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Abstract: In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall 
thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a 
low temperature hydrothermal method. The enzyme uricase was electrostatically 
immobilized in conjunction with Nafion membrane on the surface of well oriented  
ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The 
electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode 
was found to be linear over a relatively wide logarithmic concentration range (500 nM to 
1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high 
enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF  
array-based sensor exhibited a high sensitivity of ~66 mV/ decade in test electrolyte 
solutions of uric acid, with fast response time. The sensor response was unaffected by 
normal concentrations of common interferents such as ascorbic acid, glucose, and urea. 

Keywords: ZnO nanoflakes (ZnO-NFs); potentiometric nanosensor; uricase; Nafion® 
membrane 
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1. Introduction  

Uric acid (UA) is the main end product of purine metabolism, and its excretion in urine is caused by 
purines that are produced in the catabolism of the dietary and endogenous nucleic acid. The production 
of excess uric acid may precipitate in the kidney and the lower extremities. One problem caused by the 
metabolism of the uric acid is gout [1]. Several epidemiological studies have suggested that the 
production of excess uric acid in human serum is also a risk factor for cardiovascular disease [2]. Thus, 
the detection of UA in human physiological fluids is necessary for the diagnosis of patients suffering 
from a range of disorders associated with altered purine metabolism. Recently, various uric acid 
biosensors have emerged from laboratories, because of the advantages of simple measurement, a short 
response time, high sensitivity, and high selectivity [3–7]. Most uric acid biosensors are based on 
amperometric principles [8–11]. The main problem in the practical application of many amperometric 
biosensors is that the electrode must be held at approximately 0.7 V [12]. The relatively high electrode 
potential enables other biological electroactive molecules to react on the surface of the electrode [13]. 
However, interferences can be reduced by preferring potentiometric configuration as described in our 
earlier investigations [14–17]. Recent advances in the biocompatible nanomaterials and biotechnology 
open a promising field toward the development of the nanostructured based electrochemical biosensing. 
Among the nanomaterials, zinc oxide (ZnO) is of special interest for biological sensing due to its many 
favorable properties like a wide direct band gap (3.37 eV) and large exciton binding energy (60 meV). 
In addition, ZnO has high ionic bonding (60%), and it dissolves very slowly at biological pH values.  

Recently, a number of scientific investigations based on different ZnO nanostructures fabricated by 
various physical and chemical routes have been reported for sensing applications. These include 
nanowires/nanorods [18] nanotubes [19,20] combs [21,22] forks [23], fibers [24], flakes [25], 
composites [26], tetrapods [27], particles [28], flowers [29], sheet/disks [30], etc. Due to their unique 
advantages in combination with immobilized enzymes, these ZnO nanosensors offer some significant 
advantages owing to their small size and high surface area to volume ratios allowing larger signals, 
better catalysis and the more rapid movement of analyte through sensors, thus showing higher 
sensitivity and a lower limit of detection (LOD) as compared to those prepared from bulk ZnO devices. 
ZnO nanoflake (ZnO-NF) structures possess lots of interesting unique properties such as porous 
structures and large surface areas and there have been reports on the use of ZnO-NF structures as 
sensors with improved performance and higher sensitivity compared to ZnO nanorods/nanowires [25]. 
Moreover, ZnO has a high isoelectric point (IEP) of about 9.5, which should provide a positively 
charged substrate for immobilization of low IEP proteins or enzyme such as uricase (IEP ≈ 4.6) as 
described in our earlier investigations [31–34]. 

In this study, we have successfully demonstrated the potentiometric determination of uric acid with 
high electrochemical response by using a ZnO-NF-based sensor fabricated by a hydrothermal method. 
This method has many advantages such as being a low cost, simple, high yield, low temperature 
deposition process and also proves to be less hazardous compared to other methods. The high 
electrochemical response can be attributed to the unique structural properties of our sensor electrode 
like the high surface to volume ratios of ZnO-NFs, which can provide a favorable microenvironment 
for the immobilization of uricase enzyme and retain the good enzymatic activities which in turn 
enhances the sensitivity of sensor electrode for the analyte, as demonstrated by the detection of uric 
acid in the absence of a mediator. 
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deionized water (150 mL) with 0.025 M zinc nitrate hexahydrate [(Zn (NO)3)2·6H2O)] and 0.025 M 
hexamethylenetetramine [C6H12N4] that was kept in preheated an oven at 90 °C for 2–4 hours. After 
the growth process, the fabricated ZnO-NFs were cleaned in de-ionized water and dried at room 
temperature. A typical AFM image of ZnO-NPs arrays grown on the gold coated plastic electrode 
using this procedure are shown in Figure 1(b).  

The morphological and structural studies were performed by using Scanning Electron Microscopy 
(SEM). The SEM images of the ZnO-NFs with as fabricated, after enzymes immobilization and after 
measurements are shown in Figure 2(a–c).  

Figure 2. A typical SEM images of ZnO-NFs arrays grown on gold coated glass substrate 
using low temperature chemical growth. The figure showing (a) the ZnO-NFs arrays as 
fabricated; (b) with immobilized uricase and (c) the same sensor electrode after measurements. 

 

It can be clearly seen that the wall thickness of the grown ZnO-NFs are 50–100 nm in diameter with 
uniform density. These ZnO-NFs were well oriented on the surface of the electrodes. The morphological 
and structural characteristics of the fabricated ZnO-NFs arrays can be controlled by adjusting the 
growth parameters. 

