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Abstract: When a mobile wireless sensor is moving along heterogeneous wireless sensor 

networks, it can be under the coverage of more than one network many times. In these 

situations, the Vertical Handoff process can happen, where the mobile sensor decides to 

change its connection from a network to the best network among the available ones 

according to their quality of service characteristics. A fitness function is used for the 

handoff decision, being desirable to minimize it. This is an optimization problem which 

consists of the adjustment of a set of weights for the quality of service. Solving this 

problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced 

applications. Numerous works can be found in the literature dealing with the vertical 

handoff decision, although they all suffer from the same shortfall: a non-comparable 

efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision 

algorithm that explores the entire space of possible combinations of weights, searching that 

one that minimizes the fitness function; and second, to design and implement a system on 

chip architecture based on reconfigurable hardware and embedded processors to achieve 

several goals necessary for competitive mobile terminals: good performance, low power 

consumption, low economic cost, and small area integration. 
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1. Introduction 

The use of Wireless Sensor Networks (WSN) has increased substantially in the last years [1]. Both 

boom of this technology and its versatility have favored the appearance of applications in civil areas 

(industrial control, environmental monitoring, intensive agriculture, fire protection systems, and so on) 

and military areas (rescue operations, surveillance, etc.). On the other hand, the general advances in 

networks and communications are being constantly applied to WSN, with new ways to implement 

WSN services and applications appearing. Under the convergence of these technologies (WSN 

networks, and communications) mobility is an interesting feature that emerges with many possibilities: 

dynamic sensor networks, mobility of sensors, etc. A few cases are exposed next. 

1.1. Mobility in Wireless Sensor Networks 

There are many cases where mobility is an important feature to be taken into account in WSNs. For 

example, the position of mobile sensors in a WSN must be determined because the performance of 

event detection and tracking highly depends on the exact location information of the events that must 

be reported along with the event features [2,3]. Also, mobile sensors are used to assist in the initial 

deployment of a WSN [4], because they can move to locations that meet sensing coverage requirements. 

Other interesting application of the mobile sensors is the intrusion detection [5], because mobile 

sensors can improve barrier coverage against moving intruders. Therefore mobility applied to WSN is 

an interesting research topic with many fronts, being tackled along the academic and research world. 

For example, the NASA Glenn Research Center [6] researches about mobile platforms for sensor 

placement, space exploration, environmental monitoring for situation assessment, mobile networking 

technology applicable to mobile sensor platforms, etc. One important aspect to be researched is the 

connectivity of mobile sensors with heterogeneous wireless networks, taking into account the provided 

quality of service: this is the area where we place our work. 

1.2. QoS Based Connectivity in Heterogeneous Wireless Sensor Networks 

When a mobile wireless sensor (MS) can link to more than one router of the same network, we can 

establish a similarity to the well-known procedure of Horizontal Handoff or horizontal handover (also 

known as intrasystem handoff or handover) in general wireless networks. Horizontal handoff (HH) 

involves the change of the link of a mobile node to other wireless access points using the same 

technology. Nevertheless, the increasing complexity of the WSNs and their associated technologies 

forces us to consider heterogeneous scenarios where more than one network are present and where the 

nodes can be of different natures, technologies and behaviors. In these cases, and following with the 

previous similarity, we can follow a scheme of Vertical Handoff (VH) where the mobile node can link 

to other wireless access points of the same or different sensor networks and technologies. 
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In this work we study the more general and complex case: the VH process of a mobile wireless 

sensor moving along heterogeneous wireless sensor networks. In order to explain better the framework 

of our study, let us consider an example next. 

Figure 1 shows a case where three different networks are present. Each network has a set of routers 

as access points to the network for mobile wireless sensors, and a collector node which receives the 

information of the sensor and supplies it with different services. All the routers in this scenario could 

be sensors too, configuring thus a heterogeneous wireless sensor network of fixed routers (with 

different routing paths) ready to provide support to mobile wireless sensors where the connections are 

established under Quality of Service (QoS) requirements. 

Figure 1. Heterogeneous wireless sensor network with three networks based on sensor 

routers of different technologies, giving different quality of service, and ready to provide 

support to mobile wireless sensors. 

