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Abstract: Personal recognition through hand-based biometrics has attracted the interest of 

many researchers in the last twenty years. A significant number of proposals based on 

different procedures and acquisition devices have been published in the literature. 

However, comparisons between devices and their interoperability have not been 

thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the 

interoperability among different hand biometric schemes. The experiments were conducted 

on a database made up of 8,320 hand images acquired from six different hand biometric 

schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, 

and contactless devices. Acquisitions on both sides of the hand were included. Our 

experiment includes four feature extraction methods which determine the best performance 

among the different scenarios for two of the most popular hand biometrics: hand shape and 

palm print. We propose smoothing techniques at the image and feature levels to reduce 

interdevice variability. Results suggest that comparative hand shape offers better 

performance in terms of interoperability than palm prints, but palm prints can be more 

effective when using similar sensors. 

Keywords: biometric identification; hand based biometrics; hand geometry; palm texture; 

interoperability 
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1. Introduction  

Our society has always placed great emphasis on maintaining the privacy of confidential 

information. Traditionally, a user could be identified through something known only by the user, such 

as a password, or something owned exclusively, for instance: a card. The main inconvenience of these 

methods lies in the ease of appropriating the user’s identity. 

Biometric techniques help overcome these security issues. Specifically, biometric systems take 

advantage of physical or behavior features during the identification process. When a biometric trait is 

assumed, it is necessary to consider four fundamental characteristics: universality, uniqueness, 

invariance and quantification. Quality-cost relation and convenience have to be taken into account 

when the biometric technology is transferred to the industry. Robustness evaluation is also needed with 

the aim of minimizing vulnerability.  

The main biometric systems measuring physical features are based on finger print, face, hand-shape, 

palm print and iris recognition. Examples of behavior biometric systems are hand-writing, signature and 

voice. In this paper we focus our attention on two of the most popular hand biometrics: hand shape and 

palm prints. The reliability of hand shape and palm print biometrics is high enough to be used in 

realistic and low cost environments. Furthermore, these systems allow researchers to use different hand 

traits available with just one shot and even to combine them without any additional hardware cost. In 

addition, hand-based biometric systems present a high level of acceptability from their users.  

So far the scientific community has presented a large variety of different biometric systems based 

on hand shape and palm prints. Their proposals can be classified according to different biometric 

considerations. One such consideration concerns the acquisition device used, such as scanners [1–5], 

CCD cameras [6–8] and webcams [9–11]. Another classification can be done according to the hand 

side: palm [1,2,5,8,12–16] or dorsum [6,7,17]. The illumination spectrum used varies from the  

visible [3,6–8,13,18–20] to the near infrared [21,22] and multispectral imaging [23,24]. The variety on 

the proposals is wide [25] but to our knowledge there are few studies regarding the relationships 

between the different schemes or approaches [26].  

In 2006 the NSTCs Subcommittee on Biometrics of the U.S Government developed The National 

Biometrics Challenge [27] to identify key challenges in advancing the development of biometrics. The 

report concludes that to fully meet large-scale identity governance requirements, the use of biometric 

technology must be more robust, scalable and interoperable. 

Interoperability is one of the aspects of biometry that has been scarcely studied. This property 

provides a measure of the performance when you enroll a user with a biometric device A and verifies 

his identity with a biometric device B (see Figure 1). Working with interoperable procedures reduces 

technological dependences between users, models and systems and allows companies to upgrade their 

biometric devices without the cost of repeated enrolment of all the users. 
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Figure 1. Hand biometric recognition approaches for traditional and interoperable schemes. 

 

1.1. Our Work 

In this paper we present a study of interoperable procedures for hand shape and palm print 

biometrics. The first contribution is a database made up of 8,320 hand images using six different 

acquisition systems including a scanner, CCD cameras and CMOS-webcams. In terms of biometric 

approaches the experiments include dorsum and palm with contact or contactless imaging. Every set 

of images from each user in the database was acquired under the same conditions trying to ascertain 

fair terms to benchmark the interoperability between schemes. A second contribution of the study is 

the resultant comparison on the performance of four state-of-the-art feature extraction methods over 

multiple scenarios using traditional and interoperable schemes. The third contribution is the 

proposal of a smooth operator to reduce interdevice variability and improve interoperability 

between schemes. 

The paper is organized as follows: in Section 2 we analyze the state of the art in hand shape and 

palm print biometrics and interoperability studies proposed using other biometrics. Then, in Section 3, 

we describe the different biometric schemes used to build the database while Section 4 reviews 

proposed feature extraction methods for the hand shape. Palm print features are introduced in Section 

5. In Section 6 we present the interoperable database and evaluation methodology in order to illustrate 

our results. Conclusions are given in Section 7.  
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2. State of the Art  

2.1. Hand Shape Biometric 

The very first publications on hand shape biometry date back to 1999 [6]. This system is based on 

images of the hand dorsum acquired with CCD sensors and uses pegs to guide hand placement. 

Systems using pegs are not suitable for the natural posture of the hand and the simplicity of the system, 

and soon peg-free systems were introduced [28]. In this case, scanners were used as acquisition 

systems to acquire an image of the palm of the hand.  

A first set of features used by hand-shape biometric systems was geometric measurements. Standard 

measures include: the length and width of the fingers [5,7,17,21], hand contour [6], area of the palm or 

the fingers [19] or the thickness of the hand [29]. Geometric measurements based on 3-D surface 

curvature features have also been proposed [15–17]. The number of geometric features of a traditional 

geometric template in the literature ranges between 13 and 40 [25]. 

A second method to parameterize hand shape is to model the hand silhouette by a curve where the 

curve coefficients represent the hand shape features. These methods are based either on Principal 

Component Analysis (PCA) or Independent Component Analysis (ICA) [1,30]. Another way to 

parameterize the hand silhouette uses alignment procedures [20]. 

Lastly, the introduction of contactless systems brought about to improvements in hygienic measures 

and acceptability levels from users. Zheng et al. [19] used invariants to projection measures with 

limited results. Later, Morales et al. [21] proposes a contactless biometric system based on the 

geometry of the hand in the infrared band which allows for hand segmentation in not-controlled 

backgrounds. Recent publications explore the tridimensional information of the fingers [15,16]. 

Table 1. Some examples of hand-shape based biometric approaches. 

