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Abstract: This paper presents a feasibility study on a real-time in field pest classification 
system design based on Blackfin DSP and 3G wireless communication technology. This 
prototype system is composed of remote on-line classification platform (ROCP), which 
uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). 
The ROCP is in charge of acquiring the pest image, extracting image features and detecting 
the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image 
data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at 
the same time for further identification. The image transmission and communication are 
accomplished using 3G technology. Our system transmits the data via a commercial base 
station. The system can work properly based on the effective coverage of base stations, no 
matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and 
the pest image displayed in real-time for further identification. Authentication and 
performance tests of the prototype system were conducted. The authentication test showed 
that the image data were transmitted correctly. Based on the performance test results on six 
classes of pests, the average accuracy is 82%. Considering the different live pests’ pose 
and different field lighting conditions, the result is satisfactory. The proposed technique is 
well suited for implementation in field pest classification on-line for precision agriculture. 
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1. Introduction  

Pest control has always been considered the most difficult challenge to overcome in agriculture. 
Traditionally, pest management has been accomplished by means of a regular spray program which is 
based on a schedule rather than on the presence or likelihood of presence of insects in the field. More 
recently, growers have incorporated weather-based models to predict pest presence and apply control 
methods based on these models [1]. The most accurate method to control pests, and a method which is 
gaining interest in the wake of the need to minimize environmental impacts, is integrated pest 
management (IPM). The four main steps of IPM are detection, identification, application of the correct 
management and registration of the management [2]. The primary challenge with those steps is the 
identification. Classification of insect species can be extremely time consuming and requires technical 
expertise, so an automated insect identification method is needed. Due to the rapid development of 
digital image technology, there is a growing tendency in the field of agricultural research towards 
using machine vision technology to help the research and solve problems. In recent years, the use of 
artificial neural networks (ANN) has spread to many branches of science. Image analysis and ANN 
provide a realistic opportunity for the automation of routine species identification [3]. Do et al. [4] 
utilized various artificial neural networks to identify spider species using only digital images of female 
genitalia and achieved an average species accuracy of 81%. Artificial neural networks based on 
morphometric characters have been already applied in insect identification. Vanhara et al. [5] tested 
the methodology of ANN identification in the family Tachinidae on the basis of five model species of 
two genera, using 16 morphometric characters. Fedor et al. [6,7] identified Thysanoptera species using 
artificial neural networks with the morphometric characters. Russell et al. [8] developed an on-line 
automated identification system called SPIDA. The SPIDA system is trained to identify the 121 
species of the Australasian spider family Trochanteriidae based on an artificial neural network model. 
SPIDA is currently available on the Internet, and users can submit their own images of spiders for 
classification, although some expertise and equipment is required to obtain optimal images. 
Murarikova et al. [9] confirmed the power of ANN by two independent non-numerical methods 
(molecular analysis, comparative morphology). 

Most of the existing systems are semi-automated and all these systems have been trained on images 
taken from dead specimens. In a laboratory, dead specimens can be carefully positioned and 
photographed under consistent and ideal lighting conditions. In the field, however, live specimens may 
not adopt the ideal pose required, they may move when the image is being captured, and the lighting 
conditions outside the lab may be poor and may change unpredictably as a series of images are taken. 
This tends to make the classification task much more difficult. 

Mayo and Watson [10] described different classifiers and datasets to identify live moths 
automatically and indicated that the best classifier is Support Vector Machine which achieved 
approximately 85% accuracy without manual preprocessing of the images. However, in those systems, 
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the process of the training and testing was done in the laboratory and they can’t classify insects in  
real-time on-site. In order to detect the insects earlier, we aim to develop an on-line automated live 
insect identification system, which is portable and can provide the classification results in the field. 
The main research objectives of this paper were: 

(1) To design a hardware platform to implement image capturing, image processing, pest 
classifying with an Artificial Neural Network (ANN) classifier and image encoding. 

(2) To process the images and to conduct pest classification in DSP. 
(3) To design a wireless communication protocol and to transmit the images with a 3G network. 
(4) To display and store the pest images for expert precise classification and to design a host 

control platform for completing image decoding.  
(5) To test the designed system in the field. 

This paper is organized as follows: Section 2 discusses the principles and algorithm flow of 
artificial neural network (ANN). Section 3 presents the hardware and software design of this system. 
Section 4 is devoted to the test of the proposed system. Field test results are provided in Section 5. 
Finally, conclusions are drawn in Section 6. 

