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Abstract: Joint estimation of direction-of-arrival (DOA) and polarization with 
electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued 
non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, 
which propose to tackle the high dimensional optimization problem in CNJD via a 
sequence of simple sub-optimization problems, by using LU or LQ decompositions of the 
target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD 
algorithms we present a novel strategy to exploit the multi-dimensional structure present in 
the second-order statistics of EMVS outputs for simultaneous DOA and polarization 
estimation. Simulations are provided to compare the proposed strategy with existing 
tensorial or joint diagonalization based methods. 

Keywords: complex non-orthogonal joint diagonalization; direction-of-arrival; polarization; 
electromagnetic vector-sensor; LU; LQ 
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1. Introduction 

An electromagnetic vector-sensor (EMVS) comprises 2~6 electromagnetic (EM) sensors (e.g., 
orthogonally oriented short dipoles and small loops arranged in a co-located or distributed manner, see 
Figure 1) that provide complete or partial measurements of the EM fields induced by the incident 
sources [1–5]. As a result, using EMVS in direction finding and polarization estimation could yield 
additional advantages over the conventional scalar sensor array processing techniques, mainly due to 
the fact that the distinction of impinging sources could be well exploited in both the spatial and 
polarization domains by using EMVS arrays. Particularly, in the early works on direction finding and 
polarization estimation with EMVS’s, maximum likelihood (ML) [3,6,7], multiple signal classification 
(MUSIC) [8–10], subspace fitting [11,12], and estimation of signal parameters via rotational 
invariance techniques (ESPRIT) [13–18] have been derived from their scalar array based counterparts, 
and some other issues such as vector cross-product based source tracking [4,19,20], polarimetric 
smoothing for coherent source localization [21–24], the analysis of performance [25,26] and 
identifiability [27–31] were also addressed. 

Figure 1. An illustration of four typical EMVS’s. (a) Cross-dipole. (b) Tripole. (c) The 
cocentered complex EMVS. (d) The distributed complete EMVS. 

 
(a) 

 
(b) (c) 

 
(d) 

The early works unfolded the potential of using EMVS’s in array processing through both analysis 
and experiments. However, there was still a problem as these works rarely considered the multi-
dimensional (MD) data structure of the EMVS array outputs in the time-space-polarization domains. 
More exactly, the ML and MUSIC variants usually concatenate the vectorial output from each EMVS 
into a long-vector, which somehow undermines the MD structure of the array outputs. The ESPRIT 
variants, on the other hand, did consider this MD structure of array outputs in the form of multiple 
rotational invariant matrix slices, yet only used these matrix slices in a pairwise manner such that only 
a fraction of the MD structure is exploited each time. As such, the use of higher-dimensional algebras 
such as tensors and hypercomplex has attracted increasing attention in the recent years [32–44], for a 
better exploitation of the afore-mentioned MD structure present in the EMVS signals. More exactly, 
tensors are employed to model the MD structure of EMVS array signals as a multilinear algebraic 
quantity, upon which parallel factor analysis (PARAFAC) and higher-order singular value 
decomposition (HOSVD) are used to exploit this presented multilinearity [32–37]. Hypercomplexes, 
on the other hand, handled the above-mentioned MD structure by encapsulating the local vectorial 
output of each EMVS into a multinion (e.g., quaternion, biquaternion, quad-quaternion, bicomplex, or 
a more generalized geometric algebra model) [38–43], of which multiple imaginary parts are used and 
defined under certain hypercomplex algebraic rules. Recently, there have also been works on 
combining tensor decompositions and hypercomplex operations [44]. It is demonstrated in these works 
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that an efficient exploitation of the MD structure for EMVS array signals could bring out improved 
performance over the conventional methods, with regards to the robustness to the errors introduced by 
noise, finite data length, and model errors. 

In this paper, we will introduce an alternative strategy to tensor and hypercomplex based methods, 
for exploiting the MD structure of the outputs for an array of six-component cocentered complete 
EMVS’s (for clarity hereafter we name it EMVS without causing any misunderstanding), in the 
context of joint DOA and polarization estimation. More specifically, we formulize the MD structure of 
an EMVS array outputs as a set of complex square matrices that share a jointly diagonalizable 
structure, and propose to fit this structure by complex-valued non-orthogonal joint diagonalization 
(CNJD) for simultaneous DOA and polarization estimation. Moreover, we consider the LU or LQ 
decompositions for the target matrices and formulize the optimization problem in CNJD as two 
alternating stages: the L-stage and U(Q)-stage. In addition, inspired by the Jacobi-type schemes for 
joint diagonalization, we further replace the sub-optimization problem in each of the above two stages 
by a sequence of elementary rotation matrices which rely on only one or two parameters, and propose 
two closed-form CNJD algorithms. 

The rest of the paper is organized as follows: Section 2 presents the data model of an EMVS array, 
and its formulation into CNJD problems. Section 3 introduces three proposed CNJD algorithms and 
the corresponding joint DOA and polarization estimation strategy, as well as some implementation 
remarks. Section 4 provides simulations to compare the proposed strategy with some existing tensorial 
methods to illustrate the potential of the proposal. Section 5 concludes the manuscript. 