Year[Ref] Population Methodology Sensor Features Performance (%) 

CONTACT SCHEMES 

1999 [6]  53  Visible (Dorsum) CCD Hand contour coordinates  FAR = 1, FRR = 6 

1999 [7] 20 Visible (Dorsum) CCD Finger lengths, widths, ratios thickness, 

deviation 

EER = 5 

2004 [5] 70 Visible(Palm) Scanner Geometric features FAR = 1, FRR = 3 

2006 [1] 458 Visible(Palm) Scanner ICA2 on binary hand image EER = 1.3 

2008 [8] 470 Visible (Palm) CCD Non-landmark based geometric measurements FAR = 0.45,  

FRR = 3.4 

CONTACTLESS SCHEMES 

2006 [17] 73  3D (Dorsum) 3D camera Width and curvature of the fingers in 3D EER = 3.6 

2007 [19] 23  Visible (Palm) CCD Projective-invariant features EER = 0 

2008 [21] 30  IR (Palm) Webcam Finger widths EER = 4.2 

2009 [15] 177  3D-2D (Palm) 3D camera Fusion of 3D finger curvature and 2D finger 

measures 

EER = 2.6 

2011 [16] 177 3D-2D (Palm) 3D camera 2D and 3D features combined at score level EER = 0.22 

The results for the performance of biometric system based on hand shape features reveal values 

ranging from 5% to 0% of the EER that depends on the methodology and database employed, (see 
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Table 1). The absence of a common benchmark to compare different approaches is an important fault 

on hand shape biometrics, although public hand shape databases are available [31,32]. 

2.2. Palm Print Biometrics 

Palm print studies depend on the resolution of the images. If high resolution images are taken  

(400 dpi or more), singular point minutia can be extracted as main features. When low resolution 

images are used (in the range of 150 dpi or less) the study has to focus on features such as principle 

lines, wrinkles and texture. The applications for each type of image are also diverse. For instance, high 

resolution images are suitable for forensic applications while low resolution images are used in 

commercial applications and access control. Most of the palm texture or palm print studies found in the 

literature focus on low resolution images.  

Two different types of low resolution palm print acquisition systems are generally used: those based 

on CCD cameras [3,18,22,24,33–36] and those based on digital scanners [2,3,4,37]. This second group 

is usually slower and bigger than the first one. The major problem with a scanner-based device is the 

distortion due to the pressure by the hand on the scanner screen. Palm print devices can also be 

classified depending on whether they use pegs [3] or are peg-free [37] which improves user 

acceptance. Another classification is by contact [3,4,14,18,33–37,] or contactless [9–11,24,38–40] and 

has to handle the distortion caused by projection, blurriness caused by hand movement and changes in 

illumination (see Table 2).  

Table 2. Some examples of palmprint based biometrics approaches. 

Year[Ref] Population Methodology Sensor Features Performance (%) 

CONTACT SCHEMES 

2003 [33]  386  Visible (Palm) CCD Gabor filtered masks EER = 0.6 

2005 [18] 100  Visible (Palm) CCD Orthogonal Line Ordinal Feature  EER = 0.22 

2005 [4] 75 Visible (Palm) Scanner PCA, FDA and ICA features FAR = 1.35, 

FRR = 1.49 

2009 [3] 100 Visible (Palm) Scanner Speeded Up Robust Features FAR = 0.02, 

FRR = 0.01 

2009 [3] 200 Visible (Palm) CCD Speeded Up Robust Features FAR = 0,  

FRR = 0 

2008 [34] 386  Visible (Palm) CCD SAX and SIFT EER = 0.37 

2008 [22] 120 IR (Palm) CCD LaplacianPalm based on PCA FAR = 0.1,  

FRR = 0.3 

CONTACTLESS SCHEMES 

2007 [9] 49  Visible (Palm) Webcam Circular Gabor filtering EER = 1.2 

2007 [39] 40  Visible (Palm) PDA Sum-Difference Ordinal Filtering EER = 0.92 

2008 [10] 320  Visible (Palm) Webcam Local Binary Patterns EER = 1.52 

2008 [24] 165  Multi (Palm) CCD Orthogonal Line Ordinal Features [ref] EER = 0.5 

2010 [40] 114 Visible (Palm) 3D camera Fusion of 2D and 3D palm surface imaging  EER = 0.71 

2010 [11] 100 Visible (Palm) Webcam Sobel filtering over multiple frame acquisitions EER = 3.62 

The most popular procedures to obtain palm print features can be divided into global appearance 

features such as CompCode, OLOF or Wavelet [9,18,33,35] and local information features such  

as SIFT or SURF [3,10,34]. The use of public databases such as the PolyU Palm print database [41] 

or the IITD database [42] is common and allows for comparisons between proposals under fair 

conditions. 
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2.3. Interoperability 

The above systems evaluate training and testing of the hand biometric trait with the same device. 

Our research on interoperability revealed only a few published contributions about hand shape or palm 

print biometric systems interoperability [26], and as such this area is now extended by the present 

paper. Regarding other biometric traits, several papers have been published about finger print device 

interoperability [14,43–48] or sensor interoperability for signature verification [49]. 

In [41] the researcher explores the interoperability between three different finger print sensors, one 

with sweeping thermal and two with optical technology. The results show that the performance drops 

dramatically for interoperable schemes and multi-instance schemes were proposed to improve the 

results. Similar results were reported in [14].  

The relationships among person, sensor and feature for finger print recognition were discussed  

in [48]. The authors deal with the idea that the problems of sensor interoperability originate from two 

main factors: the performance gap between different sensors and the drop of performance caused by 

coordinating different sensors. 

The influence of quality in interoperable schemes for signature verification was discussed in [49]. 

The authors state that performance is primarily affected when using more reliable sensors for training 

and therefore it is crucial to have enrolment models that are generated with high quality data. 

All the previous works related to interoperability between biometric systems confirm an observed 

drop in performance when using interoperable schemes. There is still much work to do to reach a 

future in which the use of interoperable schemes allows for the employment of biometric data that has 

been acquired with different sensors and approaches. 

3. Biometric Acquisition Devices  

During all these years, biometric systems based on hand shape and palm print have been widely 

studied. Therefore, the study of hand shape and palm print interoperability should consider as many 

existing devices as possible ranging systems based on scanner, CCD camera, webcams, contactless 

systems, systems based on palm and the dorsum of the hand, etc. Taking the above mentioned 

considerations into account, we have used six different hand-based biometrics approaches which are 

briefly described in this section.  

The images from different system present different resolution and quality. The characteristics of the 

images are heterogeneous and although hand shape biometrics can achieve promising results using low 

resolution images (40 dpi) in order to ensure competitive performance for palm print biometrics a 

higher resolution is needed (at least 60 dpi). In our proposals we assume this heterogeneity and we 

include it as a factor to overcome in order to achieve interoperable schemes. 

First we describe the systems that acquire images of the hand dorsum. Then we continue with the 

systems that acquire images of the palm side of the hand. 
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3.1. Systems Acquiring Images of the Hand Dorsum 

Systems acquiring hand dorsum images are illustrated in Figures 2 and 3. As seen in the illustration, 

the user puts the hand on a plate. The cameras and the illumination are above the hand. Two cameras 

are used and operate in the visible and infrared bands. 

Figure 2. Hand dorsum visible acquisition system (figure on the left) and examples of 

visible hand images from three different users (three figures on the right). 

 

Figure 3. Hand dorsum infrared acquisition system (figure on the left) and examples of 

acquired IR hand images from different users (three figures on the right). 