 

Let us suppose a mobile wireless sensor moving through this scenario (Figure 2). In its route, some 

router nodes are within its reach, where these routers can belong to different networks. In this situation, 

the mobile wireless sensor must decide at any time what the best router is to connect to, in other words, 

what network provides it the best quality of service. As we can see in Figure 2, the mobile sensor can 

find more than one router in determined times, where the possible routers can be of the same network 

(horizontal handoff) or different networks (vertical handoff). For this case, some situations take place. 

For positions #3 and #25 there is not possible to link to any router, the terminal falls inside areas 

without coverage and the transmitted values by the mobile sensor (for example temperature) are not 

collected in no way. Vertical handoff happens, for example, in position #8, where three different 

networks can be reached because there are up to five routers belonging to these networks in the 

coverage area of the mobile sensor; in this case, the mobile sensor must decide what network to link to, 

according to the quality of service provided. On the other hand, horizontal handoff takes place, for 

example, in position #16, where two different routers belonging to the same network can be reached; 
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in this case, the sensor continues connected to the current network. Figure 3 shows the complete 

scenario, combining Figures 1 and 2, in order to have a complete sight of the possible vertical and 

horizontal handoff processes. 

Figure 2. A mobile wireless sensor configures a path where several routers belonging to 

different heterogeneous networks can be reached in order to establish a link. This scheme 

is based on the scenario of Figure 1. The first column indicates the mobile sensor position 

in the path; the second column tells us how many available routers can be reached. 

 

Figure 3. The complete scenario for the heterogeneous wireless sensor network where 

different processes for vertical and horizontal handoffs can be given. 
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1.3. Vertical Handoff 

Let us explain the VH process more in detail. When the MS changes its connection from a router 

(access point to the network) to another one belonging to a different network, a VH can happen; if both 

routers are of the same network, it is a HH [7]. In any case, this is possible because the MS can have 

multiple interfaces to establish connections with different types of networks. In this work we have 

considered the VH when the QoS requirements are the factors to choose the best network to connect 

to. In the VH process the first phase, periodically invoked, consists of discovering which networks can 

be used within the coverage area and which are their services. After this, the MS determines if the 

connection should whether to go on the same network or switch to other one. This decision phase 

depends on several parameters like type of application, minimum bandwidth, access cost, transmitted 

power, etc. [8]. This is the reason to consider those parameters providing QoS to make a good choice. 

Finally, in the execution phase the connections are routed from the current network to the targeted 

network, by means of a set of tasks (authentication, data transfer, etc.). 

In traditional handoffs only signal strength and channel availability are considered. In the new 

generation networks new metrics have been proposed [9]: Service type, cost, network conditions 

(including traffic, available bandwidth, network latency, packet loss), system performance (considering 

channel propagation characteristics, path loss, signal-to-noise ratio, bit error rate, battery power), 

mobile node conditions (like velocity, moving pattern, moving histories, location information) and 

user’s preferences. In this context, a VH decision metric is needed. A fitness function F can be used for 

handoff decision. This function evaluates the network performance based on user’s preferences [10] 

and evaluates various metrics [9]. Thus, the fitness function for heterogeneous networks can take into 

account two dimensions: The types of services requested by the user and the fitness to the network 

according to specific parameters, such as bandwidth, power consumption, etc. 

Some references use the term “cost function” [9] (which must be minimized) and other ones use the 

term “figure of merit” [10] (which must be maximized). Both terms are comparable; they are only 

different in the way we want consider to optimize. In this work we bear in mind that, from now on, the 

term fitness is more suitable, because we want to reserve the term cost to the economic cost of the 

network access. 

