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Abstract: In this paper, a gait analysis system which estimates step length and foot angles 

is proposed. A measurement unit, which consists of a camera and inertial sensors, is 

installed on a shoe. When the foot touches the floor, markers are recognized by the camera 

to obtain the current position and attitude. A simple planar marker with 4,096 different 

codes is used. These markers printed on paper are placed on the floor. When the foot is 

moving off the floor, the position and attitude are estimated using an inertial navigation 

algorithm. For accurate estimation, a smoother is proposed, where vision information and 

inertial sensor data are combined. Through experiments, it is shown that the proposed 

system can both track foot motion and estimate step length. 
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1. Introduction 

Gait analysis [1] involves the measurement of temporal/spatial characteristics (step length and 

walking speed), kinematics and kinetics. Gait analysis is used for medical purposes, sport analysis, and 

also for entertainment purposes. An instrumented walkway, where pressure sensors are located on the 

floor, can be used to measure step length and foot pressure [1]. A vision-based motion tracking system 

can measure step length and foot angles accurately [2]. However, both systems have rather limited 

walking ranges (usually less than 10 m).  

Recently, inertial sensor based systems are becoming popular. In [3], inertial sensors are installed 

on a leg and gait phases are identified by computing angles of leg segments. In [4], inertial sensors are 

OPEN ACCESS



Sensors 2012, 12 1595 

 

 

used to estimate upper-limb orientation. More relevant results are given in [5,6], where inertial sensors 

are installed on a shoe or a leg and the foot movement is estimated using inertial navigation algorithms. 

Step length is estimated in [5] and a foot movement is estimated in [6]. These techniques can estimate 

step length or foot movement without range limitations. However, due to double integration errors, the 

accuracy tends to degrade as time goes by.  

In this paper, a new gait analysis system is proposed. A measurement system consisting of a camera 

and inertial sensors is installed on a shoe. Fiducial markers are printed on paper and placed on the  

floor. Fiducial markers are used mainly in virtual reality systems and there are many types of such  

markers [7–9]. In this paper, we use simple markers since there are no concerns that complicated 

backgrounds might mistakenly be recognized as markers.  

When a foot is on the floor, the position and attitude are estimated using a camera by recognizing 

the markers. When a foot is moving, its movement is estimated using inertial sensors. In an  

inertial-based foot estimation system, Kalman filters are usually used to estimate the position and 

attitude of the foot. For better accuracy, a smoother is used to combine vision information and inertial 

sensor data. It will be shown that the accuracy of the proposed system is better than that of inertial 

sensor-only estimation as described in [5]. 

One possible application of the proposed system is the clinical gait assessment of patients, where 

long walking ranges are desirable. Another application is parameter estimation of some pedestrian 

navigation algorithms [10]. In those algorithms, relationship between step length and one step walking 

time needs to be identified; thus step length and one step walking time should be accurately measured. 

We note that step length measurement using vision only [11] and partial combinations of vision and 

inertial sensors are reported in [12]. In this paper, vision and inertial sensor data are tightly coupled in 

the proposed algorithm. The proposed system can be applied only for the flat ground. For example, the 

proposed system cannot be used for stairs. 

The paper is organized as follows. In Section 2, an overview of the proposed system is given. In 

Section 3, how to estimate the position and attitude is explained. In Section 4, an inertial navigation 

algorithm combining inertial sensor data and vision data is described. A smoothing algorithm [13] 

consisting of a forward filter and a backward filter is used. In Section 5, experiment results are given. 

Conclusions are presented in Section 6.  

2. Gait Analysis System 

The gait analysis system consists of a sensor unit placed on a shoe and fiducial markers located on 

the floor (Figure 1). A sensor unit consists of a camera (point grey Firefly MV FFMV-03MTM) and 

inertial sensors (XSens MTi inertial measurement unit). 

A fiducial marker used in this paper is similar to ARTag markers [7–9]. Each marker is a nine by 

nine grid of quadrilateral cells of 1.5 millimeter edges and thus the marker size is 13.5 mm × 13.5 mm. 