2. Measurement Model and Problem Formulation 

2.1. Measurement Model of an EMVS Array Output 

Let (θ,φ) be the azimuth-elevation 2D DOA of a narrow-band planar EM signal (see Figure 2(a) for 
the angle definition). The induced electric field vector of this signal moves along the polarization 
ellipse which could be characterized by the ellipse angle  and orientation angle β, and the 
polarization state could further be represented by (γ,η) that are linked to (α,β) in the Poincare  
sphere [1] (see Figure 2(b,c) to visualize the polarization ellipse and the relationship between(γ,η) and 
(α,β)), 0 < θ < 2π, |φ| ≤ π/2, 0 < γ < π/2, |η| ≤ π. The output of an EMVS is written as [2]: 

 
(1) 

where  and  are the collected electric and magnetic field vectors, respectively. 
 denotes the Poynting vector containing the three coordinates 

associated with orientation (θ,φ). Therefore, v(θ,φ), v(θ+π/2,0) and v(θ,φ+π/2,0) constitute a mutually 
orthogonal triad as shown in Figure 2(a). We herein label pθ,φ,γ,η as the angular-polarization steering 
vector as it reflects the amplitude-phase relationship among the received EM fields, which depends on 
both DOA and polarization. 
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Figure 2. The angle and polarization definitions. (a) The angle definition. (b) Polarization 
ellipse. (c) Poincare sphere. 

(a) (b) 

(c) 

In addition to the unit-EMVS formulization in Equation (1), we further assume the receiving 
antenna array comprises  EMVS’s. The position coordinates of the nth EMVS are encapsulated in a 
vector , n =1, 2, …, N. As a result, the phase delays of all the EMVS’s with regards to the one 
at the origin could be characterized by the so-called spatial steering vector defined as follows: 

1
, 1 ( , ) 2 ( , ) ( , )exp( i 2 [ , ,..., ] )T T T T
θ φ θ φ θ φ N θ φπλ−d k v k v k v  (2) 

where λ is the wavelength of the impinging signal, and  denotes the imaginary unit. As a result, the 
EMVS array output for a signal with DOA (θ,φ) and polarization (γ,η) is given by:  

, , , , , , ,( ) ( )T
θ φ γ η θ φ θ φ γ ηt s tX p d  (3) 

where s(t) is the complex envelop of the source and . 
In the presence of M impinging signals and additive noise, the EMVS array output is given by: 

 
(4) 

where (θm,φm), (γm,ηm) are the 2D angular and polarization parameters of the mth signal sm(t), 
, , ,m m m mm θ φ γ ηp p , ,m mm θ φd d , and  is the noise term, m =1, 2, …, M. 

In addition, we herein give the following assumptions: 

1. The sources are zero-mean, stationary, and mutually uncorrelated; 
2. The noises are zero-mean, stationary, and uncorrelated with the sources. 
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3. The sources have distinct DOA’s, and any arbitrary K (K ≤ N) spatial steering vectors 
associated with different DOA’s are linearly independent. 

Next, we shall show how to formulize the second-order statistics of the EMVS array output given in 
Equation (4) into a set of jointly diagonalizable square matrices. 

2.2. Formulation of the Second-Order Statistics into Jointly Diagonalizable Matrices 

We denote the outputs of the nth EMVS’s as . By definition, we know that xn(t) is the nth 
column of X(t) and thus could be further formulized as , where dm,n is 
the nth element of dm, and  is the noise term on this EMVS. As a result, performing cross 
covariance between xl(t) and xk(t) under assumptions 1 and 2 yields (l, k =1, 2, …, N): 

, , ,E[ ( ) ( )]H H
l k l k l k l kt t = +C x x PR P Σ  (5) 

where ‘ ’ denotes mathematical expectation, 1 2[ , ,..., ]MP p p p , , 1, , 2, , , ,diag( , ,..., )l k l k l k M l kr r rR  where 
 construct a diagonal matrix with its entries, and , , , ,E[ ( ) ( )]m l k m m m l m kr s t s t d d∗ ∗ . In addition, 

, E[ ( ) ( )]H
l k l kt tΣ n n  is the noise cross-covariance matrix between the lth and kth EMVS’s. We note 

herein that for l, k varying between  and N there are totally N2 such matrices. Moreover, these 
matrices all admit Equation (5), which indicates a featured structure that distinct diagonal matrices 

 are multiplied by jointly shared target matrices P and PH from the left and right (in 
the absence of noise), respectively. This particular structure is called the jointly diagonalizable 
structure, and a unique identification of it would yield estimates of DOA and polarizations (as will be 
addressed in Section 3). In the open literature, joint diagonalization has been widely investigated with 
various constraints (such as Hermitianity and orthogonality) [45–57] for different applications. As such, 
we have the following remarks concerning the jointly diagonalizable structure present in our problem, 
as a guidance for the design of the CNJD algorithms. 

Remark 1: It is important to note that the target matrix P is complex-valued and non-orthogonal as 
 in most of the cases. Moreover, Cl,k is non-Hermitian for l ≠ k. As a result, it is 

preferable to use complex non-orthogonl joint diagonalization (CNJD) methods for non-Hermitian 
matrices, for the identification of P. 

Remark 2: We note that most of the joint diagonalization algorithms assume that the target matrix 
be square, while in our problem P is mostly not square. As a result, we modify Equation (5) a little bit 
as follows (here we assume M ≤ 6): 
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(6) 

where  is diagonal, , and  could be considered as the 
contribution from the noise term to the jointly diagonalizable structure. As a result, we will consider 
the model given in Equation (6) instead of Equation (5) for our proposed algorithms in the next section. 
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3. Proposed Algorithm 

As indicated in Section 2, the EMVS array signals could be formulated in a set of complex  
non-orthogonal jointly diagonalizable matrices in the domain of second-order statistics, and the problem 
of joint DOA and polarization estimation might be solved by identifying this structure via CNJD 
algorithms. In this section, we firstly propose two CNJD algorithms using the Jacobi-type scheme and 
LU/LQ decompositions. Then we propose a novel strategy for simultaneous direction finding and 
polarization estimation based the proposed CNJD algorithms, as well as some discussion. 