We use the fitness function described in Equation (1), where we have n networks, s services and i 

QoS parameters; E is an elimination factor, w is a weight assigned to use the QoS parameter to perform 

services, p is the cost in the QoS parameter to carry out services, and N is a normalization function. In 

any time, the sum of weights must be equal to 1 (Equation (2)). We can simplify the problem 

considering only one service and rejecting the elimination factor for now Equation (3), and using the 

logarithmic function as normalization factor [9,10]: 
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If to larger p, larger fitness (the fitness function gets worse), then p’ in Equation (3) is determined as 

in Equation (4). This is the case, for example, of the delay or economic cost. But if to larger p, smaller 

fitness (the fitness function gets better), then Equation (5) shows how p’ must be computed (for 

example, bandwidth): 

)()(' n

i

n

i pp   (4) 

)(

)( 1
'

n

i

n

i
p

p   (5) 

1.4. Problem Formulation 

The decision phase is the frame for the formulation of the optimization problem. The choice of a 

network to perform VH is a very important issue when considering QoS parameters. In this choice the 

key is the weight tuning, because the fitness function is very sensitive to the values of the weights. In 

this sense, our objective is to find an optimal solution, where each solution is a sequence of weights 

determining the QoS. Some techniques have been developed to adjust the weights in order to find the 

minimum fitness, i.e., Analytic Hierarchy Process [11]. Another way is to assign directly the weights 

by the user when a call is initialized and after that they are dynamically tuned according to the 

observed QoS; but this is a subjective technique and waste the user’s time. Other ways are based on 

automatic procedures or policy-enabled mechanisms [12]. For example, when the mobile sensor is 

reaching a low level of battery, then the weight of the power consumption can be increased. Other 

proven algorithms for the decision phase have been of the type Multiple Criteria Decision-Making 

(MCDM), such as Simple Additive Weighting (SAW) and Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) [8,13]. Nevertheless, we think that a good way to tackle this 

problem is to cover all the space of possible solutions computing as many of them as be possible in 

regular intervals, being this characteristic the advantage against other algorithms and the basis of our 

work. 

1.5. An Embedded Architecture Proposal 

We propose an embedded architecture that answers to the current trends in mobile computing: low 

cost, low power consumption and good performance. The HiPEAC Network of Excellence on High 

Performance and Embedded Architecture and Compilation specifies this trend: “People no longer only 

want more features and better performance, but are increasingly interested in devices with the same 

performance level at a lower price. [...] The limited processor performance also reduces power 

consumption and therefore improves mobility [...]. This trend also has an impact on software, as it 

now needs to be optimized to run smoothly on devices with less hardware resources [...] This trend is 

also leading to computers specifically designed to have extreme low power consumption” [14]. 

The low cost, low power consumption and good performance (a fast obtaining of high-precision 

solutions) are requirements in a small electronic device (for mobile sensor purposes) which moved us 

to design a custom embedded microprocessor able in reconfigurable hardware to suit the algorithm. 

The MS must dynamically choose the best access network for each application flow, so the vertical 

handoff middleware chooses the access network according to the applications requirements, the user’s 
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preferences and the QoS parameters of the networks. Dynamic scenarios imply rapid processing, 

where the configurable embedded processors have demonstrated to be a good solution [15,16]. On the 

other hand, a low power requirement is mandatory because the increased demand for many sensor 

services has effects on the battery of devices. Finally, any hardware solution must consider the low 

cost of their components because of the competitiveness of the existing manufacturers. 

2. Developments 

In this section we expose the main developments done and results obtained in two fronts: software 

(a QoS-based decision algorithm for VH) and hardware (the implementation of the algorithm in an 

embedded microprocessor based on reconfigurable devices). 

2.1. SEFI, a QoS-Based Decision Algorithm for VH 

We name the algorithm we have developed for the VH decision phase taking into account the QoS 

characteristics of the networks SEFI (from “Weights Combinations Fast SEarch by Fixed Intervals”). 

The algorithm explores the entire space of possible combinations of weights, searching those that 

satisfy the hard restriction imposed by (2), considering a maximum number of possible networks and a 

determined number of QoS parameters (NQoS) (Figure 4).  

Figure 4. SEFI searches the best combination of QoS weights for different networks. 

 

 

The generation of these combinations is done from a given precision value (h) and two limits 

determined by the user, WMIN and WMAX, where WMIN < h < WMAX, WMIN > 0 and WMAX < 1. 

These limits depend of the user’s profile, in other works, the purpose of the application of the mobile 

device in WSN. The algorithm has been programmed to perform a fast search thanks to some recursive 
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functions. In the computation of the exhaustive search we must take into account as key parameters the 

precision and the number of QoS parameters considered, for a given number of networks; these 

parameters influence strongly the computational effort. 

