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Abstract: A memristor bridge neural circuit which is able to perform signed synaptic 

weighting was proposed in our previous study, where the synaptic operation was verified via 

software simulation of the mathematical model of the HP memristor. This study is an 

extension of the previous work advancing toward the circuit implementation where the 

architecture of the memristor bridge synapse is built with memristor emulator circuits. In 

addition, a simple neural network which performs both synaptic weighting and summation is 

built by combining memristor emulators-based synapses and differential amplifier circuits. 

The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.  

Keywords: memristor bridge; non-volatile programming weight; neuron; synapse; 

synaptic multiplication 

 

1. Introduction  

Synaptic multiplications between input signals and weights are key operations in neural networks, 

programmable analog vector matrix multiplication and cellular neural networks. Most of the previous 

synaptic multiplications are based on the software models [1–4]. While the flexibility of the  

software-based model is excellent, its processing speed represents a serious bottleneck. The digital 
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accelerating board on which the software version of neural network is a practical option representing a 

compromise between limited flexibility and a high speed processing [5,6]. However, this approach 

may not be the solution for the problem of bigger size of neural networks. 

There have been some research efforts to build artificial synapses (weights) in neural network chip 

and analog programmable vector matrix multiplication using CMOS technologies [7–11]. To 

implement the immense amount of neural processing on a chip, extremely high density of integration 

technology is needed. This is a very challenging goal and not many successful cases of neural 

implementations have been reported so far. The cellular neural network [12–16] is one of the 

successful implementations of analog multiplication circuits.  

Most of the synaptic weights implemented with the conventional technologies are volatile. Also, 

synaptic multiplication between input signal and weight is non-linear. Therefore, introducing a new 

weighting technology which is nonvolatile and linear is very important for the further development of 

neuromorphic engineering.  

In 2008, HP announced a successful fabrication of a very compact and non-volatile nano scale 

memory called the memristor [17]. It was originally postulated by Chua [18,19] as the fourth basic 

circuit elements in electrical circuits. It is based on the nonlinear characteristics of charge and flux. By 

supplying a voltage or current to the memristor, its resistance can be altered. In this way, the memristor 

remembers information. 

Many of recent researches showed the great potential of memristors in the application of  

memory, and artificial synapses [20–24]. Cantley et al. presented an application of memristor synapse 

for the Hebbian learning in spiking neural network [21]. Snider demonstrated a memristor-based self 

organized network employing dedicated connections for inhibitory (negative) weighting [22]. For such 

application in neural network or cellular neural network, every connection has to be weighted either 

positively or negatively. 

In [24], we demonstrated the architecture of the memristor bridge circuit which is able to perform 

signed synaptic operations. The study was conducted with the mathematical model of the HP 

memristor, where the operation of the memristor bridge circuit was verified via software simulation. 

This study is an extension of the previous research advancing toward the circuit implementation where 

the architecture of the memristor bridge neuron is built with our memristor emulator circuits [25]. 

Also, a simple neural network which performs both synaptic weighting and summation is built by 

combining memristor emulators-based synapses and differential amplifier circuits. 

In this paper, the HP TiO2 memristor model is introduced in Section 2. In Section 3, a memristor 

emulator circuit is proposed. Memristor bridge synapses built with memristor emulator circuits are 

described in Section 4. Simulation results are presented in Section 5. In Section 6 we present 

our conclusions.  

2. HP Memristor Models 

In HP TiO2 memristor model [17], an undoped region with highly resistive TiO2 and doped region 

with highly conductive oxygen vacancies TiO2−x layer are sandwiched between two platinum 

electrodes as shown in Figure 1(a). When a voltage or current signal is applied to the device, the 

border line between the doped and undoped layers shifts as a function of the applied voltage or current. 
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In consequence, the resistance between the two electrodes is altered. Figure 1(b,c) is the equivalent 

circuit and the symbol whose polarity is indicated by a black bar at one end. The defined polarity 

indicates that the memristance is decreased (or increased) when current flows from the left (right) side 

to the right (left) side of the memristor symbol in Figure 1(c). 

Figure 1. (a) Structure of TiO2 memristor, TiO2−x and TiO2 layers are sandwiched between 

two platinum electrodes. When a voltage/current is applied, its memristance (resistance of 

the memristor) is altered; (b) equivalent circuit and (c) symbol of the memristor. 

D

w

TiO2-x TiO2
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RON ROFF   
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Let w be the thickness of the doped area, D be the thickness of the two layers of TiO2 memristor. 