3.1. Complex Non-Orthogonal Joint Diagonalization via Jacobi-Type Scheme and LU/LQ 
Decompositions 

We assume a set of complex matrices C = {C1, …, CK} share the jointly diagonalizable structure as 
given in Equation (6): Ck = ADkAH. Here we neglect the noise term and combine the two indices (l,k) 
for Cl,k and Dl,k in Equation (6) as one index  for clarity. Moreover, we consider the general case that 
{C1, …, CK} are of size L × L for the proposed CNJD algorithms (in our particular case of joint DOA 
and polarization estimation with EMVS’s, L is equal to 6 according to Equation (6)). The goal of joint 
diagonalization is to seek an estimate for  such that {BCkBH} are as diagonal as possible. To 
solve this problem, we consider the following criterion for the estimation of B: 

1
arg min off( )K H

kk =
= ∑B

B BC B  (7) 

where off(BCkBH) calculates the sum of squared norms for all the off-diagonal elements of BCkBH. In 
addition, by reasonably assuming that B is with unit determinant, we could further decompose it as: 

B = LV      (8) 

where  is lower-triangular with ones at its diagonal.  is upper-triangular if  
Equation (8) denotes LU decomposition, and is unitary if Equation (8) denotes LQ decomposition. 
Noting that any non-singular square matrix admits these two decompositions, it is reasonable to 
consider the decompositions Equation (8) and hence replace the minimization problem of Equation (7) 
by two alternating stages involving the following sub-optimization steps: 

1
arg min off( )K H

kk =
= ∑V

V VC V  (9a) 

1
arg min off( )K H

kk =
′= ∑L

L LC L  (9b) 

where H
k k′ =C VC V , L , V , and B  denote the estimates of L, V, and B respectively. 

Moreover, we adopt the Jacobi-type scheme to solve Equations (9a) and (9b) via a set of rotations 
which are repeated sequentially for all the possible index pairs  as follows, : 

 (10a) 

 (10b) 

where Ck,new, , Vnew and Lnew denote the updates of Ck, , V and L in the current iteration, and 
Ck,old, , Vold and Lold are the results obtained in the previous iteration, k = 1, …, K. T(i,j) and T′(i,j) 
are the elementary rotation matrices for problems Equations (9a) and (9b), respectively, which equal 

k
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the identity matrix except the entries indexed , , , and . The goal is then to find 
optimal T(i,j) and T′(i,j) in each iteration to solve Equations (10a) and (10b), respectively. We herein 
note that the proposed two CNJD algorithms are all of the above-mentioned Jacobi-type, with the only 
differences on the adopted decompositions (LU or LQ) and implementation details. Next, we give the 
details of the proposed algorithms. 

Firstly, we consider the LU decomposition based algorithm. In this case, the matrix V in  
Equation (9a) is an upper-triangular matrix , and T(i,j) in Equation (10b) is an elementary 
upper-triangular matrix which is equal to the identity matrix except the  upper entry , 1 ≤ i < 
j ≤ L. In addition, for index pair , we note that  only impacts the  row and 
column of Ck,old, k = 1, …, K, and thus the minimization of  amounts to 
minimizing the sum-of squared norms of the off-diagonal elements in the  row and column of 
Ck,new:  

2 26
, , ,1 1,

( , ) ( , )K
i j k new k newk p p i
ξ C i p C p i

= = ≠
⎡ ⎤+⎢ ⎥⎣ ⎦∑ ∑  (11) 

We note that  and . 
As a result, substituting these formulations into Equation (11) yields the following equation after a few 
simple manipulations: 

 

(12) 

Setting the derivative of  with regards to  yields the optimal estimate of  as:  

* *
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As for the L-stage, we note herein that the only difference is the use of lower-triangular matrix 
instead of the upper-triangular one in the U-stage. Therefore, Equation (13) is still valid for the optimal 
estimate of the factor involved in the L-stage, except that the indices i and j are transposed. 

In the second algorithm, we consider the LQ decomposition of B, and thus the matrix V in  
Equation (9a) is a unitary matrix . Hence, the sub-optimization problem in the Q-stage as 
indicated in Equation (9a) is indeed an orthogonal joint diagonalization (OJD) problem which could be 
solved by Cardoso’s Jacobi-type algorithm [45]. As such, in the second algorithm we use Cardoso’s 
OJD algorithm in the Q-stage, followed by the L-stage which is addressed in the first proposed algorithm. 

Now that we have obtained the L-stage and U(Q)-stage for the proposed algorithms, we loop these 
two stages until convergence is reached. In addition, we note that there would be several ways to 
monitor the convergence for the proposed CNJD algorithms. For example, we could terminate the 
iterations when the parameter values in each iteration of the L-stage or U(Q)-stage are small enough, 
which indicate a minute contribution from the elementary rotations, and hence convergence. We might 
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as well monitor the sum of off-diagonal squared norms  in each iteration, and 
terminate the loops when the change in it is smaller than a preset threshold. In the following context of 
our manuscript, we adopt a third way which stops the iterations when the values of  between 
two successive complete runs of L-stage and U(Q)-stage are close enough, with regards to a preset 
threshold τ, where I denotes the identity matrix. We name the proposed LU and LQ based algorithms 
as LUCJD and LQCJD, respectively, and summarize them in Table 1. 

Table 1. The two proposed CNJD algorithms. 