Figure 5 shows how SEFI can be integrated in a MS. The number of discovered networks and their 

characteristics are collected, forming the instance of the problem to be tackled by SEFI. These 

parameters, together with a set of predefined weight ranges (depending on the role of the MS) and the 

applied precision (which can be tuned depending on the size of that instance and the WSN 

application), make up the input to an embedded microprocessor running the SEFI algorithm. This 

algorithm finally selects the best solution (the network according to the best fitness found) that is used 

for the VH decision. 

Figure 5. Integration and behavior of SEFI in the architecture of a MS device. 

 

2.2. Instance for Experimental Purposes 

We have considered a determined instance of the problem in order to validate the algorithm and 

perform the experiments. This instance is a scenario formed by two networks and up to four QoS 

parameters: throughput or bandwidth, delay, response time or latency, and cost (other QoS parameters 

can be easily added [17]). SEFI generates many weight vectors (solutions) {w0, ..., wNQoS−1} where 

NQoS is the number of QoS parameters considered in the experiments (2, 3 or 4) and the solutions 
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satisfy the constraint given in Equation (2), exactly, without any tolerance margin. The solutions are 

generated by regular intervals covering all the space of solutions, with a step precision given by the 

variable h. 

The experiments consider four possible profiles: profile #0 (all QoS parameters can have any 

weight from 0 to 1); profile #1 (all QoS parameters can have any weight from MINWEIGHT to 

MAXWEIGHT, where these variables have predefined values satisfying MINWEIGHT > 0 and 

MAXWEIGHT < 1); profile #2 (applications where the most important QoS parameters are delay and 

cost); and profile #3 (applications where the most important QoS parameter is the bandwidth). On the 

other hand, if NQoS = 2, we consider throughput (bandwidth) and cost; if NQoS = 3, we add delay; 

and if NQoS = 4, we add response time (latency). Finally, we have considered three possible precision 

degrees for h: 0.05, 0.01 and 0.005. 

SEFI produces as output, for each profile and network, the following data: computing time,  

number of generated combinations, number of these combinations satisfying the restriction given in 

Equation (2), best fitness found and the corresponding network (that will be the solution chosen for the 

VH decision). 

2.3. SEFISoC: an Embedded Microprocessor to Implement SEFI 

We have used reconfigurable hardware technology in order to design and implement the SEFI 

digital architecture. Reconfiguration of circuitry at runtime to suit the application at hand has created a 

promising paradigm of computing that blurs traditional frontiers between software and hardware. This 

powerful computing paradigm, named reconfigurable computing [18], is based on the use of 

programmable logic devices, mainly field programmable gate arrays (FPGAs) [19] incorporated in 

board-level systems. FPGAs have the benefits of the hardware speed and the software flexibility; also, 

they have a price/performance ratio much more favorable than ASICs (Application-Specific Integrated 

Circuits). For these reasons, FPGAs are a good alternative for many real applications in image and 

signal processing, robotics, telecommunications, networking and computation in general. Furthermore, 

as the reconfigurable computing is becoming an increasingly important computing paradigm, many 

techniques are appearing in order to facilitate the FPGA design using embedded processors. In this 

line, embedded processors have been developed to bring custom processing solutions easy to  

program [20]. The advantages of using an embedded processor to suit the SEFI algorithm are the ones 

previously pointed out: good performance in an acceptable time, low power, low cost and small area, 

as well as the reconfigurability needed in some cases, for example firmware updates. 