2. Artificial Neural Network 

Artificial neural networks (ANNs) provide a way to emulate biological neurons to solve complex 
problems in the same manner to the human brain. For many years, especially since the middle of the 
last century, interest in studying the mechanism and structure of the brain has been increasing. In 1986, 
the Parallel Distributed Processing (PDP) research group published a series of algorithms and results 
and presented an ANN training algorithm named Back Propagation (BP) [11,12]. This BP training 
algorithm implemented with the general delta rule gave a strong impulse to subsequent research and 
resulted in the largest body of research and applications in ANNs although many other ANN 
architectures and training algorithms have been developed and applied simultaneously. 

Figure 1. ANN network structure. 
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The massively parallel architecture of the ANN consists of multiple layers of simple computing 
elements with many interconnections between the layers. The computing elements are functionally 
analogous to neurons. They receive signals and in turn transmit a signal which is a function of the 
inputs. The function by which the inputs are evaluated may be a simple logic gate but more generally 
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involves summation of weighted input signals. A transfer function is then applied to the weighted 
inputs to determine the output of the neuron. In this paper, we used a three-layer BP-ANN. Figure 1 
shows the feedforward network between input X and output Y. In this paper, the BP-ANN was trained 
in advance via large numbers of experimental data. This training process was accomplished using 
Matlab language on a PC. After the BP-ANN was trained, the weights and thresholds were 
programmed in DSP for the BP-ANN model. 

3. Prototype System Design and Implementation 

3.1. Hardware Design 

The prototype system architecture adopted in this work is shown in Figure 2. This system includes a 
remote on-line classification platform (ROCP) and a host control platform (HCP). The ROCP mainly 
consists of a DSP, a 3G network module, an image sensor module, a LCD module and a power 
module. The HCP is composed of a PC and a modem for accessing the internet. The HCP can receive 
the image data send by the ROCP, decode them and display the image. 

Figure 2. Architecture of the designed testing system. 

 

With the image sensor, we can get the pest images to the DSP in the ROCP platform. The DSP has 
two important things to do: on the one hand, it will preprocess the images, compute the features of the 
images, and give the initial classification results obtained from the BP-ANN classifier. On the other 
hand, it will encode the image data using JPEG 2000 and send them to the HCP through the 3G 
module. After receiving those image data, the HCP will then decode these data and display the pest 
images. 

This prototype system utilized an ADSP-BF547 processor as a kernel CPU in ROCP platform. The 
ADSP-BF547 processor is a member of the Blackfin family of products, incorporating the Analog 
Devices, Inc./Intel Micro Signal Architecture (MSA). The processor core clock is up to 600 MHz. It’s 
Dynamic Power Management provides the control functions to dynamically alter the processor core 
supply voltage to further reduce power consumption. Control of clocking to each of the peripherals 
also reduces power consumption. This is very suitable for portable appliances. The ADSP-BF547 
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processor peripherals include three SPI ports, eleven general-purpose timers with PWM capability, a 
real-time clock, a watchdog timer, a parallel peripheral interface, which is connected with the image 
sensor, an enhanced parallel peripheral interface which is connected with LCD module, and four 
UART ports, one of them is used to connect with the 3G module (module no: SIM5218A) for data 
transmission. The CMOS camera module (module no: OV9650) is used for pest image acquisition, the 
OV9650 is a color image sensor and has 1.3-Mpixel which is suitable considering the hardware 
resource and image resolution. Figure 3 shows photographs of the designed system. 

Figure 3. Photographs of the designed system including DSP module, CMOS camera 
module and 3G module. 

CMOS camera module DSP module 3G network module 

 

3.2. Software Development 

According to the hardware architecture of the designed portable system, the tasks of the whole 
system are the pest classification on DSP, image data compression coding, wireless data transmission , 
image decompression and image display on a PC. Therefore, software development of the system 
includes two parts—DSP software design and PC software design. The DSP programs are designed in 
three steps. Firstly, the data acquisition program acquires the image sensor response data. Secondly, 
DSP processes the image data, extracts the features and provides the classification results. Finally, it 
encodes the image data using JPEG 2000, packages them into different frames and sends them to  
a PC with the 3G module. The specific program flow diagram is shown in Figure 4. The image 
preprocessing is composed of image transforming, threshold processing, binarization and denoising. 
After finishing the image preprocessing, we extracted the image’s morphological characteristics 
including eccentricity ratio, sphericity and two Hu invariant moments for classification. 