 Input: A set of square matrices , and a threshold  

 Output: The estimated unmixing matrix  
 Implementation: 

, , .  

while  do 
The U-stage or Q-stage:  

for all 1 ≤ i < j ≤ L do 
- For U-stage in LUCJD: obtain the optimal elementary upper-triangular matrix T(i,j) 

with its (i, j)th element determined by Equation (13) 
For Q-stage in LQCJD: obtain the optimal elementary unitary matrix T(i,j) via 
Cardoso’s algorithm [45] 

- Update matrices: , k = 1, …, K 
end for 
The L-stage:  
for all 1 ≤ j < i ≤ L do 
- obtain optimal elementary lower-triangular matrix  with its (i, j)th element 

determined by Equation (13) 
- Update matrices:   

 end for 
 , , ,  

end while  

3.2. Joint DOA and Polarization Estimation with CNJD 

Given the proposed LUCJD and LQCJD algorithms, we could identify the jointly diagonalizable 
structure of an EMVS array outputs as given in Equation (6), for the estimation of A = B–1. Moreover, 
we note that the identification of A implies estimates of the angular-polarization steering vectors pm, 
which could be used to estimate the source DOA’s and polarizations. In addition, it is important to note 
that the target matrices as given in Equation (5) are all of dimensionality 6 × 6, and therefore the 
sensitivity issue for non-orthogonal JD with very few large matrices would not occur in our 
applications. 

However, it is important to note that A is required to be square for the proposed CNJD algorithms, 
and thus the estimation of A by using these algorithms does not only contain the desired estimates of 

1off( )HK
kk=∑ BC B

2

F
−LV I

1 2, , , CL L
K

×∈C C C

0oldγ ← 1ζ τ← +

ζ τ≥
←V I

( , ) ( , ) ( , ), H
i j k i j k i j    ← ←V T V C T C T
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( , )i j′T
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new F
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pm, but also the contribution from the noise, as is formulated in Equation (6) (we denote the estimates of 
A, B, and pm by A , B , and mp , respectively, m =1, 2, …, M). Therefore, before performing joint DOA 
and polarization estimation, we need to firstly separate the columns of A  associated with the sources 
from those contributed by noise. This procedure is similar to signal/noise subspace estimation which is 
key to subspace based methods such as MUSIC and ESPRIT. However, noting that A  is not 
constrained to be orthogonal, we could not separate its columns into the signal and noise subspaces by 
simply selecting the columns corresponding to the largest  diagonal elements of ,{ }H

l kBC B , as is 
done for MUSIC and ESPRIT. As such, we propose the following scheme to solve this problem.  

Firstly, we stack all the matrices  as given in Equation (5) into a big matrix  as : 

1,1 2,1 ,1 1, 2, ,[vec( ), vec( ),...vec( ),..., vec( ), vec( ),..., vec( )]N N N N N=C C C C C C C  (14) 

where ‘ vec( )⋅ ’ denotes matrix vectorization. Then we perform singular value decomposition (SVD) to 

, denote the number of singular values as , and select the right SVD vectors 
associated with the smallest  singular values, denoted by , to 
estimate the noise subspace which is orthogonal to the span of , where dm is the 
spatial steering vector of the  source, as given in Equation (2). In addition, we construct a noise 
subspace projector . We note herein that the computational complexity of this stage would 
grow dramatically as the number of sensors increases. 

Secondly, we note that ,
H

l kBC B  is actually an estimate of Dl,k in Equation (6), and 
, , 1, 1, , , ,diag( ) [ [ ,..., ] ,(diag( )) ]∗ ∗ ′= T T T

l k l k l k M l M k l kd d d dμ D Ξ R , where  is a diagonal matrix with the 
 diagonal element equal to , according to Equations (5) and (6), l,k = 1, …, N. As a 

result, we have: 

1,1 1, 2,1 2, ,1 ,

1 1 2 2 1,1 1,2 ,

[ ,..., , ,..., ,..., ,..., ]

[ [ , ,..., ] ] ,[diag( )],diag( ),...,diag( )] ]

T
N N N N N

T T T
M M N N

∗ ∗ ∗ ′ ′ ′= ⋅ ⊗ ⊗ ⊗

Γ μ μ μ μ μ μ

Ξ d d d d d d R R R
 (15) 

which indicates that the columns of  comprise the vectors  scaled by , and 
some noise contribution denoted as . As a result, projecting these 
columns into the noise subspace via the projector  could yield an efficient separation of the column 
space for Γ into signal and noise subspaces. Therefore, we perform the following projection for each 
column of Γ and select the column indices corresponding to the signal subspace: 

 (16) 

where we adopt matlab notation to denote the  column of Γ by Γ(:,i). We note that there are totally 
M such indices which could be put into an index vector . 

Finaly, we use the indices obtained above to select the columns of  that correspond to the 
estimates of the angular-polarization steering vectors (:, )m mλ=p A .  

With the obtained estimates { | 1,2,..., }m m M=p , and denoting [ , ]T T T
m m m=e h p , where 3, Cm m ∈e h , we 

adopt the scheme in [13,14] to calculate the DOA and polarization estimates as follows: 
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We summarize the proposed joint DOA and polarization estimation strategy in Table 2. 

Table 2. The proposed joint DOA and polarization estimation strategy. 

 Input: The EMVS array signals , and the number of sources M 
 Output: The DOA estimates ( , )m mv θ ϕ , and the polarization estimates  ,m mγ η , m =1, 2, …, M 
 Implementation: 
- Calculate a set of auto(cross)-covariance matrices {Cl,k | l,k = 1, …, N} via Equation (5), 

and perform the proposed LUCJD or LQCJD algorithms (summarized in Table 1) on 
these matrices to obtain the estimate of the unmixing matrix B . 

