 2 3 45 12 123 23 345 2345 Ball Lateral  

Success No. / test No. 5/5 4/5/ 5/5 5/5 5/5 5/5 3/5 4/5 5/5 5/5 5/5 

Total success rate 92.7% 

7. Conclusions 

The identification of hand motions becomes more difficult as the number of hand motion types 

increases. The identification success rate decreases significantly when more types of hand motions are 

added. The current study solves this problem by defining new features and designing a new  

cascaded-structure classifier. In the different levels of the cascaded-classifier, the different features, 

including the newly defined features, were projected onto the different spaces of the classifier design. 

The cascaded-classifier avoided the overlapping areas in the projected space that usually occur using 

conventional classification methods. The experimental results show that the proposed cascaded-classifier 
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and the new features are effective for identifying more types of gestures, with the success rate of the 

11-gesture identification being greater than 89%. 
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