 

 System 1 (Visible webcam): Biometric system based on a visible webcam. As seen in Figure 2, 

this webcam acquires the complete image of the dorsum in the visible band (400–750 nm). The result 

is a 640 × 480 pixel image. 

 System 2 (Webcam 850 nm): Biometric system based on an infrared webcam. This biometric 

system acquires the hand dorsum image by means of a webcam which has been modified in order to 

take images in the 850 nm band of the infrared region. The webcam modification consists of removing 

the visible filter and inserting an infrared filter instead. The result, shown in Figure 3, is a 640× 480 

pixel image. 

3.2. Systems Acquiring the Hand by the Palm Side 

In this case the user puts the hand on a flat glass. The acquisition system and illumination are below 

the glass. Two acquisition systems are used: a scanner and a CCD camera. 

 System 3 (Scanner): Biometric system based on a scanner. This is a traditional approach. The 

user places his hand upon the scanner with the fingers outstretched. Moreover, the fingers cannot touch 

Visible webcam 

IR webcam 
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the boundaries of the scanner. The scanner works at 60 dpi with 256 levels of gray resulting in  

701 × 509 images. Figure 4 illustrates the procedure and the images acquired in the visible band.  

Figure 4. Scanner acquisition (figure on the left) and acquired hand images from three 

different users (three figures on the right). 

   

 System 4 (PRM): a biometric system based on a CCD camera. In this case we used the 

PRM233c Big Eye device. This device was developed by the Hungarian Recognition company and 

was designed with the aim of acquiring passport images in visible, infrared and ultraviolet bands. We 

only used this device for hand shape biometric identification purposes in the infrared band. Health 

considerations prevented the use of ultraviolet images. The illumination is based on white and infrared 

LEDs. Device space limitations reduced the number of fingers in the images (thumb is discarded). 

Images are captured with 2,048 × 1,595 pixel size, as seen in Figure 5. 

Figure 5. PRM acquisition device (figure on the left) and acquired IR hand images from 

three different users (three figures on the right). 

    

3.3. Contactless Systems Acquiring the Hand by the Palm Side 

These systems are developed to verify users through hand geometry in the infrared band. The 

Infrared band is used to improve segmentation of the hand in open conditions. For that purpose, the 

parameters of the infrared webcam are adjusted to a small exposition time, low brightness, high 

contrast and gain. As a result the hand image is saturated as can be seen in the last row of Figure 6, 

where precise segmentation of the hand from the unconstrained background is easily done. 

The illumination consists of 16 infrared LEDs in the 850 nm band. These LEDs are located around 

the webcam. The location was designed to illuminate the hand evenly. The infrared webcam used 

acquire images of 1,600 × 1,200 pixels. According to the distance from the hand to the webcam, we 

have two different biometric systems:  
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 System 5 (Contactless 5–10 cm): Contactless images acquired at a short distance (in the 5–10 cm 

range). Figure 6 shows the assembly, acquisition procedure and acquired images sample. 

Figure 6. Contactless acquisition system at a short distance (figure on the left) and 

acquired IR and visible hand images from two different users (four figures on the right in 

upper level IR images; in down level visible images). 

 

 

 

The user is asked to keep his/her hand over the webcam, in the range of 5–10 cm. Thus, the infrared 

webcam acquires only an image of the fingers, very similar to the PRM233C images, while the visible 

image is focused on the palm. This scheme produces uncorrelated IR and visible images but the short 

distance and the high resolution (1,600 × 1,200) increase the data quality.  

 System 6 (Contactless 20–30 cm): Contactless images acquired at a medium distance (in the 

20–30 cm range). 

With this biometric system, an infrared and visible image of the complete hand is taken. The hand 

of the user has to be around 20–30 cm from the webcams, see Figure 7.  

Figure 7. Contactless acquisition system at a medium distance (figure on the left) and 

acquired IR and visible hand images from two different users (4 figures on the right in 

upper level IR images; in down level visible images). 
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The use of a dichroic filter (Cold Mirror) allows a correlated hand image in both IR and visible 

domains to be obtained, although it requires a greater distance in comparison with system 5. This 

distance degrades the image quality. 

4. Hand Shape Features Extraction Methods 

We explore the usability of two traditional hand shape feature extraction methods based on finger 

geometry measures and global appearance features. While geometric features involve local information 

about widths, lengths, angles or sizes the global appearance features consider the complete scene image. 

4.1. Finger Geometry Feature Extraction Method 

Geometric features extracted from the hand-shape are obtained from a traditional finger geometry 

feature extraction method. The geometric features are obtained by measuring 100 widths of each finger 

starting with the 15th point and ending with the 85th point of the finger length. As several of the hand 

shape biometric devices proposed in this paper just acquire the finger area, it is not possible to include 

palm measures because they cannot be taken in all the devices. Due to the acquisition devices setup 

and illumination, a reliable hand contour can be obtained through binarization of the grayscale images 

with its Otsu’s threshold [50].  

To work out the tips and valleys between the fingers we convert the Cartesian coordinates of the 

contour to polar coordinates (radius and angle) considering the center of the image first row (wrist 

size) as the coordinate’s origin. The peaks in the radius coordinate locate the provisional position of 

the finger tips and the minimum of the radius indicate the valleys between fingers. Let      and        

      be the radius and angle of the     hand contour pixel. The index   
 
 of the     radius peaks 

are obtained as: 

  
 
              

 
              

 
         

 
     

 
(1)  

with       
    

      
       . If the number of radius peaks obtained is greater than 5, we 

suppose than the hand detector has been fault and go back to the hand detection module waiting for a 

hand. As the hand is expected,   
  corresponds to the little finger tip. The index   

 
 of the     valley is 

worked out as:  

  
 
                

 
              

 
     

   
  (2)  

The exterior base of the index and little fingers are obtained as the nearest pixel of the exterior 

contour to the valley between the index and middle fingers and the valley between the index and little 

fingers, respectively, i.e.,: 

              
  
      

 
                       

        
      

(3)  

               
      

 
                       

        
      

(4)  

being        the Euclidean distance. We will call   
         , and   

        . 
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Figure 8. Tips, valleys and exteriors of fingers localization. 

 

The position of the tip of the finger is finely adjusted as follows:  

Step 1. Four equally spaced points are selected, starting with the 35th point and ending with the 80th 

point of each finger side. The 35% piece is selected to avoid the presence of rings, and the 80% piece 

is selected to avoid the tip curvature of the finger tip. For the right side of the finger, the four points 

are calculated as     
 
       

 
   

   
         

   
, being                           , and for 

the left finger side the points are calculated as     
 
       

   
   

 
         

 
. 

Step 2. The lines that minimize the square error with the selected point of each finger side are 

calculated. For the right side, the line is defined as     
 
     

 
, being   

 
and   

  calculated as: 

 
  
 

  
       

 

 
 
 

       
 
    

       
 
    

 
 

      
 
    

      
 
     

 
 
 
 

 

 
 
 

      
 
    

      
 
    

      
 
    

      
 
     

 
 
 

 (5)  

being      the pseudoinverse. For the left side, the line     
 
     

 
 is obtained as above using 

    
            , Figure 9. 