- Stack {Cl,k | l,k = 1, …, N} into a big matrix  by Equation (14), perform 
singular value decomposition (SVD) to , and obtain a noise subspace 
projector  by truncating the right SVD vectors according to the discussion 
below Equation (14). 

- Calculate , ,diag( )= H
l k l kμ BC B , and constructe a matrix 

2 6C ×∈ NΓ  by Equation (15). 
Perform noise subspace projection, select the indices of Γ ’columns that are associated 
with the smallest M  noise subspace projection values into an index vector R∈ Mλ  via 
Equation (16), and then use it to obtain the estimates for the angular-polarization steering 
vectors via (:, )=m mp A λ , where 1−=A B , and m =1, 2, …, M. 

- Estimate the source DOA’s and polarizations with { 1,2,..., }=m | m Mp  according to 
Equation (17) 

3.3. Discussion 

In this subsection we present some remarks to provide insights into the proposed CNJD algorithms 
and the joint DOA and polarization estimator: 

Remark 3 (Concerning the adopted CNJD algorithms): Besides the proposed LUCJD and LQCJD 
methods, we could also use other joint diagonalization algorithms for the considered problem of 
simultaneous DOA and polarization estimation. We herein note that our proposed algorithms are of 
nice flexibility in various applications, as they assume neither Hermitianity nor positive definiteness on 
the matrices, which are often imposed by other CNJD algorithms [46,47,57]. In addition, compared 
with CNJD methods based on gradient or Newton-type optimization [51,52], the proposed algorithms 
are of closed-form in each iteration, and do not involve issues such as learning rate adjustment. 
Furthermore, we note that our algorithms could be considered as a generalization of the works  
in [53–55], which considered parametrized Jacobi-type non-orthogonal joint diagonalization for  
real-valued matrices. In particular, the work in [53] firstly considered non-orthogonal Jacobi-like 
algorithms based on LU and LQ decompositions, and was extended to the complex domain in [57]. 
However, we note that the algorithm in [57] considered only Hermitian matrices, and is thus 
essentially distinct from our proposed algorithms. There are also some other Jacobi-like algorithms, 
most of which consider only the real-valued cases [53–56]. Recently, there have been works devoting 
to Jacobi-like complex non-orthogonal CNJD algorithms [50,57]. 

6( ) C Nt ×∈X

236C N×∈C
236C N×∈C

2 2

CN N×∈Π
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Remark 4(On the link to tensorial methods): It should be noted that our problem could also be 
tackled by tensorial methods. In particular, stacking the matrices {Cl,k | l,k = 1, …, N} given in Equation (5) 
along a third dimension would yield a trilinear tensor [35,36], and these matrices could also be 
arranged into a quadralinear tensor according to [37]. Therefore, the joint estimates for DOA and 
polarization could be obtained by performing parallel factor analysis (PARAFAC) upon these tensor 
models. Compared with these tensorial methods, we note that the CNJD mostly considered the ‘square’ 
case as indicated in Remark 2 while PARAFAC could handle the non-square case. As a result, the 
CNJD based strategy is usually combined with subspace methods to select the desired columns from 
the square estimates. 

Another noteworthy property of CNJD based strategies is that CNJD is usually very robust to noise 
with structured covariance, which would yield additional contribution to the joint diagonalizable 
structures other than sources. Therefore, the proposed CNJD based strategy might be robust to colored 
noise or interferences. On the other hand, the mostly used alternating least squares (ALS) methods for 
the implementation of PARAFAC are sometimes sensitive to erroneous prediction of the underlying 
parallel factors (e.g., underfactoring) [58], such that the presence of coherent noise with structured 
covariance would deteriorate the performance of PARAFAC based strategies, even if the number of 
sources is correctly predicted. However, in contrary to the above nice property, the CNJD algorithms 
are sensitive to unstructured noise such as white noise. In practice, we note that the array noise is 
usually spatially colored with the covariance between different elements admitting some particular 
structure [44], and therefore the CNJD based strategy would be well adapted to practical scenarioes. 

Remark 5(On the independence of knowledge on spatial configuration): A main property of the 
proposed method is that the joint estimation for DOA and polarization mainly relies on the estimates of 
angular-polarization steering vectors, while the estimates of spatial steering vectors that are indicated 
in the diagonal elements of ,{ }H

l kBC B  are only used in the noise subspace projection stage to select the 
desired columns of the estimate A . As such, the proposed approach does not require any knowledge on 
the spatial configuration of the array, and is therefore of much flexibility in applications where precise 
knowledge on the position of each EMVS is unavailable. Meanwhile, the above independence of the 
spatial prior knowledge for the proposed strategy would lead to another advantage, that the adopted 
array might be spatially sparse, which enables enlarged spatial aperture. 