The intra-marker space is 4.5 mm. The marker size is determined so that there are at least two markers 

in the camera image. We note that the height of a camera from the markers is about 85 cm and camera 

field of view is about 54.5 × 45 mm.  
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Figure 1. Gait Analysis System. 

 
 

The whole cells are blank or colored in black in order to make them bitonal cells allowing either 

gray scale or color cameras to be used. The cell in black represent 1s, while the cells in white represent 

0 s (Figure 2). The border cells are colored in black and are one cell width wide, followed by blank 

closed-chain cells. The digital coding system used to identify the marker consists of a five by five grid 

of bitonal cells including the blank central-cross cells, a black origin cell and three blank corner cells 

in the interior of a marker. A marker structure and its twelve bits digital coding system inside are 

illustrated in Figure 2. 

Figure 2. Fiducial Marker Structure (a) and a marker ID sample (b). 

 
 (a) (b) 

The code bits are distributed along the quadrilateral central-cross in the order from left to right, and 

from top to bottom (the bit corresponding to 0 position in Figure 2(a) is the least significant bit and 11 

is the most significant bit). The origin quadrilateral cell and three blank corner cells are used to detect 

the least significant bit regardless of the relative orientation between a camera and a marker. For example, 

the marker ID in Figure 2(b) is 000110101000 in a binary number and 424 in a decimal number. 

Usually, the digital coding system is encoded in the marker containing a marker ID, checksum and 

error correcting codes. However, in our application, markers are seen by the camera in predetermined 

sequences not random sequences as in other virtual reality applications. Thus, in order to increase the 

recognition speed and number of markers, a simple coding system is used. Neither checksum nor error 

correcting codes is used. Totally, there are 212 = 4096 unique markers (marker ID 0~4095). With 4096 

unique markers, the total length is 16.9 m. If longer walking range is needed, markers can be repeated 

so that marker ID 0 reappears after the marker ID 4095. 
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A planar landmark system is generated by N  fiducial markers which are composed of a four by M 

grid of markers as in Figure 3. The marker ID is encoded from zero to (N-1). 

 

Figure 3. Planar Landmark System. 

 

There are four coordinate frames in this paper. The world coordinate frame is based on the marker 

plane: x  and y  axes of the world coordinate frame constitute the plane where markers are placed. The 

origin of the world coordinate frame coincides with the center of the first marker. Foot positions are 

expressed in the world coordinate frame.  

The navigation coordinate frame is used in an inertial navigation algorithm. The origin of the 

navigation coordinate frame is the same as that of the world coordinate frame. The z axis of the 

navigation coordinate frame coincides with the local vertical. Unlike a usual navigation coordinate 

frame (where the x  axis is in the direction of the magnetic north), the x  axis lies on the x z  plane of 

the world coordinate frame. If markers are placed on the perfect plane, the inclination angle of the 

floor is zero and two coordinate frames are the same.  

The camera coordinate frame is placed at the pinhole of the camera, where the z axis is 

perpendicular to the image plane. Three axes of the body coordinate frame coincide with those of 

inertial sensors. In this paper, it is assumed that the three axes of the camera coordinate frame and the 

body coordinate frame are the same. 

One walking step is illustrated in Figure 4, where normal walking is considered. When a person is 

walking, a foot touches the ground for a short time (usually about 0.1~0.3 seconds) almost periodically. 

Even if a shoe looks like it is moving all the time during walking, a shoe is on the ground and not 

moving for a short time. This short interval is called the zero velocity interval. We also define moving 

intervals, which refer to an interval when a foot is moving. Thus one normal walking step consists of a 

zero velocity interval and a moving interval (see Figure 4). How to divide walking steps into a zero 

velocity interval and moving interval is given in Figure 4. In medical gait analysis [1], one walking 

step consists of seven gait phases: loading response, mid-stance, terminal stance, pre-swing, initial 

swing, mid-swing, terminal swing. The zero velocity interval exists between the loading response 

phase and terminal stance phase.  
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Figure 4. A Zero velocity interval and a moving interval of a walking step. 