Figure 9. Initial tip localization and finger sides (in green); finger axis and accurate tip 

localization (in red). 
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Step 3. The average of the two lines is considered the finger axis and calculated as  

    
 
     

 
 being   

 
    

 
   

 
    and   

 
    

 
   

 
   , see Figure 9. 

Step 4. The tip of the finger is the point where the finger axis and the finger contour intersect, 

Figure 9. 

  
 
        

  
   

     
   
  

    
 
     

                (6)  

where  
    

 
     

     is the Euclidean distance with the line     
 
     

 
.  

The geometric features are obtained by measuring the widths of each finger as follows: the center 

base of each finger     
 
    

   is defined as the point where the finger axis     
 
     

 
 intersects 

the finger base line:  

  
    

 
      

   
 

    
 
      

   
 
       

   
       

   
  (7)  

We select 12 equally spaced points between     
 
    

   and       
 
       

 
   as follows: 

  
 
          

 
     

 
          

 
 (8)  

  
 
      

 
   

 
      

 
 (9)  

with                           . The perpendicular line to the finger axis is obtained in this point as: 

  
  

  
      

 
       

 
       

 
      

 
 (10)  

The nearest contour points to this line are: 

   
           

  
   

     
 
  
     

 
      

                (11)  

   
 
           

  
 
     

 
  

     
 
      

                (12)  

being the width at this point  
 
             

            
              

 
           

 
      . The 

geometric features are obtained by measuring 100 widths of each finger, starting with the 15th point 

and ending with the 85th point of the finger length. An example can be seen in Figure10. 

Figure 10. Finger widths measured for the geometrical template. 
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The width measures of the four fingers are concatenated resulting in a vector of 400 components 

  
                   .  

Smoothing procedure to improve the inter-device variability: obviously, not all the devices are 

able to obtain the same hand contour. The contour obtained with the hand dorsum is not equal to the 

silhouette obtained by the palm side. Therefore, besides the well-known translation, rotation and 

temporal variability, an interoperable algorithm has to cope with device variability. The within person 

inter device contour variability should be reduced while minimizing the reduction of the inter person 

variability. Given that averaging or smoothing are procedures that reduce the variance a bias of a 

measure, our proposal is to accomplish the inter device robustness task by using a smooth operator at 

two levels: the first one smoothing the hand contour and the second with a low pass filter applied to the 

feature vector. 

 First level (contour level): Let           
  the   8-connected pixels that define the hand 

contour. The smoothed contour is obtained with a moving averaging filter of order equal to 11. 

Therefore the smoothed contour             
  is obtained as: 

    
 

  
   

     

     
 (13)  

    
 

  
   

     

     
 (14)  

 Second level (feature level): the projection distortion can be reduced by first setting the mean 

value of the smoothed feature vector tuned to zero and dividing by its maximum value and then 

subtracting its average. The Discrete Cosine Transform (DCT) is applied to the smoothed normalized 

feature vector and the new geometrical hand template is obtained by selecting from the 2nd to the 50th 

coefficients of the DCT transform which corresponds to the lower frequencies and is equivalent to a  

new smoothing. 

As a verifier we used a Least Squares Support Vector Machine (LS-SVM). SVMs have been 

introduced within the context of statistical learning theory and structural risk minimization. Least 

Squares Support Vector Machines (LS-SVM) are reformulations to standard SVMs which lead to solving 

linear KKT systems. Robustness, sparseness, and weightings can be imposed on LS-SVMs where needed 

and a Bayesian framework with three levels of inference is then applied [51]. 

The meta-parameters of the LS-SVM model are the width of the Gaussian kernels   and the 

regularization factor  . The regularization factor is taken as      and is identical for all the LS-SVM 

models used here. The Gaussian width   parameter is optimized as follows: the training sequence is 

randomly partitioned into two equal subsets         . The LS-SVM is trained      times with 

the first subset    and Gaussian width equal to L logarithmically equally spaced values between     and 

            . Each one of the L LS-SVM models is tested with the second subset    obtaining L 

Equal Error Rate             measures. The positive samples are trained with target output +1 and 

the negative samples with target value −1. The Gaussian width   of the signature model is obtained as 

    , where                    . Finally, the user hand model is obtained by training the  

LS-SVM with the complete training sequence. 
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4.2. Global Appearance Hand Shape Feature Extraction Method 

The global appearance feature extraction method proposed in [1] is adapted for interoperable 

schemes. The hand shape obtained by the different systems proposed only warranted the complete image 

of four of the five fingers of the hand. The high pose variability of the thumb finger decreases the overall 

performance [25] and this degradation is greater in contactless schemes. Therefore we propose a global 

appearance feature extraction method based on the complete image of the four fingers: index, middle, 

ring and little.  

The feature extraction methods based on global appearance features are strongly dependent on the 

normalization of the hand image. The registration of hand images involves the normalization of the 

global rotation, translation and the re-orientation of the fingers individually along standardized 

directions. The method proposed can be divided into four steps: 

 First step: translation to the centroid of the hand so that it coincides with the center of the image. 

 Second step: rotation toward the direction of the larger eigenvector. The eigenvector corresponds 

to the largest eigenvalue of the covariance matrix of the object coordinates and the angle can be obtained as: 

            
     

         
  (15)  

where     ,      and      are the second-order centered moments of the binary hand pixel distances from 

their centroid. 

 Third step: discarding of thumb and palm regions using the line obtained by the points   
  and 

   
 , Figure 11.  

 Fourth step: the necessity of finger re-orientation is illustrated in Figure 12. The figure shows 

hand shapes of the same person acquired with the six proposed systems after global hand registration 

(without finger normalization). 

 

Figure 11. Black regions are the regions of interest when employing the hand shape global 

appearance features while discarded regions are in gray. 
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Figure 12. Superposed hand silhouettes registration images before finger normalization 

(left) and after finger normalization (right). 

    

The finger normalization algorithm is made up of the following three phases [1]: (a) extracting 

fingers: using the location of tips and valleys presented in Section 4.1; (b) finger pivots: fingers rotate 

around the joint between the proximal phalanx and the corresponding metacarpal bone; (c) hand pivotal 

axis: each finger is rotated by the angle, for the index, middle, ring, little, and the position of the goal 

orientation of that finger. The finger rotations are effected by multiplying the position vector of the finger 

pixels by the rotation matrix around their pivot:  

    
         
        

  (16)  

The standard angles are defined as                 for the index, middle, ring and little  

finger respectively. After normalizing the finger orientations, the hand is once again translated and 

rotated so that its centroid, defined as the mean of the four pivot points, is moved to a fixed reference 

point in the image plane. The complete hand image is rotated so that its pivot line aligns with a fixed 

chosen orientation and resized to 200 × 200 pixels image. The result of the complete hand normalization 

procedure can be seen in Figure 12. 