Remark 6(On the identifiability): An issue of great interests is the identifiability property of the 
proposed strategy and this issue comprises two aspects, that are: (1) the least number of EMVS’s that 
are required for a successful implementation of the proposed method; and (2) the most number of 
sources that could be uniquely identified. To address the former, we note that the jointly diagonalizable 
structure could be uniquely identified for at least two matrices, and hence we need at least two 
EMVS’s for the proposed method (a simple example is the ESPRIT algorithm). For the latter issue, we 
simply notice that the number of sources could not exceed six to meet the “square” requirement of the 
proposed LUCJD and LQCJD algorithms. We note herein that the above analysis is given under 
assumption A3) in Section II, which excludes the scenarioes that two or more target matrices for CNJD 
are proportional or linearly dependent. A more challenging problem is the identification of several 
sources with identical DOA, and this requires a thorough analysis of the identifiability for CNJD. 
However, this issue is beyond the scope of this manuscript and will be the focus of our future work. 
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Remark 7(On the computational complexity): Another important issue about the proposed LUCJD 
and LQCJD is the computational complexity, and this issue comprises two aspects, that are: (1) The 
computational complexity for one sweep; and (2) the number of sweeps until convengence. For the 
former, we note that one sweep in these algorithms comprises two stages, each of which undergoes  
L(L – 1)/2 elementary rotations (L is the dimensionality of the target matrices). Moreover, we note that 
the update of target matrices involve 2L2 complex multiplication operations and the update of matrices 
L or U (Q) involve L2 complex multiplications according to Equation (10). The calculation of the 
optimal  involves 4K(L – 1) multiplications (there is also a division, ignored as it contributes little 
to the complexity) according to Equation (3). The Q-stage in LQCJD involves 9K multiplications and 
an eigendecomposition of a 3 × 3 matrix. Therefore, the computational loads of one sweep of LUCJD 
and LQJCD are 3L3(L – 1) + 4KL(L – 1)2, and 3L3(L – 1) + 2KL(L – 1)2 + (9K + ξ)L(L – 1)/2, 
respectively, where ξ is the complexity of computing the eigendecomposition of a 3 × 3 matrix. We 
note herein that the computational complexity of LUCJD and LQCJD per sweep is approximately 
larger than that of other Jacobi-type algorithms (e.g., JTJD [50]) as each sweep of LUCJD and LQCJD 
incorporates two stages while other methods only have one stage in each sweep.  

As for the number of sweeps that LUCJD and LQCJD take until convergence, we note that LQCJD 
converges nearly quadratically, mainly because the algorithm in the Q-stage is of quadratic converging 
pattern. The converging pattern of LUCJD, however, is linear as inherited from its real counterpart [53]. 

4. Simulation Results 

In this section, we present simulations to verify the proposed joint DOA and polarization estimation 
strategy, and compare it with other methods of similar type (e.g., tensorial algorithms). The impinging 
signals are assumed to be far-field narrow-band signals of equal carrying frequency, and the adopted 
array is a sparse linear array with interspacing identical to twice the wavelength (the number of sources 
and EMVS’s are set differently in various simulations). In addition, the noise is formulated following 
the reports on sensor array noise modeling [44] as: 

 
(18a) 

 
(18b) 

 
(18c) 

where pε is the noise power, 0 ≤ ρ1 ≤ 1 is the noise covariance level between parallel components of 
two neighboring EMVS’s, and 0 ≤ ρ2 ≤ 1 is the noise covariance level between two orthogonal 
components within the same EMVS. , , and  denote the  elements of , 

, and , respectively, as defined in Equations (1) and (2), with (θε, φε) and (γε, ηε) 
denoting noise DOA and polarization, respectively. ne,i,k, nh,i,k denote the noise on the  short dipole 
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and small loop in the ith EMVS, respectively. We note that this formulation takes into consideration 
the features of both white noise and directional interference. In particular, this noise model degrades to 
the white noise model with ρ1 = ρ2 = 0, and becomes an interference with DOA (θε, φε) and 
polarization (γε, ηε) with ρ1 = ρ2 = 1. Furthermore, in our simulations we fix the noise DOA  
(θε, φε) = (47°, 45°), and polarization (γε, ηε) = (0°, 0°), respectively. 

We use the Overall Root Mean Squared Angular Error (RMSAE) [2] to measure the accuracy of 
DOA estimates as 1

,1 E(arccos( ))m m m m

- TM
θ φ θ φmχ M =∑ v v , where  and ,m mθ ϕv  are the  true and 

estimated poynting vectors, respectively. In addition, we use the Overall Mean Squared Errors (RMSE) 
to measure the estimation accuracy of the two polarization parameters. Furthermore, SNR used in all 
the simulations is defined as 1010log ( / )s εSNR p p , where  and  are the signal power and noise 
power per vector-sensor, respectively. In the following, the first simulation is performed to verify our 
identification analysis in Remark 6, Section 3. In the second simulation, the proposed strategy is 
compared with other methods of similar type, with regards to the robustness to different errors (e.g., 
the errors caused by noise, finite data length, and noise covariance). The third simulation concerns the 
converging pattern of the proposed LUCJD and LQCJD algorithms. 

4.1. Simulation for Six Sources Incident on Two EMVS’s 

In the first simulation, we consider the scenario that six sources are impinging on an array of two 
EMVS’s, to verify our identification analysis in Remark 6, Section 3. We note that in this case the 
number of sources reaches the upper-bound, while the EMVS number reaches the lower-bound 
according to Remark 6, and thus this is the most difficult case to the identifiability for the proposed 
strategy. The source DOA’s are (θ1, φ1) = (47°, 15°), (θ2, φ2) = (12°, 84°), (θ3, φ3) = (40°, 60°), (θ4, φ4) 
= (30°, 20°), (θ5, φ5) = (60°, 13°), and (θ6, φ6) = (80°, 65°). The source polarizations are (γ1, η1) = (72°, 
74°), (γ2, η2) = (60°, 43°), (γ3, η3) = (10°, 33°), (γ4, η4) = (65°, 23°), (γ5, η5) = (45°, 40°), and (γ6, η6) = 
(34°, 78°). In addition, we fix the SNR to 30 dB, fix the number of snapshots to 1000, set the noise 
covariance levels in Equations (18a)~(18c) as (ρ1, ρ2) = (0.5, 0.5), and perform 50 independent runs for 
both LUCJD and LQCJD based algorithms. We here note that SNR in this scenario is set to a high 
level so that the impact of noise on the result could be ignored, and thus enabling a clearer illustration 
of the identifiability property of the proposed strategy. The distributions of DOA and polarization 
estimates are plotted in Figure 3. We note from the figure that the results from 50 independent runs 
assemble around the true values of the source DOA’s and polarizations denoted by crossed dashed 
lines, and this verifies our identifiability analysis in Remark 6 that our proposed strategy could 
successfully identify at most six sources with at least two EMVS’s. 