 

During zero velocity intervals, the position and attitude of a foot are estimated using markers on the 

floor (see Section 3). During moving intervals, the position and attitude are estimated using inertial 

sensors (see Section 4).  

3. Position and Attitude Estimation Using Markers 

When a foot is not moving on the floor, markers in camera images are recognized through an image 

processing process. The Canny algorithm, the most popular algorithm for edge detection, is applied  

to detect whole contours from the original captured image (Figure 5(a,b)). The quadrilateral contours 

are then detected based on the geometric properties (Figure 5(c)). Other contours are eliminated. Two 

quadrilateral contours whose central coordinates are close to each other are grouped. A line equation is 

computed for each side of a quadrilateral using the least squares method. For each marker, eight lines 

are computed (four lines for an outer quadrilateral and four lines for an inner quadrilateral). Based on 

these lines, the inner quadrilateral is partitioned into 7 × 7 partitions to check the interior cells (see 

Figure 2). The interior cells of grouped contours are converted into a binary coding using the following 

adaptive threshold: 

480 640

1 1

1
threshold

640 480 ij
i j

I
 

  
       

   

where ijI is the gray image intensity level of the ( , )i j pixel. The image size is 640 × 480. If a binary 

coding satisfies the constraint in Figure 2, the group is identified as a marker and a marker ID is 

computed. If the constraint is not satisfied, the group is abandoned. From the origin cell (see Figure 2), 

the orientation of a marker can be identified. In Figure 5(d), identified markers with their IDs and their 

four corners are given, where intersections of four lines of an outer quadrilateral are defined as four 

corners of a marker. 
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Figure 5. Image processing steps including (a) Origin gray scale image; (b) Detected 

contours using Canny edge detector; (c) Quadrilateral contours; and (d) Marker IDs and 

four corners. 

 
(a) (b) 

 
(c) (d) 

Position ( v̂isionr ) and attitude ( ˆ
visionC ) of a camera with respect to the world coordinate frame are 

determined using four corners of a marker (outer corners in Figure 5(d)). Let wr  be a point expressed in 

the world coordinate and br  be the same point in the body coordinate. Then the relationship between br  

and wr  is given by: 

ˆ ˆ .w vision b visionr C r r   

A vector v̂isionr  represents the position of a camera in the world coordinate. A rotation matrix ˆ
visionC  

represents a rotation matrix transforming a body coordinate (=camera coordinate) into a world coordinate.  

It is known that the position and attitude can be computed if there are at least four points [14,15]. 

Thus position and attitude can be computed if there is at least one marker with four corners in the 

image. If there is more than one marker, more points can be used for the position and attitude 

computation; then the estimation error becomes smaller. We used an algorithm in [14] to estimate 

position v̂isionr  and attitude ˆ
visionC . Position information is directly used in Section 4. Only yaw 

information in ˆ
visionC  is used in Section 4 since pitch and roll information can be computed from 

inertial sensors. 

4. Position and Attitude Estimation Using Inertial Sensor Data 

When a foot is moving, the position and attitude are estimated using an inertial navigation algorithm. 

To simplify the inertial navigation algorithm, it is assumed that the navigation coordinate frame and 

the world coordinate frame are the same. This assumption is satisfied if markers are placed on a 

completely flat floor. 
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A quaternion   4
0 1 2 3

T
q q q q q R   is used to represent rotation between the navigation 

coordinate frame and the body coordinate frame [16,17]. The rotation matrix ( )C q corresponding to 

quaternion q  is defined by: 

 

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 2 3 0 1

2 2
1 3 0 2 2 3 0 1 0 3

2 2 1 2 2 2 2

2 2 2 2 1 2 2

2 2 2 2 2 2 1

q q q q q q q q q q

C q q q q q q q q q q q

q q q q q q q q q q

    
      
     

 

Gyroscope output ( gy ) and accelerometer output ( ay ) are given by: 

 

where   is the body angular rate, g  is the gravitational acceleration vector, ba  is the acceleration due 

to movement, gv is the gyroscope measurement noise, and av is the accelerometer measurement noise. 