2.3. Enzymes Immobilization on ZnO-NFs  

To immobilize the uricase enzyme on the fabricated ZnO-NFs, first we have prepared an uricase 
solution in 10 mM PBS pH 7.4. Uricase was electrostatically immobilized by dipping the  
ZnO-NF-based electrode into the enzyme solution for 15 minutes at room temperature and then for 

drying, it was left in air for 60 min. After drying, Nafion solution (1% in methanol, 5 µL) was applied 
onto the electrode surface to prevent possible enzyme leakage and eliminate foreign interferences. All 
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When uric acid is oxidized in the presence of uricase it is turned into allantoin along with carbon 
dioxide and hydrogen peroxide. Due to the presence of water (H-OH), it is a high probability that 
allantoin will accept a proton from (H-OH) converting it to allantoinium ion, which in turn will interact 
with the ZnO-NFs and produce a potential change at the electrode. As the concentration of ions 
changes in surrounding the ZnO-NFs and the electrode potential will change [36]. The potentiometric 
responses of the sensor electrodes were studied in uric acid solutions made in buffer (PBS pH 7.4) with 
concentration ranging from 0.5 µM to 1,500 µM. During the measurements it was observed that the 
carbon dioxide produced does not affect the stability of ZnO-NFs as shown in SEM image of Figure 2(c) 
and we did not observe any substantial change in pH of the buffer solution (PBS).  

The tested sensor configuration showed large dynamic ranges with an output response (emf) that was 
linear vs. the logarithmic concentrations of the uric acid with sensitivity around 66 mV/decade as shown 
in Figure 4(a). A very fast response time was noted over the whole concentration range with 95 % of 
the steady state voltage achieved within 8 s, as shown in Figure 4(b).  

Figure 4. (a) Calibration curve for the ZnO-NFs based uric acid sensor and (b) Time 
response of the ZnO-NFs based uric acid sensor in 100 µM uric acid solution. 

 

3.2. Reproducibility, Measuring Range and Detection Limit of the ZnO-NFs Based Sensor 

To evaluate the performances of the proposed sensor, we have checked the parameters like 
reproducibility, measuring range, detection limit, response time and selectivity, etc. The 
reproducibility is an important characteristic for the performance evaluation of a sensor. To evaluate 
reproducibility and long term stability of the proposed ZnO-NFs based sensors, we independently 
fabricated six sensor electrodes under the same conditions; the relative standard deviation of the 
fabricated sensor electrodes in standard uric acid solutions was less than 5%. The sensor to sensor 
reproducibility in 100 µM uric acid solution is shown in Figure 5. 
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mentioned methods, we checked the selectivity and stability of the sensor by output response curve. The 
possible interferences present in blood that normally interfere with an amperometric uric acid biosensor 
include ascorbic acid (AA) urea (UR) and glucose (GL) [38]. Hence, ascorbic acid, urea and glucose 
were selected to affirm the selectivity of the potentiometric uric acid sensor. In the present work, upon 
addition of 1 mM glucose, 100 µM ascorbic acid and 1mM urea solutions in a 100 µM uric acid solution 
the signal changed only slightly, which indicates a good selectivity, as shown in Figure 6.  

Figure 6. Effect of potentially interfering substances on sensor response (emf) upon adding 
1 mM glucose (GL), 100 µM ascorbic acid (AA) and urea (UR) into 100 µM uric  
acid solution. 

 

This was repeated several times on new, independently prepared sensors and continued to show 
negligible signal response to interferences. In practical measurements, however these changes in 
sensor response can be neglected.  

4. Conclusions 

In conclusion, we have successfully demonstrated a simple fabrication procedure for a highly 
sensitive electrochemical uric acid sensor based on ZnO nano-flake-based structures. The proposed 
electrochemical nanosensor demonstrates immense surface area to volume ratios which provide a 
suitable microenvironment for enzyme loading because of its porosity that allows for very good 
sensitivity as compared to other ZnO nanostructures as shown in Table 1, portability and small size.  

Table 1. Comparison of some uric acid sensors based on different ZnO nanostructures. 

Transducer Matrix Sensitivity 
Response 

time 
Shelf 
life 

Range Reproducibility Reference 

Potentiometric 
ZnO 
nanowires 

29 mV/decade 6–9 s 12 weeks 
1 µM–
1,000 µM 

20 times [31] 

Potentiometric ZnO nanotubes 68 mV/decade 8 s 12 weeks 
0.5 µM– 
1,500 µM 

20 times [32] 
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Table 1. Cont. 

Transducer Matrix Sensitivity 
Response 

time 
Shelf 
life 

Range Reproducibility Reference 

Amperometric ZnO nanorods ------- ------- 20 days 
5 µM– 
1 mM 

10 times [33] 

Amperometric 
ZnO 
nanoparticles 

393mA 
cm−2M−1 

~8 s 
12 

weeks 
5 µM– 
1 mM 

--------- [34] 

Potentiometric 
ZnO 
nanoflakes 

~66 mV/ 
decade 

~8 s 
12 

weeks 
500 nM– 
1.5 mM 

20 times [present] 

The uricase sensor retained its enzymatic activity due to strong electrostatic interaction between 
zinc oxide and uricase. Moreover, the developed ZnO-nanoflake-based nanosensor showed excellent 
performance regarding sensitivity, stability, selectivity, reproducibility and resistance to interference 
when the sensor was exposed to uric acid test solutions. These results revealed that electrochemical 
sensors based on ZnO nanoflakes have the potential to perform measurements biologically relevant to 
on-spot clinical diagnosis. They are also convenient to assemble into portable chip based sensing 
devices suitable for unskilled users. 
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