,m mθ φv mth

sp εp
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Figure 3. The distribution of DOA and polarization estimates from 50 independent runs, 
SNR is 30dB, the number of snapshots is 1,000. The noise is with covariance levels (ρ1, ρ2) 
= (0.5, 0.5). (a) Distribution of DOA estimates. (b) Distribution of polarization estimates. 

 

(a) (b) 

4.2. Comparison with Other CNJD and PARAFAC Based Algorithms 

In the second simulation, we compare the proposed methods with the trilinear PARAFAC based 
algorithm, a natural competitor to the proposed algorithms, noting that they have similar features with 
regards of the modeling and processing of the trilinear MD structure, such that the pros and cons of 
both methods could be fairly illustrated. The quadrilinear PARAFAC, however, is not included in the 
comparison, as it exploits fourth-order multilinearity of the present data statistics, and thus is not a 
natural competitor to CNJD and trilinear PARAFAC which concern third-order multilinearity. In 
addition, it is also of great interests to see how the proposed strategy would perform if the CNJD stage 
is carried out with other algorithms instead of the proposed LUCJD and LQCJD. Hence, we shall also 
include in the comparisons some other CNJD methods such as the nonparametric Jacobi transformation 
based joint diagonalization (JTJD) [50], the fast approximate joint diagonalization (FAJD) [48], and 
the uniformly weighted exhausive diagonalization by Gaussian iteration (UWEDGE) [49]. We select 
these methods mainly due to their similar nature to the proposed LUCJD and LQCJD algorithms 
(complex, non-orthogonal, and do not require Hermianity nor non-negative definiteness). In addition, 
the PARAFAC based method in our comparison uses the trilinear PARAFAC model in the subspace 
domain, as introduced in [32], and adopts the joint diagonalization strategy [59] along with compression 
based factor analysis [60] algorithm (COMFAC) to accelerate the trilinear decomposition. For the 
compared CNJD algorithms, LUCJD, LQCJD, and JTJD are initialized with identity matrix, while 
FAJD and UWEDGE adopt the coarse outputs of the orthogonal joint diagonalization as the 
initialization. The reason for the above different initializations is that these CNJD algorithms are of 
two different types (LUCJD, LQCJD, and JTJD are Jacobi-like, and FAJD, UWEDGE are with the 
weighted least squares criterion), and we strive to make the comparisons fair by letting these algorithms 
operate with their standard settings. 

We consider the scenario that three sources are impinging upon an array of six EMVS’s. The array 
configuration is given at the begining of Section 4. The source DOA’s are (θ1, φ1) = (47°, 15°),  
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(θ2, φ2) = (12°, 84°), and (θ3, φ3) = (40°, 60°). The source polarizations are (γ1, η1) = (72°, 74°),  
(γ2, η2) = (60°, 43°), and (γ3, η3) = (10°, 33°). 

Firstly, we set the noise covariance levels (ρ1, ρ2) = (0.8, 0.8), set the number of snapshots to 1,000, 
and let SNR vary between 0 dB~15 dB. The results obtained from 100 independent runs are plotted in 
Figure 4. We observe from the results that the proposed LUCJD and LQCJD algorithms provide 
almost equal precision as well as FAJD, and UWEDGE slightly underperforms these three algorithms. 
Furthermore, we note that the curves of LUCJD, LQCJD, FAJD, and UWEDGE drop more smoothly 
than PARAFAC, which indicates an improved robustness to colored noise of CNJD based methods 
over the PARAFAC based one. In particular, the proposed LUCJD and LQCJD outperform 
PARAFAC for low SNR levels (0~6 dB), while PARAFAC performs better for high SNR levels  
(7~15 dB). In addition, we note that JTJD underperforms the other algorithms with regards to the 
overall accuracy of DOA and polarization estimates. The main reason is that JTJD behaves unsteadily 
in our simulations, and sometimes converges to false solutions (we could draw the distribution of DOA 
and polarization estimates similarly to Figure 3 for JTJD to clearly show that it converges to false 
solutions for quite a few independent runs). We also note that UWEDGE slightly underperforms FAJD, 
LUCJD, and LQCJD with regards to the estimation accuracy. This is mainly because the WLS 
criterion based algorithms usually perform better with a set of properly designed weights for target 
matrices while UWEDGE adopts identical ones only. 

Figure 4. Performance of LUCJD, LQCJD, PARAFAC, UWEDGE, FAJD, JTJD versus 
SNR. The number of snapshots is 1,000, and the noise is with covariance levels  
(ρ1, ρ2) = (0.8, 0.8). (a) The overall RMSAE curves of DOA estimates. (b) The overall 
RMSE curves of polarization amplitude angle estimates. (c) The overall RMSE curves of 
polarization phase difference angle estimates. 
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Figure 4. Cont. 