The sensor noises gv  and av  are assumed to be zero mean white Gaussian noises satisfying: 

E[ ( ) ( ) ] ( ),   E[ ( ) ( ) ] ( ),   E[ ( ) ( ) ] 0.T T T
g g g a a a a gv t v s I t s v t v s I t s v s v t         

The sampling frequency of inertial sensors is 100 Hz and the sampling frequency of vision data is 

30 Hz. A discrete time system is based on the sampling period of inertial sensors; that is, the sampling 

period T for the discrete time system is 0.01T  s. For example, ,g ky  in the discrete time means 

( )gy kT in the continuous time. Vision data is not synchronized with inertial data. When vision data is 

available at the continuous time t , its discrete time index is computed by k = floor(t/T) where floor(U) 

is the largest integer not larger than U . 

4.1. Zero Velocity Interval Detection 

Since the velocity of a foot cannot be measured directly, the zero velocity intervals are determined 

from inertial sensor data and vision data. To determine whether a discrete time k  belongs to a zero 

velocity interval, firstly the following condition are tested: 

, , 1

,

,
2 2

,
2 2

a a
a i a i a

g g
g i g

N N
y y S k i k

N N
y S k i k

     

    
 (1) 

where aS , gS , aN  and gN  are constant parameters. The first condition means that difference between 

consecutive accelerometer values should be small. The second condition means that gyroscope values 

should be small. In addition to Equation (1), there is an additional condition for zero velocity 

determination, which requires difference between two consecutive images should be small. Recall that 

vision data are not available for each discrete time k  since the sampling frequency of a camera is 

lower than that of inertial sensor data. Here vision data means that the image coordinates of marker 

corners. Difference between two images is measured by computing the average movement of image 

coordinates of marker corners. 
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Given a discrete time k , let 1k k  and 2k k  be discrete time indices at which time vision data are 

available. That is, vision data are available at 1k and 2k and there are no vision data in 1 2( , )k k . Let 

1

2
,i kp R and 

2

2
,i kp R  (1 ki N  ) be the image coordinates of marker corners, which exist both at 

1k  and 2k  discrete time images. The same index i  represents the same corner and kN  is the number of 

marker corners appearing in the both images. The small image movement is defined as follows: 

1 2, ,
1

1 kN

i k i k image
ik

p p S
N 



  (2) 

In summary, discrete time k is determined to belong to a zero velocity interval if Equations (1) and (2) 

are satisfied. 

4.2. Initialization of an Inertial Navigation Algorithm 

We use the position estimate in Section 3 as an initial position estimate. For an initial attitude 

estimate, we could have used the attitude estimate ( ˆ
visionC ) from vision data. Instead we combine the 

attitude estimate ( ˆ
visionC ) and accelerometer output ( ay ), where pitch and roll are estimated using ay  

and yaw is estimated from ˆ
visionC . In this way, we can obtain a correct attitude estimate even if the floor 

is not completely flat and thus the navigation and world coordinate frames are not exactly the same. 

An initial attitude estimate is computed by finding ( )C q  satisfying the following: 

 (3) 

1 1
ˆ 0 ( ) 0

0 0
visionC C q

   
      
      

 (4) 

The TRIAD algorithm [18] is used to compute ( )C q . We note that in the TRIAD algorithm pitch 

and roll are estimated using Equation (3) and yaw is estimated using Equation (4). Thus ˆ
visionC  only 

affects yaw in ( )C q . We have not used magnetic sensors since there could be large magnetic 

disturbances indoors, which degrades the accuracy of yaw estimation.  