As seen the finger normalization corrects the pose distortion and reduces the inter-device variability 

but this correction is not fully accomplished in contactless imaging due to the high projective distortion 

present in an unconstrained acquisition. 

Once normalized, the feature extraction method employed is based on ICA2. The data vectors for the 

ICA2 decomposition are the lexicographically ordered hand image pixels. The dimension of these vectors 

is 200 × 200 = 40,000 features. The distance      between two features vectors    and    is computed in 

terms of cosine of the angle between them as: 

             
     

        
  (17)  
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5. Palm print Feature Extraction Methods 

This section presents palm print features as an alternative to the hand shape features previously 

described and as a way to combine different biometric traits of the hand in interoperable schemes. This 

paper explores the interoperability of the palm print biometric trait using two of the most promising 

palm print features approaches based on either global appearance features (OLOF) or local information 

features (SIFT).  

5.1. Palmprint ROI Extraction 

The distortions associated with inter-device variability and the projective distortions associated with 

contactless schemes introduce errors on the location and size of the Region of Interest (ROI). In this 

study we propose a ROI extraction method for interoperable palm print recognition based on the 

addition of three extra points to the traditional approach based on two points [33]. The center and the 

size of the ROI are located minimizing the quadratic error of the circumference obtained by the 

Cartesian coordinates of the points          
 
        

 
  
   

 
, being      

 
    

 
 
   

 
the Cartesian 

coordinates of the valleys,      
     

   and      
     

   defined as the points of the silhouette at 

  
      and   

      respectively. The circumference which minimizes the mean quadratic error is 

calculated by the pseudovector: 

 

  
  
  

      

 

 
 
 

    
     

  

    
     

  

    
     

  

    
     

  
 

    
     

   

 
 
 
 

 

  
 

   
    

     
    

 

   
    

     
    

 

   
    

     
    

 

   
    

     
    

 

   
    

     
    

  

  
 

 (18)  

where    and    are the coordinates of the center of the circumference and    is the ratio (Figure 13). 

Figure 13. Palmprint ROI extraction methods, traditional [33] method (left) and proposed 

method (right). 

  

The image inside the circumference image is rotated along the angle of the finger axis     
      

  

to obtain rotation invariability and the ROI is defined by the square centered at the coordinates    and 

   with side length equal to        . With this method the location and size of the ROI depends of 

the five points which reduce the inter-device variance (e.g., scale variability due to different acquisition 
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schemes). The image is processed by contrast limited adaptive histogram equalization [52] to improve 

contrast between palm lines. The palm print image is finally resized by bilinear interpolation to  

150 × 150 pixels in order to apply the same feature extraction algorithms to all the schemes. 

5.1. Global Appearance Features Extraction Method 

The Orthogonal Line Ordinal Features (OLOF) method was originally introduced in [18] and was 

investigated for application in palm print feature extraction. The comparison of OLOF method with 

several other competing methods [3] suggests its superiority in several palm print biometric devices. 

We worked out the OLOF features as defined in [18]. This method is based on 2D Gaussian filter to 

obtain the weighted average intensity of a line-like region. Its expression is as follows: 

               
           

  
 
 

  
            

  
 

 

  (19)  

where   denotes the orientation of 2D Gaussian filter,    denotes the filter’s horizontal scale and    

denotes the filter’s vertical scale parameter. There are no significant differences on the results in the 

range   ,            . 

To obtain the orthogonal filter, two Gaussian filters are used as follows: 

                       
 

 
  (20)  

Each palm image is filtered using three ordinal filters      ,         and        to obtain 

three binary masks based on a zero binarization threshold. In order to ensure the robustness against 

brightness, the discrete filters      , are turned to have zero average. Finally, the three images are 

reduced to 50 × 50 pixel. An example of these images can be seen in Figure 14. 

Figure 14. Palm print OLOF features for      ,         and        . 

   

In order to verify that a query texture   belongs to the identity with image texture (training)   we 

used a normalized Hamming measure which can be described as: 

    
                    

   
    
   

       
 (21)  

where the Boolean operator   is equal to zero if and only if the two pixels       and        are equal. 

Note that    is between 0 and 1 (best matching). Due to imperfect preprocessing, we need to translate 

vertically and horizontally one of the features to a range of 4 to 4 and match again. The maximum    

value obtained is considered to be the final matching score. 

  

http://en.wikipedia.org/wiki/Contrast_(vision)
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5.1. Local Information Features Extraction Method 

The Scale Invariant Feature Transform (SIFT) was originally proposed in [53]. The features 

extracted are invariant to image scaling, rotation, and partially invariant to illumination changes and 

projective distortion. With a goal to reduce the within person interdevice variability when searching 

the SIFT keypoints, we preprocess the gray scale palm print image by filtering it with a 2D even Gabor 

filter. This procedure, called Modified SIFT (MSIFT), has already been used in [54] in order to make 

the SIFT key point extortion more robust to contactless distortions. The SIFT algorithm is based on 

detecting keypoints with similar properties that are present in the reference and questioned image. The 

MSIFT consists of 6 steps: 

 Preprocessing: we assume that training and the questioned hand have a similar orientation 

inside the image (it is achieved during the segmentation stage). The real 2D Gabor filter used to 

process the palm print image is defined by: 

             
 

    
     

     

   
                         (22)  

where   is the frequency of the sinusoidal wave,   defines the orientation selectivity of the function, 

and    is the standard deviation of the Gaussian envelope. We used a Gabor filter setting with    , 

      and       . Greater robustness against brightness variation is assured by turning the discrete 

Gabor filter to average zero: 

                           
               

    
 
    

       
 (23)  

 Scale-space extrema detection: It is applied over all scales and image locations. It is based on 

the difference-of-Gaussian function to identify potential interest points that are invariant to scale and 

orientation. The input data is transformed to the space          as follows: 

                          (24)  

where   corresponds to the operator convolution,         is the preprocessed input image and 

          is a Gaussian function with bandwidth  . The difference-of-Gaussian function is defined as: 

                                                         (25)  

 Keypoint localization: A detailed model is fit to determine the location and scale of  

each candidate location. The interpolation is done using the quadratic Taylor expansion of the  

Difference-of-Gaussian scale-space function          with the candidate keypoint as the origin. This 

Taylor expansion is given by: 

       
   

  
 
 

 
  
    

   
  (26)  

where the maximum and minimum of   and its derivatives are evaluated at the candidate keypoint and 

        ) is the offset from this point [Figure 15(d)]. 
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Figure 15. Original palmprint image (a); contrast limited adaptive histogram equalized 

palmprint (b); Gabor filtered palmprint (c) and keypoint location on Gabor filtered image (d). 