We have used the ISE v13.3 technology and the FPGA devices provided by Xilinx [21]. The design 

basically consists of an embedded microprocessor named Microblaze, with floating point unit, 

processor local bus and standalone operating system. Microblaze is a soft processor, that is, a 

processor fully customizable by the user and implementable on FPGA. The main characteristics of the 

implementations built in this work are listed in Table 1. Two implementations have been done: S3 

(based on a Spartan3E FPGA) and V5 (based on a Virtex5 FPGA), using commercial prototyping 

boards (the FPGA devices used do not need neither fan nor heat skin, and external devices or 

peripherals are not necessary, making so possible a circuitry very reduced, necessary for mobile 

terminals). The first one is oriented to a very small, low power and economic device, and the second 
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one represents a high-performance solution. The S3 implementation uses a 50 MHz clock and offers a 

very low on-chip power consumption of 0.01 W (estimated from the XPower analyzer tool), but it 

requires using an external memory because the FPGA internal resources are not able to host the SEFI 

code too (the external RAM chip can be easily included in the mobile sensor device). The occupied 

area indicates that the microprocessor can be implemented on an economic xc3s250e device (from 

$20). On the other hand, the V5 implementation uses a faster clock and the internal resources are 

enough to host both the microprocessor and the SEFI code, doing so a high-performance solution (but 

with an increased power consumption) interesting for some types of situations. 

Table 1. Main characteristics of the implemented architecture. 

 S3 V5 

Prototyping board Digilent Nexys2-500 Xilinx XUPV505-LX110T 

FPGA Spartan 3E: xc3s500e-fg320-4 Virtex5: xc5vlx110t-ff1136-1 

Processor/memory Microblaze with FPU and PLB/external Microblaze with FPU and PLB/256KB local 

Operating system Standalone Standalone 

Clock frequency 50 MHz 125 MHz 

Occupied slices 43% 10% 

Power consumption 0.097 W 1.34 W 

3. Experimental Results 

Figure 6 shows the number of generated combinations of weights for each profile and precision. For 

example, if we consider, h = 0.005, profile #0 and NQoS = 4, there are 70,058,751 possible 

combinations generated. SEFI filters the solutions that satisfy the restriction imposed by Equation (2), 

so there are less possible solutions to the problem than combinations generated, as we can see en 

Figure 7.  

Following with the last example, only 1,373,701 combinations are solutions. SEFI applies the 

fitness function to all these solutions in order to obtain the combination with the lowest fitness value; 

hence its corresponding network will be used for the VH decision. 

Figure 6. Experimental results: Generated combinations for each profile and precision. 
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Figure 7. Experimental results: Combinations as solutions, for each profile and precision. 

 

 

We have also observed two interesting results, after examining detailed data from many other 

experiments. On the one hand, the best network could be any of the considered ones in any time, 

showing the importance of searching within a wide space of solutions. On the other hand, when the 

number of QoS considered parameters grows, other network different to the best one previously found 

can emerge now as the best. 

Obtaining the best solution becomes slower to compute when considering more QoS parameters or 

more precision, because of the increased number of generated combinations. Figure 8 shows the 

computing times for both FPGA devices in all the cases, with values from milliseconds to several 

minutes. 

Figure 8. Experimental results: Computing times, for each profile, precision and FPGA. 

 

Depending on the number of the discovered networks and their characteristics, the type and 

technology of the mobile sensor, the requirements of the application, and so on, SEFI can initially 

adjust the precision, profile and number of QoS parameters in order to obtain solutions in real time or 

in an acceptable time. 
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3. Conclusions 

The aim of this paper was twofold: (1) to develop a fast algorithm to search all the possible 

combinations of quality-of-service weights in order to determine the best network for the vertical 

handoff decision performed by a mobile wireless sensor, given a determined heterogeneous scenario of 

wireless networks and the user’s preferences; and (2), to design and test an embedded processor with 

reconfigurable hardware technology to run the algorithm taking into account the constraints of the 

problem and the requirements needed in mobile sensor devices for dynamic environments: fast 

computation, small area, low power, and low economic cost. This was the first time that an algorithm 

for the vertical handoff decision phase based on QoS has been implemented in reconfigurable 

embedded processors. The results showed that the proposed architecture was able to achieve an 

acceptable performance. 

Nevertheless, we have verified that the computing time increases a lot when we consider more 

networks, more quality-of-service parameters and smaller intervals searching the solutions, because the 

number of generated combinations becomes huge. This makes it necessary to enable mechanisms to 

select precisions that permit finding solutions in an acceptable time. We think this is a good starting 

point to add intelligent techniques to the algorithm in order to obtain good solutions in hard-computing 

scenarios without loss of precision or quality. This approach is our current research line. 
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