4.3. Basic Equations for an Inertial Navigation Algorithm 

Let nv  be the velocity of a foot in the navigation coordinate frame. Basic equations for q , nv  and nr  

are given by: 

 

(5) 

where ( ) is defined by:  
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 

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

  
  


  
  

   
  
 
   

@  

In this paper, we estimate q , nv  and nr  by combining a forward filter and a backward filter [19]. An 

indirect filter is used for a forward and a backward filter. Firstly q , nv  and nr  are estimated using 

Equation (5); let q̂ , ˆnv  and n̂r  be corresponding estimated values. Let , ev  and er  be errors of these 

estimated values, which are defined by: 

 

where   represents the quaternion multiplication. Assuming that  is small, we can approximate  

as follows: 

 

where 3
eq R . In an indirect filter, eq , ev  and er are estimated. Let a state x  be defined by: 

9
e

e

e

q

x v R

r

 
   
  

 

The differential equation is given by: 

 (6) 

where: 

   

0 0

ˆ2 0 0 ,

0 0

g

T

a

y

A C q y

I

     
   
 
 
 

  
0.5

ˆ .

0

g

T

a

v

w C q 

 
 

  
 
 

 

For a vector 3p R , [ ]p  is defined by: 

3 2

3 1

2 1

0

0

0

p p

p p p

p p

  
   
  

. 

Note that E[ ( ) ( ) ] (0)Tw t w t Q , where: 

0.25 0 0

0 0

0 0 0

g

a

I

Q I




 
   
  

. 
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4.4. Forward Filter 

A forward filter processes data from the beginning to the end of data. In a forward filter, ,ˆ f kq , ,ˆ f kv  

and ,f̂ kr are first computed using the discretized approximation of Equation (5): subscript f  represents 

a forward filter and k  represents the discrete time index. The following equations are used to compute 

,ˆ f kq , ,ˆ f kv  and ,f̂ kr : 

kfkkgkkkgkkkf qTyTTyTTIq ,
32

2,
2

1
22

2,11, ˆ
48

1

24

1

6

1

4

1

4

3
ˆ 






  

 
     gTyqCyqCTvv ka

T
kfka

T
kfkfkf

~ˆˆ5.0ˆˆ ,,1,1,,1,    

 kfkfkfkf vvTrr ,1,,1, ˆˆ5.0ˆˆ    

where k is defined by ,( )k g ky  . In the computation, ,ˆ f kq  is normalized each time. 

The estimation errors in ,ˆ f kq , ,ˆ f kv  and ,f̂ kr  are estimated using a forward Kalman filter, where the 

process model is given in Equation (6). During the zero velocity interval, the fact , 0n kv  is used in the 

measurement equation. If vision data are also available, ,v̂ision kr  and ˆ
visionC are used in the measurement 

update. For example, a measurement equation using , 0n kv   and ,v̂ision kr  is given by: 

,

, ,

ˆ0 0 0
ˆ ˆ 0 0

f k

k k k
vision k f k

v I
z x v

r r I

   
        

. 

The measurement noise kv  is assumed to satisfy: 

0
E[ ]

0
vT

k k
r

r I
v v

r I

 
  
 

 

where vr and rr are scalar constants. Similarly to the initialization process, only yaw information in 
ˆ

visionC  is used. We used the same technique in [20] for yaw updating. In [20], magnetic sensors are 

used for yaw updating. Replacing the magnetic sensor outputs with Ĉvision [1 0 0]T, we can obtain a yaw 

updating algorithm. 

The error covariance of the forward Kalman filter is denoted by ,f kP : 

9 9
, , , , ,ˆ ˆE[( )( ) ]T

f k f k f k f k f kP x x x x R     . 

4.5. Backward Filter 

A backward filter processes data from the end of data to the beginning. Similarly to the forward 

filter, ,ˆb kq , ,b̂ kv  and ,b̂ kr  are first computed (subscript b  represents a backward filter) : 

2 22 2 3
, 1 , 1 , , 12 2

3 1 1 1 1
ˆ ˆ

4 4 6 24 48b k k k g k k k g k k b kq I T T y T T y T q  
            
   

    , , 1 , 1 , 1 , ,ˆ ˆ ˆ ˆ0.5
T T

b k b k b k a k b k a kv v T C q y C q y Tg        

 , , 1 , 1 ,ˆ ˆ ˆ ˆ0.5b k b k b k b kr r T v v     

Their errors are estimated in the backward filter, where the state space model is given by: 
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where the state definition of bx  is the same as that of fx . 