    

(a) (b) (c) (d) 

 Orientation assignment: In our experiments we used 16 orientations for each keypoint 

location based on local image gradient directions. For an image sample       at scale σ, the gradient 

magnitude       , and orientation,       , are processed using pixel differences: 

                           
 
                    

 
 (27)  

             
                 

                 
  (28)  

 Keypoint descriptor: Around each keypoint, the local gradients are measured at the selected 

scale to obtain a descriptor vector        
  with   keypoints. Once the keypoints are extracted, the 

query image is matched and compared with each of the features extracted with the corresponding 

images in the registration database (from the training feature sets). The verifier evaluates the number 

of matches between the queried and the training images. Let    
     
  and    

 
 
   

 
 be the set of training 

and questioned keypoint descriptors respectively. The distance between keypoint descriptors is 

computed from the following:  

           
    

 
 
 
 (29)  

where    is the Euclidean norm. We define a match between a training   
  and a questioned   

 
 

keypoint when: 

                               
  

(30)  

with    . The threshold is estimated heuristically during the training stage and it is not particularly 

sensitive to values in the range of 1.2 to 1.7.  

 Matches Validation: The validation of matching scores for the authentication decisions is 

common in several other biometric feature extraction approaches. In this paper we propose a validation 

based on coordinates distance between keypoints to improve the SIFT performance on the contactless 

palm print biometrics. The hypothesis is that the coordinates from two keypoints matched must be 

similar if we correct the average displacement from all the matches. Let   
     

    
     
  and  

  
 
    

 
   

 
 
   

 
 be the set of training and questioned keypoint coordinates respectively. The distance 

between coordinates is calculated from the following: 

           
    

 
 
 
 (31)  
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where    is the Euclidean norm. We define a match between a training   
  and a questioned   

 
 

keypoint when: 

        
   

 
    

    
 
 
 

 

   

 (32)  

Due to high pose variance in contactless imaging we used a 1.5 weighting factor to accommodate 

small alignment errors between palms. The number of matches between the questioned and the training 

set is the similarity score. 

6. Experiments  

6.1. Experimentation Methodology 

We acquired 10 images with each of the six schemes (note that system 5 and system 6 provide 20 

images each) from 104 users in one session: for a total of 104 × 10 × 8 = 8,320 images. The decision 

for a unique session ensured an acquisition in the same environment conditions for all the schemes. 

Pose variability was maintained as follows: first we force the user to go through all the different 

biometric systems in an alternately way, meaning going through system 1, then system 2 up to system 

6 and then returning to system 1 and repeating the process 10 times, (see Figure 16).  

The experiments are tested with a close-set paradigm. Specifically from 10 images per user, we take 

four images for the training set, and we use the remainder in the verification phase. The experiments 

were designed to measure the interoperability between hand shape biometric devices and palmprint 

biometric devices. The interoperability experiments are carried out as follows. Interoperability entails 

enrolling a user with a biometric system A, and then being tested with a biometric system B. 

Concisely, the identifier is trained with four hands acquired from system A and tested with all the 

systems according to the interoperable scheme proposed on Figure 1. 

Figure 16. Procedure followed by the user to acquire all their samples for the interoperable database. 
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6.2. Individual Results 

The first experiments evaluate the performance of each features approach (hand geometry, hand 

shape, palm print with OLOF and MSIFT) with every biometric device (non-interoperable). The value 

in this first experiment is to compare different hand biometric approaches with the same users and 

acquisition conditions. Figure 17 shows the ROC curves obtained with the geometric and shape hand 

features with the six devices. 

Figure 17. ROC curves for hand shape features extraction methods, geometric (left) and 

global appearance (right). 

 

Figure 18. ROC curves for palm print features extraction methods, OLOF (left) and 

MSIFT (right). 

 

The results for both feature extraction methods suggest a better performance by dorsum approaches. 

In the case of contactless schemes the results obtained are similar in both 5–10 cm and 20–30 cm 

scenarios. The scanner outperforms the PRM but offers lower performance than the dorsum acquisition  
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with webcam. Figure 18 shows the results that compares the two proposed palm print feature extraction 

methods. The results for OLOF suggest that contact schemes offer a better performance in comparison 

with contactless schemes. Also the OLOF’s performance of contactless schemes with 5–10 cm or  

20–30 cm distances is quite similar. 

The results of MSIFT show important differences with previous OLOF results. In this case 

contactless scheme at 5–10 cm distance clearly outperforms scanner and contactless at 20–30 cm. 

schemes. The improvement is related with the resolution of the palm print images (Table 3). 

Although palmprint images are re-sized to 150 × 150 pixel before applying the feature extraction 

method, the resolution of the original image remains as an important factor on the quality of the 

biometric data. 

Table 3. Mean resolution (pixels) of hand images and palm print ROI of the proposed 

devices. 

Device Image Size ROI Size 

Scanner 701 × 509 115 × 115 

WC 5–10 1,600 × 1,200 600 × 600 

WC 20–30 1,600 × 1,200 400 × 400 

While global appearance features such as OLOF can achieve promising results using low 

resolution images, the local information approaches such as SIFT need more resolution to achieve 

better performance.  

6.3. Interoperability Results for Hand Shape Biometrics 

The results in terms of Equal Error Rate (EER) are shown in Tables 4 and 5; Table 4 displays the 

results for finger geometry features without smoothing while Table 5 shows the results for global 

appearance features. The diagonal from both Table 4 and Table 5 displays how each scheme 

performs itself using a traditional biometric recognition approach. Although Tables 4 and 5 are near 

symmetric, it is obvious that it is not the same to be trained with system A and tested with B than 

vice versa. 

Table 4. Interoperability matrix for Finger-Geometry approaches in terms of EER (%). 

  Training 

System 

Test System 

Biometric Device Resolution 1 2 3 4 5 6 

Dorsum 
Visible webcam 640 × 480 1 1.19 1.49 14.18 26.93 26.24 20.40 

Webcam 850 nm 640 × 480 2 2.04 1.08 13.50 23.65 26.13 17.15 

Palm 

Scanner 701 × 509 3 11.24 9.71 0.13 14.60 18.31 3.36 

Contactless 20–30 cm 1,600 × 1,200 4 30.80 35.55 19.89 4.91 11.26 23.29 

Contactless 5–10 cm 1,600 × 1,200 5 37.59 40.85 26.29 11.18 5.60 34.99 

PRM 2,048 × 1,595 6 20.76 17.78 4.54 16.74 23.11 1.94 
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Table 5. Interoperability matrix for Hand-Shape Global Appearance approaches in terms 

of EER (%). 