In addition, we designed a wireless communication protocol and used the universal asynchronous 
receiver/transmitter (UART) interfaces of the DSP to carry out the serial data transmission between the 
3G module and the DSP. The data frame format is composed of a frame head (0x1B, 0x7E), sequence 
number (two bytes), valid data bytes, and frame end (0xFF), as shown in Figure 5. Each frame has 512 
valid data bytes. Communication baud rate is set at 57,600 baud. The flow diagram of the 
communication program of DSP is shown in Figure 6. After establishing the TCP/IP connection, we 
started to send the data and enable the timer which is used for avoid the system halting because of no 
return from the 3G module at the same time. If the timer expired and returned nothing, we resend the 
same data again. If the returned information is errorroneous, we reset the 3G module and establish the 
TCP/IP connection again. If we receive the right reply, we send next frame data until all data are sent. 
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Figure 4. Flow diagram of the DSP program. 

 
 

Figure 5. Wireless communication protocol. 
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Figure 6. Wireless communication process. 

 

The PC software of the HCP programmed in Visual C++ language decodes the image data, displays 
the images and stores the images. 

4. Feasibility Study of the Designed Portable System 

The feasibility study of the designed system was composed of three sections: DSP image acquisition 
and image processing tested the effect of image processing algorithm and extracted the morphology 
and color features. By training the BP-ANN, we obtained the weights and thresholds of the BP-ANN 
model. The data transmission authentication test validated the reliability of 3G network transmission. 
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4.1. DSP Image Acquisition and Image Processing Test 

The dataset used in this study is a library of live pest images created by the first author over a period 
of nearly a year. A pest trap was set up in the Fuyang Plant Protection Station (Zhejiang Province, 
China) and cleared every morning. Captured live pests were photographed and then released. 
Cnaphalocrocis medinalis Guenee is taken as an example and the image is shown in Figure 7. 

Figure 7. Image of Cnaphalocrocis medinalis Guenee. 

 

Considering that the trapped field pest’s morphological characteristics and color have relatively 
large differences, we extracted the morphology features and color features for classification. 
Geometrical features which describe the geometric properties of the target area are unrelated to the 
color value of the region. Therefore, the image is binarized before extracting it’s geometrical features. 
The Figure 8 depicts the automatic processing and feature extraction pipeline, using Figure 7 as an 
example input. The first step in feature extraction was to transform from the RGB color space to the 
HSV color space. Figure 8(a) depicts the results of the H-component when applied to the image of 
Cnaphalocrocis medinalis Guenee in Figure 7. The static threshold was obtained according to the 
statistics in the H-component, and was used for the input image and produced a threshold image as 
shown in Figure 8(b). Then the threshold image is binarized as shown in Figure 8(c). Finally, in order 
to reduce the noise, we adopted the method of searching the maximum linked area. We used the 
recursion method to find all connected region in which the value is “1”, and compared their size. The 
largest of them is the target object, the other is the noise. The result is shown in Figure 8(d). Now, a 
number of morphology features were calculated. The color features were described by color  
moments [13]. All features consisted of nine color moments, eccentricity ratio, sphericity and two Hu 
invariant moments which are invariant to image scaling, rotation and translation [14]. The color 
moments are defined by the following equations: 
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where Pij is the value of the ith color channel at the jth image pixel, { }3,2,1∈i , N is the number of 
image pixel. 

The eccentricity ratio and the sphericity are defined by Equation (4) and Equation (5)  
respectively [15]. Two Hu invariant moments are defined by Equations (6) and (7) [14]: 

qpEC =  (4) 

where p and q are half the length of principal axis of momental ellipse: 

ci rrSP =  (5) 

where ri, rc are the radius of the inscribed circle and the circumscribed circle of the target object 
respectively: 

02201 ηηϕ +=  (6) 
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where pqη  is the normalized central moments. 

Figure 8. The image processing pipeline. 

 
(a) H-component image (b) Threshold image (c) Binarized image (d) Denoised image 

4.2. BP-ANN Model Training Process  

The architecture of our BP-ANN was established according to the number of input neurons and the 
number of classifications. The initial ANN consisted of a layer of input neurons, a hidden-layer and a 
layer of output neurons, fully interconnected with the hidden-layer by random initial weights. Each 
input layer neuron corresponded to a feature. The number of nodes in the hidden-layer needs to be 
considered. As a preliminary selection, the optimum number of nodes in the hidden layer was 
determined by Equation (8) [16]: 

amnn ++=1  (8) 

where n1 is the number of nodes in the hidden layer, n is the number of input nodes, m is the number of 
output nodes, and a is an experiential integer from 1 to 10. By comparing the classification results of 
different models, we choose the model which has 13 input nodes, 10 nodes in the hidden-layer and 6 
nodes in the output layer in the final model. 