The measurement equations are the same as those in the forward filter. The error covariance of the 

backward Kalman filter is denoted by ,b kP : 

9 9
, , , , ,ˆ ˆE[( )( ) ]T

b k b k b k b k b kP x x x x R      

4.6. Smoother 

The smoother combines the forward filter output and the backward filter output. Due to an indirect 

filter structure, it is difficult to derive an optimal smoother. In this paper, we use a suboptimal 

smoother, which only uses diagonal matrices of ,f kP  and ,b kP . 

Diagonal matrices of ,f kP  and ,b kP  are given by: 

, ,

, , , ,

,,

* * * *

* * ,   * *

* ** *

f b

f b

bf

q k q k

f k v k b k v k

r kr k

P P

P P P P

PP

   
   
    
   
     

 

where * parts denote the off-diagonal matrices and not used in the smoother. The smoothed quaternion 

is computed by using the quaternion averaging algorithm in [21]. The smoothed quaternion sq  is 

computed by solving the following optimization problem: 

 1 1
, , , , , , ,ˆ min ( ) ( ) ( ) ( )

f b

T T T
s k q f k q k f k b k q k b kq q q P q q P q q        

where: 

1 0 3 2

2 3 0 1

3 2 1 0

( )

q q q q

q q q q q

q q q q

  
     
   

 

The smoothed velocity and position estimates ( ˆsv  and ŝr ) are given by: 

1 1 1 1 1
, , , , , , ,

1 1 1 1 1
, , , , , , ,

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ).

f b f b

f b f b

s k v k v k v k f k v k b k

s k r k r k r k f k r k b k

v P P P v P v

r P P P r P r

    

    

  

  
 

5. Experimental Results 

In this section, experimental results to verify the proposed method are given. The camera is 

calibrated to obtain its intrinsic parameters [22]. The inertial sensor unit is calibrated using the 

algorithm in [23]. The sampling rate of camera and inertial IMU sensors are 30 fps and 100 Hz, 

respectively. The computation is done off-line using Matlab. The thresholds used for zero velocity 

detection are given as follows:  

0.1,  20,  0.05,  20,  30a a g g imageN S N S S      
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where these thresholds are decided by trial and error. Various combinations of thresholds are tried and 

the above thresholds are chosen since they identify zero velocity intervals well. In this process, true 

zero velocity intervals are manually identified by inspecting inertial sensor data. 

The initial values used for the indirect Kalman filter in the experiment are given as follows: 

,0 ,0 ,0 ,0 ,0 ,00.001 ,  0.001 ,  0.008

0.004,  r 0.008,  0.01
f b f b f bq q v v r r

v r yaw

P P I P P I P P I

r R I

     

  
 

where ,0 ,0 ,0, ,
f f fq v rP P P are the initial values of forward Kalman filter error covariance matrices, 

,0 ,0 ,0, ,
b b bq v rP P P are the initial values of backward Kalman filter error covariance matrices, respectively. 

5.1. Table Experiment: Comparison with the Digitizer Output 

A shoe is moved back and forth between two positions A and B several times along to the wY  axis 

direction as illustration in Figure 6. The movement is tracked using Microscribe G2X digitizer, whose 

output is considered as a true value. The accuracy of G2X model is up to 0.23 mm in a 1.27 m sphere 

workspace.  

Figure 6. Table experiment ( wY  axis moving experiment). 