  Training 

System 

Test System 

Biometric Device Resolution 1 2 3 4 5 6 

Dorsum 
Visible webcam 640 × 480 1 0.45 7.19 11.46 29.98 31.08 46.78 

Webcam 850 nm 640 × 480 2 7.53 0.26 20.38 33.53 34.89 46.57 

Palm 

Scanner 701 × 509 3 10.78 18.71 0.26 20.80 20.72 35.08 

Contactless 20–30 cm 1,600 × 1,200 4 24.19 29.43 16.95 3.87 3.59 39.33 

Contactless 5–10 cm 1,600 × 1,200 5 24.74 28.30 17.69 3.92 3.77 39.33 

PRM 2,048 × 1,595 6 43.08 45.0 36.54 37.91 37.13 3.90 

As seen from the above results in, Tables 4 and 5, by applying traditional feature extraction 

methods in multiple scenarios it is possible to achieve competitive performance in individual schemes 

but not in interoperable schemes. In interoperable scenarios it is necessary to apply additional 

techniques to reduce inter-scheme variability. Table 6 shows the results of hand geometry features after 

applying the proposed smoothing techniques. 

Table 6. Interoperability matrix for Finger-Geometry approaches with smoothing in terms 

of EER (%).  

  Training 

System 

Test System 

Biometric Device Resolution 1 2 3 4 5 6 

Dorsum 
Visible webcam 640 × 480 1 0.25 3.46 10.90 18.00 15.86 14.07 

Webcam 850 nm 640 × 480 2 4.48 0.26 7.12 14.66 14.86 9.65 

Palm 

Scanner 701 × 509 3 8.20 5.30 0.25 8.44 9.01 2.08 

Contactless 20–30 cm 1,600 × 1,200 4 22.53 23.24 11.03 0.83 1.92 13.61 

Contactless 5–10 cm 1,600 × 1,200 5 22.46 25.73 14.77 1.98 1.24 18.64 

PRM 2,048 × 1,595 6 13.16 9.73 2.84 8.78 10.59 0.51 

Analyzing the results, it is easy to conclude that smoothing improves interoperability performance. 

An exception occurs in the case of systems that acquire the hand image by the dorsum. We believe that 

this exception is related to the poor resolution and accuracy of the contours. The smoothing operation 

decreases the inter-device variability but also reduces the inter-user variability that defines the False 

Rejection Rate. This reduction is not crucial with high resolution images but it is a problem with the 

low resolution images of the dorsum approaches proposed. 

As seen in the diagonal of Table 6, the results obtained by each individual system are closer than 

those in Table 4. It can be interpreted that smoothing reduces the inter-device variability of the 

parameters which help understand the generalization ability of the smoothing operator. Table 6 shows 

that the EER of the hand biometric systems based on the hand dorsum side goes from 0.25% 

(averaging cells {1,1} and {2,2} of Table 6 being {a,b} the result of training with system A and testing 

with system B), to 3.97% (averaging cells {1,2} and {2,1} of Table 6) when we change the test 

scheme. In the case of hand palm with contact, changing the test device worsened the EER from 0.38% 

(averaging cells {3,3} and {6,6} of Table 6) to 2.46% (averaging cells {6,3} and {3,6} of Table 6.) In 
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the case of contactless, the EER goes from 1.03% (averaging cells {4,4} and {5,5} of Table 6) to 1.95% 

(averaging cells {4,5} and {5,4} of Table 6) when changing the scheme.  

Measuring interoperability between touch devices acquiring the hand image by dorsum or palm 

side, the EER goes to 7,88% (averaging cells {1,3}, {1,6}, {2,3}, {2,6}, {3,1}, {3,2}, {6,1} and {6,2} 

of Table 6.). Obviously it worsened to 19,66% (averaging cells {1,4}, {1,5}, {2,4}, {2,5}, {4,1}, 

{4,2}, {5,1} and {5,2} of Table 6.) when compared to touch and contactless systems. A summary of 

the averaged interoperability results obtained dividing the experiments by sensors and approaches is 

seen in Table 7. 

We can also deduce from Tables 5, 6 and 7 that the worst interoperability results are obtained when 

we mix contact with contactless devices and palm with dorsum devices. However, the interoperability 

between either contact or contactless or palm and dorsum devices need further research and 

improvements. 

Table 7. Average Interoperability between different hand shape approaches in terms of 

EER (%).  

Systems 

involved 

Interoperability between devices with the next 

properties 

Global 

Appearance 

Geometry 

unsmoothed 

Geometry 

Smoothed 

1, 2 Contact, hand Dorsum image 7.36 1.76 3.97 

3, 6 Contact, Palm side images 35.81 3.95 2.46 

4, 5 Contactless and Palm 3.75 11.22 1.95 

3, 4, 5, 6 Contact and contactless by palm side 28.73 21.41 11.85 

1, 2, 3 Contact with Palm and dorsum sides 15.33 12.15 7.88 

1, 2, 4, 5 Webcams with and without contact by palm and dorsum  29.52 30.96 19.66 

1, 2, 3, 4, 5, 6 Contact and contactless by palm and dorsum sides 26.75 18.95 9.30 

6.4. Interoperability of Multi-Instance Biometric Schemes Based on Finger Geometry 

In this section we analyze an interoperable scenario in which the training data include two schemes, 

A and B, and the verification data belongs to a third scheme C. In this scenario the hand model is 

trained with dorsum and palm schemes or contact and contactless schemes. Although several methods 

have been proposed for fusion of biometric data, this study uses a simple score fusion based on a SUM 

rule such as: 

               (33) 

where      is the combined score,      is the score obtained by training with system A and verifying 

with system C and      is the score obtained by training with system B and verifying with system C. 

Table 8 shows the interoperable results when using multi-instance biometric schemes for the most 

representative combinations. Table 8 also includes a comparison with the EERs result obtained with 

single-instance schemes from Table 6.The multi-instance approach improves the poor interoperable 

rates between contact and contactless schemes or palm and dorsum schemes. The combination at the 

classification score level using a traditional sum rule shows how it is possible to achieve competitive 

interoperable schemes with EER under the 2%.  
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Table 8. Interoperability with two training sets and a combination at score level for finger 

geometry approach in terms of EER (%). 

Training Systems A Training Systems B Verification Systems C Previous (A
1
/B

2
) EER 

(%) for C 

EER (%) 

Dorsum with 

contact 

Palm with contact Dorsum with contact  

Visible webcam Scanner Webcam 850 nm 3.46/5.30 2.43 

Dorsum with 

contact 

Palm with contact Palm with contact  

Visible webcam Scanner PRM 14.07/2.08 1.66 

Webcam 850 nm PRM Scanner 14.66/8.78 1.72 

Dorsum with 

contact 

Palm with contact Palm contactless  

Visible webcam Scanner Contactless 20–30 cm 18.00/8.44 1.66 

Palm with contact Palm contactless Palm contactless  

Scanner Contactless 20–30 cm Contactless 5–10 cm 9.01/1.92 1.22 

Scanner  Contactless 5–10 cm Contactless 20–30 cm 8.44/1.98 1.81 

Dorsumwithcontact Palm contactless Various  

Webcam 850 nm Contactless 20–30 cm PRM 9,65/13,61 5,43 

Visible webcam Contactless 20–30 cm Webcam 850 nm 3,46/23,24 4,40 

Visible webcam Contactless 20–30 cm Contactless 5–10 cm 15,86/1,92 1,46 
1 EER training with system A and verifying with system C; 2 EER training with system B and verifying with 

system C. 