We selected six common field pests (Cnaphalocrocis medinalis Guenee, Chilo suppressalis, 
Sesamia inferens, Naranga aenescens Moore, Anomala cupripes Hope, Prodenia litura) for training 
the BP-ANN model. After acquiring and processing the images according to the procedure above from 
all samples, the set of images was divided into a training set and a test set. The composition of the 
training set is shown in Table 1. In order to remove the effects resulting from the difference of all 
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features’ dimension, all features are normalized using the Equation (9) [17]: 
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where n is the number of pests and d is the number of features; xij and ,
ijx  are the non-transformed data 

and transformed data of the jth feature of the ith pest. jmax  and jmin  are the maximum and minimum 

of the jth feature in the all pests. 

Table 1. Composition of the training sets used to train BP-ANN. 

Species Number 
Cnaphalocrocis medinalis Guenee 70 
Chilo suppressalis 69 
Sesamia inferens 72 
Naranga aenescens Moore 70 
Anomala cupripes Hope 75 
Prodenia litura 76 

After the training was finished, the test was done according to the trained BP-ANN model. The 
composition of the testing set and the testing result are shown in Table 2. 

Table 2. Testing results for BP-ANN. 

Species Number Accuracy (%) 
Cnaphalocrocis medinalis Guenee 23 83 
Chilo suppressalis 15 80 
Sesamia inferens 18 81 
Naranga aenescens Moore 21 82 
Anomala cupripes Hope 25 88 
Prodenia litura 30 85 
Overall 132 83 

4.3. Data Transmission Authentication Test 

This test was conducted to verify the accuracy of the data sent and received during image data 
acquisition. The whole prototype testing system was implemented and placed at Zhejiang University 
Digital Agriculture and Agriculture Information Technology Research Center for conducting the test 
via China Unicom’s WCDMA network. Using the previously described test system and the 
transmission data format, the image data, after being processed by ADSP-BF547 which included in 
encoding, packaging, were sent to the HCP using the 3G wireless transmission module. Comparisons 
were performed to check transmission time and image data correctness. The received image data were 
stored on the PC hard disk. The actually image data were read from the SDRAM in ROCP. These data 
were then compared with the image data received by the HCP subsystem using the ultraedit software. 
The comparison shows that the received data are correct. 
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5. Results 

After obtaining the weights and thresholds of BP-ANN, we programmed them in DSP for 
identification in the field. The CMOS image sensor OV9650 is used for image acquisition. The test 
was done in Fuyang plant protection station (Zhejiang, China). The number of test samples and the test 
results are shown in Table 3. 

Table 3. Testing results for BP-ANN in the field. 

Species Number Accuracy (%) 
Cnaphalocrocis medinalis Guenee 20 82 
Chilo suppressalis 18 79 
Sesamia inferens 20 80 
Naranga aenescens Moore 21 82 
Anomala cupripes Hope 25 86 
Prodenia litura 23 82 
Overall 127 82 

The performance of the trained BP-ANN in the testing runs demonstrated that the designed system 
was capable of identifying the common six pests, which were trapped at the Fuyang Plant Protection 
Station, with an overall average accuracy level of 82%. This level of accuracy was satisfactory given 
the complex field conditions and the limited amount of information on which the identification system 
was based. It should be emphasized that the set of analysed pests is rather a model example to 
demonstrate the potential of artificial intelligence in this area. In later work, we will study the 
identification of those pests which are not easily distinguishable by traditional taxonomic keys. 

Figure 9 shows the GUI of the HCP; the photo, corresponding to the original image shown in  
Figure 7, is displayed by decompression. It is clear enough for experts to identify it.  

Figure 9. The GUI of HCP. 
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6. Conclusions 

Due to the need for pest identification in the field for precision agriculture, this paper studied the 
feasibility of on-line pest classification using machine vision technology. A DSP was used for this due 
to its powerful data processing functions. Considering the complex situation related to the field and the 
resource limitations of DSP, the classification achieved is satisfactory. Image data, which was encoded 
with JPEG 2000, was transmitted through the WCDMA network to an HCP for further identification. 
The test results show that the DSP can provide an initial result and the pest image in HCP is very clear 
and sufficient for further identification. The design of a reliable automatic pest classification system in 
HCP will be the focus our subsequent research efforts. 
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