 
 

Since the movement is mainly along the  axis, only the  axis velocity and position are plotted 

in Figure 7. The first graph of Figure 7 shows the estimated velocity using the forward filter, the 

backward filter and the smoother while the second graph shows the position estimates. The third graph 

shows the zero velocity detection results, where the value 1 indicates that the corresponding discrete 

time belong to a zero velocity interval. In the second graph, assuming the smoother estimates are 

accurate, we can see the error in the forward filter increases as the moving time increases. Also we can 

see the error in the backward filter increases as the moving time backwardly increases. In the final 

graph of Figure 7, axis position estimated by the smoother, the vision, and the digitizer are given. 

The RMS difference between digitizer data and smoothed estimation is 4.8 ± 9.1 mm (mean ± standard 

deviation).  

 

 

wY wY

wY

DigitizerDigitizer’s Tip 

Position A Position B
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Figure 7. Results of a table experiment ( wY  axis moving experiment). 

 

5.2. Walking Experimental Results 

A person wearing the shoe walked along a planar marker system path (Figure 1). The length of the 

path is 33.8 meters. We note that this length can be easily extended by using more markers. Euler 

angles of a shoe are given in Figure 8.  

Figure 8. Floor experiment (Euler angles estimation). 
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Note that quaternion is used to represent attitude. Euler angles are transformed from quaternion 

estimates for visualization. In the attitude estimation, there are almost no differences between the 

forward and backward filter estimates. This is due to the fact that attitude errors are almost periodically 

reset during zero velocity intervals. Velocity and position estimation results are given in Figures 9 and 10.  

Figure 9. Floor experiment (velocity estimation). 

 

Figure 10. Floor experiment (position estimation). 
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Note that there are large differences between the forward and backward filters. The errors are 

probably due to inertial sensor errors (bias and scaling factor). We can see the velocity and position 

estimation errors can be reduced by using the smoother. 

The position estimates from vision is compared with smoothed position estimates in Figure 11. 

Note that the position estimated from vision is mostly available during zero velocity intervals. During 

moving intervals, marker recognition becomes difficult due to motion related image blurring. 

Figure 11. Floor experiment (Comparison of smoother estimated and vision estimated 

positions). 

 
 

From Figure 10, step length can be computed. One walking step consists of a zero velocity interval 

and a moving interval (see Figure 4). The accuracy of the step length estimation is evaluated by  

one-step experiment using the ruler as a reference (see Figure 12). A marker pen is attached on the 

shoe. Its tip touches on the ruler when the shoe is on the ground. Step length measured by the ruler (by 

measuring two dots) is considered as a true value. 

The results of 20 one-step experiments are listed in Table 1. The error between the measurement 

using a ruler and the smoothed estimation is in range 0.5~4.1 mm. RMS difference and the worst case 

error are given in Table 2.  

Table 1. Step length estimation (20 steps). 
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Table 2. Step length estimation error. 

Mean of step length error [mm] 1.99 
Standard deviation of step length error [mm] 1.25 
Maximum value of step length error [mm] 4.10 

 

Figure 12. One walking step length measurement.  

                             

The RMS error between the measurement by a ruler and the smoothed estimation is 1.99 ± 1.25 mm 

(mean ± standard deviation). They are smaller than the one (4.8 ± 9.1 mm) in Section 5.1 since the step 

length is computed using estimates during zero velocity intervals. During zero velocity intervals, 

positions are compensated from the vision and thus position estimates are more accurate than those 

during moving intervals. Step length RMS error in [5] is 34.1 ± 2.1 mm, where an optical tracker 

output is used as a true value. The proposed system is more accurate since markers are used to 

compensate position and attitude errors. 

6. Conclusions 

A gait analysis system combining a reliable fiducial marker system on the floor and a inertial sensor 

unit was proposed. The system can track foot motion and measure step length on flat ground. The 

position errors tend to become larger during the moving intervals and smaller during the zero velocity 

intervals since vision data are used to reduce position and attitude errors. The step length RMS error is 

1.99 ± 1.25 mm, which is smaller than that of an existing inertial sensor only system. Commercial 

optical trackers such as the Vicon unit is more accurate than the proposed system—they are usually 

sub-millimeter level, however, they have rather limited walking ranges. On the other hand, the walking 

range of the proposed system can be easily extended.  
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