6.5. Interoperability Results for Palmprint Biometrics 

Interoperability results for palmprint approaches are shown in Table 9. An analysis of the 

interoperability between touch and contactless devices reveals that the error goes to 15.88%
 
and 

36.38% for OLOF and MSIFT, respectively (averaging cells {3,4}, {3,5}, {4,3} and {5,3} of Table 9). 

Once again a boundary emerges when mixing contact and contactless devices. The interoperable rates 

between contactless schemes go to 15.4% and 1.35% for OLOF and MSIFT, respectively (averaging 

cells {4,5} and {5,4} of Table 9). 

From the experiment it can be deduced that global appearance features such as OLOF show more 

stable interoperability performance but local information approaches such as MSIFT can be more 

effective when using similar sensors. 

Table 9. Interoperability matrix for palm print approaches (OLOF and MSIFT) in terms of EER (%). 

 
 Training 

System 

Test System 

OLOF approach MSIFT approach 

Biometric Device Resolution 3 4 5 3 4 5 

Palm 

Scanner 509 × 701 3 0.17  9.61  19.7  0.86  38.2  36.2  

Contactless 20–30 cm 1,600 × 1,200 4 11.4  0.84  14.3  34.1  0.41  1.86  

Contactless 5–10 cm 1,600 × 1,200 5 23.2  16.5  0.87  36.9  0.95  0.13  

The distortion due to the pressure of the hand on the scanner screen decreases the interoperable 

performance with contactless devices using both OLOF and MSIFT approaches. The local information 
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feature approach MSIFT yields the best interoperability rate with 0.95%. In this case the 

interoperability is not symmetric which means that training with a contactless 5–10 cm system and 

testing with a contactless 20–30 system produces better performances than vice versa. It can be 

deduced that the greater quality and resolution of the images obtained with the contactless 5–10 system 

improve the training data and produces a more robust training set. 

6.6. Interoperability Results Combining Hand Shape and Palmprint Biometrics 

Combining scores obtained from different procedures is a standard practice to improve the 

performance of a biometric scheme. In this section we explore how the combination of hand traits 

improves the performance of biometric devices in interoperable scenarios. Concisely, we will combine 

the hand geometry and MSIFT feature extraction methods due to the better performance that those 

features showed on interoperable schemes. We assume that the matching scores from both features are 

widely separated. Prior to combining these scores, we normalize the data based on max/min  

approach [55]. It is then possible to combine them at score level fusion based on a linear score 

combination functions such as: 

                         (34)  

where       and        are the scores obtained for geometric and palmprint biometrics respectively,  

is the weighting factor and       is the combined score which will be used to verify the input identity. 

The value of  is obtained as follows. Let      
     and       

           the scores of the 

genuine training samples. Let      
     and       

            be the scores of the impostor training 

samples. A distance measure between the distribution of genuine and impostor scores is obtained for 

hand geometry as follows: 

         
 

      
 

         
 

      
 

  
(35)  

where      
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the covariance matrixes. The distance between genuine and forgeries for        is obtained in the 

same way. The weighting factor is obtained as:                        . 

The database proposed only allows the combination in three of the six systems because the dorsum 

schemes and PRM device do not provide palm print imaging. The results are given in Table 10. 

Table 10. Interoperability matrix for multimodal approaches based on the fusion of  

Hand-Geometry and MSIFT in terms of EER (%). 

 
Biometric Device Resolution Training System 

Test System 

3 4 5 

Palm 

Scanner 509 × 701 3 0.01 11.5 12.6 

Contactless 20–30 cm 1,600 × 1,200 4 8.87 0.01 0.32 

Contactless 5–10 cm 1,600 × 1,200 5 9.13 0.02 0.01 

As seen, the combination clearly improves the previous results. The individual performance of all 

system is 0.01%. The combination improves the interoperability between scanner and contactless 
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devices and allows promising results to be obtained for the interoperability of both contactless schemes 

with EERs of 0.02% and 0.32%. 

An interoperable scheme which involves contact and contactless schemes raise doubts (EERs equal 

to 11.5%, 11.6%, 89.87% and 9.13%; see Table 10) but a multi-instance algorithm could alleviate 

these results. Additionally, the results for a contactless interoperable scheme suggest that when using 

multimodal schemes it is possible to achieve competitive interoperable rates with performances similar 

to traditional schemes.  

6.7. User Convenience and Acceptance in Multiple Hand Based Biometric Schemes 

The performance of biometric schemes or approaches is not the only important aspect in biometric 

recognition systems. Characteristics such as scalability, usability or convenience among others are 

important factors to ensure the correct transfer between laboratory and industry. We include the results 

of a survey made to all the users from the database with queries about the convenience and acceptance 

of the different hand biometric schemes proposed. The survey includes four questions and their 

answers are given: 

Table 11. Survey about the acceptance and interoperability of the hand biometrics 

approaches proposed. 

Questions 
Answers  

1&2  3 4 5 6 

Which biometric system do you feel more comfortable with? 18% 45% 9% 3% 25% 

Which biometric system do you consider the most hygienic? 2% 2% 74% 22% 0% 

 With Contact Contactless 

Would you prefer a contact or contactless biometric system? 54% 46% 

 Yes No 

Do you believe the image of your hand violates/invades your privacy? 24% 76% 

The results of the survey about the hygienic and privacy concerns are not surprising. But the results 

about the contact or contactless preferences and comfort are unexpected. The preference of the scanner 

system instead of another more convenient system such as contactless is new. The easier acquisition 

and the familiarity with the scanner device are the main reason for these answers. 

7. Conclusions 

In this paper we have illustrated the impact of changing sensors and approaches on the performance 

of two of the most popular hand biometrics. The experiments show that interoperability is possible 

between systems based on a similar design, that is to say, between systems that acquire the hand 

dorsum or palm side, between touch or touchless systems, etc. although the performance with respect 

to use of the same device worsened by 3 to 10. The use of multi-instance or multi-modal schemes 

clearly outperforms the interoperable rates and emerges as the best way to achieve competitive 

interoperable performances. 

Comparative hand shape shows better performance in terms of interoperability than palm print 

analysis. We deduce that the hand shape is not so dependent on the sensor. In this case, the pose and 



Sensors 2012, 12 1379 

 

hand side (palm or dorsum) are important factors. Nevertheless the texture of the palm can vary 

depending on the sensor or the light used and for a fair comparison the experiments they should be 

done in an open set. 

Future studies could include more stable parameters that are oriented to interoperability, in addition 

to other hand biometrics traits, such as knuckles [39,40]. The increase in the number of users on the 

database is essential in order to obtain more reliable conclusions. The effects of multisession 

acquisition to the interoperability it is also an interesting topic to explore. 
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