 
(b) 

 
(c) 

Secondly, we fix SNR and the number of snapshots to 2 dB and 1,000, respectively, and let the 
noise covariance levels ρ1 = ρ2 vary from 0~0.9. The results from 100 independent runs are 
demonstrated in Figure 5. We can see quite diverse behaviors for CNJD and PARAFAC based 
strategies with the noise covariance changing, which clearly demonstrate the pros and cons of both 
strategies. More exactly, we note that the increase in noise covariance would generally improve the 
performance of CNJD based methods. In particular, the proposed LUCJD and LQCJD provide the best 
performance among all the CNJD algorithms with regards to the accuracy of joint DOA and 
polarization estimation. In addition, FAJD and JTJD provide almost equal performance as LUCJD and 
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LQCJD for low noise covariance levels, yet become unsteady for ρ1 = ρ2 ≥ 0.8 and ρ1 = ρ2 ≥ 0.9, 
respectively. This is because the CNJD methods, especially the proposed LUCJD and LQCJD, are 
usually very robust to noise with structured covariance, which would yield additional contribution to 
the joint diagonalizable structures other than sources. Moreover, we note that PARAFAC, on the other 
hand, behaves inversely to the CNJD ones, as the increase in noise covariance results in a dramatic rise 
in the its curves. This is because the PARAFAC algorithms are usually sensitive to underfactoring (the 
number of parallel factors in the tensor model is greater than the number of sources) [58] and noise 
with high covariance levels would result in such underfactoring (when noise covariance increases, 
noise becomes interference, and thus contributes an additional factor to the PARAFAC model). The 
above observations are in accordance with our analysis in Remark 4, Section 3, that CNJD performs 
better than PARAFAC with regards to the robustness to color noise, yet the latter has stronger ability 
in suppressing white noise. 

Figure 5. Performance of LUCJD, LQCJD, PARAFAC, UWEDGE, FAJD, JTJD versus 
the noise covariance level. SNR is 2 dB and the number of snapshots is 1,000. (a) The 
overall RMSAE curves of DOA estimates. (b) The overall RMSE curves of polarization 
amplitude angle estimates. (c) The overall RMSE curves of polarization phase difference 
angle estimates. 
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Figure 5. Cont. 
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4.3. Comparison on the Convergence of CNJD Algorithms 

In the third simulation, we examine the converging properties of all the compared CNJD algorithms 
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(19) 

where =Ω BA , of which the (i, j)th entry is denoted as ωij, and maxk denotes maximum along the index 
k. A is given in Equaiton (6) and B  denotes its estimate at a certain iteration of CNJD. 

In addition, we terminate the iterations for all the CNJD algorithms when the decrease in PI values 
for two successive iterations (normalized by the current PI value) is smaller than 10–2. We note that it 
is impossible to monitor the values of PI as is done in this simulation in practice, as the knowledge of 
A is generally unavailable. The reasons for us doing so are: (1) to emphasize the converging patterns of 
the compared algorithms which are best illustrated by PI values for all the undergone iterations; and  
(2) to enable a fairer comparison of these algorithms as they generally incorporate distinct stopping 
criteria in practice. 

The simulation settings are the same as the first simulation except that SNR is set to 5 dB. We plot 
the PI curves from 5 independent runs for all the compared CNJD algorithms in Figure 6. We could 
observe that the proposed LQCJD yields similar nice quadratic converging pattern as JTJD, of which 
the PI curves drop dramatically in the fist 2~3 iterations. The LUCJD algorithm, on the other hand, is 
less efficient than LQCJD, JTJD, and FAJD with regards to the number of iterations. 

Figure 6. Performance indices of LUCJD, LQCJD, UWEDGE, FAJD, and JTJD versus 
iterations. SNR is 10 dB, the number of snapshots is 1,000, and the noise is with 
covariance levels (ρ1, ρ2) = (0.5, 0.5). 

 

5. Conclusions 

A new joint DOA and polarization estimation strategy was proposed with arrays of electromagnetic 
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admit a special jointly diagonalizable structure in the domain of second-order statistics, and further 
uses complex non-orthogonal joint diagonalization (CNJD) algorithms to identify this structure. 
Moreover, we project the columns of the identified target matrix into the estimated noise subspace, to 
distinguish the estimates of angular-polarization steering vectors from the noise turbulances, and 
further use them to obtain the DOA and polarization estimates. In addition, to facilitate the above 
CNJD based framework, we proposed two Jacobi-type CNJD algorithms based on LU and LQ 
decompositions, respectively, and these two proposed CNJD algorithms are hence named LUCJD and 
LQCJD accordingly. With theoretical analysis, simulation verifications and comparisons, we give the 
following conclusions concerning the properties of the proposed strategy: 

- The proposed CNJD based strategy does not require prior knowledge on the array’s spatial 
configuration. It could provide DOA and polarization estimates for at most six signals with 
distinct DOA’s, with an array of at least two EMVS’s. In addition, the CNJD problem involved 
in this strategy is neither Hermitian nor positive definite, and thus the many CNJD algorithms 
requiring Hermitianity and positive definiteness could not be used in our proposed scheme; 

- Compared with parallel factor analysis (PARAFAC) based algorithms, the proposed LUCJD 
and LQCJD could provide improved accuracy of joint DOA and polarization estimation in 
colored noise, and low SNR levels. Contrarily, with almost white noise present and high SNR, 
the PARAFAC based methods are of more merits; 

- Among all the compared CNJD algorithms (LUCJD, LQCJD, JTJD, FAJD, UWEDGE). The 
proposed LUCJD and LQCJD provide the best performance with regards to the accuracy of 
DOA and polarization estimation in all the simulated settings (with signal-to-noise ratio 
varying and with the noise covariance levels varying); 

- Concerning the converging properties of the compared CNJD algorithms. We note that LQCJD 
is of very promising converging pattern, in which the performance index drops dramatically in 
the first 2~3 iterations and becomes smooth within 10 iterations, under the considered simulation 
setting. In particular, LQCJD only slightly falls behind JTJD, yet largely outperforms UWEDGE, 
LUCJD, and FAJD, with regards to the undergone iterations. The other proposed CNJD 
method named LUCJD, however, is less efficient than most of the competitors. 
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