Let ONR  and OFFR  denote the minimum resistance and the maximum resistance values, respectively.  

Then, the relation between the voltage and the current is given by: 

( ) ( )
( ) 1 ( )ON OFF

w t w t
v t R R i t

D D

  
    

  
 (1)  

where memristance 
( ) ( )

( ) 1ON OFF

w t w t
M t R R

D D

 
   

 
 and w(t)/D is defined as the state variable. In the 

TiO2 memristor [17], the rate of change of the state variable is defined as a function of current i; namely:  

( )
( )ON

V

Rdw t
i t

dt D
  (2)  

where v  is the dopant mobility. This model is called a linear drift model, since the velocity of the 

width is linearly proportional to the current. Integrating Equation (2):  
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From Equations (1) and (3), the memristance M(t) can be written as:  
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  (4)  

If w0/D<<1 and RON<<ROFF the expression of M(t) is simplified as :  
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From Equation (1): 

 ( ) ( ) ( ).OFFv t R Kq t i t   (6)  

It follows from Equation (6) that the memristance M(t) decreases when higher voltage is applied to 

the non-black bar side than that of black bar side in Figure 1(c). Similarly, the memristor is called 

incrementally biased when a higher voltage is applied at the black bar side than that of non-black bar 

side in Figure 1(c). With this bias, the current-voltage relationship is given by: 

 0( ) ( ) ( )v t R Kq t i t   (7)  

and the memristance M(t) increases as ( ) ( ).oM t R Kq t   

Detailed descriptions of incremental and decremental memristors using our emulators circuits are 

provided in Section 3. 

3. HP Memristor Emulator Circuit 

As of today, memristors are not yet available on the market. In order to study memristor-based 

circuit, building memristor emulators is necessary. Two different approaches to build the memristor 

emulators are the pure analog circuit-based [25] and the analog-digital mixed-based [26,27]. The 

memristor emulator circuit adopted for this work is from [25]. The basic idea implemented to design 

the memristor emulator [25] is shown in Figure 2. 

Figure 2. Basic concept for implementing the memristor emulator (a) input resistance as a 

function of voltage vx; (b) equivalent circuit. 
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In the figure, the voltage at the input terminal is, 

in s in xv R i v   (8)  

where im is the input current, Rs is a resistance at the inverting input terminal and vx is the voltage 

applied to the positive terminal of the op Amp.  

Assume that the voltage vx is proportional to input current ini , then: 

 in s in in s inv R i mi R m i     (9)  
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where m is a proportionality coefficient and vx = miin. Equation (9) implies that the input resistance of 

the circuit is Rs + m. If we can control m  so that, it is time integral of the input current iin, then, the 

circuit in Figure 2 acts as a memristor.  

To emulate vx in Equation (9), three devices (a capacitor, a resistor, and a voltage multiplier) are 

utilized, in which the voltage from the capacitor and that from the resistor are multiplied using a voltage 

multiplier.  

The memristor emulator needs to be prepared in two different connections such as decremental and 

incremental emulators, separately. 

Figure 3 shows the schematic of the incrementally biased memristor emulator where memristance 

increases when a positive voltage vin applied at the input terminal. The input voltage applied at a 

memristor emulator is converted into an input current iin with a resistor Rs and op Amp U0 via the 

virtual ground constraint. Since the current iin is used at several places, its replicas are generated using 

current mirrors. Observe that a current mirror copies single directional current only. For bi-directional 

(positive and negative) currents, iin must be separated into a positive part and a negative part and 

processed separately at different parts of the circuit. In the circuit of Figure 3, the positive part of the 

current, duplicated by a current mirror MN0 and MN2 is fed into a resistor RT and a capacitor C by 

current mirror MP3 and MP4 with couple of MP1 respectively. On the other hand, MP0 and MP2 acts 

as the negative part of current mirror that flows out from resistor RT and capacitor C by current mirror 

MN3 and MN4 which are coupled with MN1. 

Figure 3. incrementally-biased memristor emulator circuit (a) memristor emulator circuit; 

(b) a schematic of memristor emulator. 
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One of the distinguished features of a memristor is the capability of keeping the programmed 

information for a long time until new programming inputs are presented. The charge stored at 

capacitor C is for the programmed information in the memristor emulator. To avoid discharging during 

the period when an input signal does not exist, the path to the output terminal is connected to a Mosfet 

buffer U1. The switch SW0 is initially closed to reset the capacitor voltage to zero. When a voltage 

pulse is applied through the input terminal of the emulator circuit, the switch is opened. Therefore the 

capacitor voltage starts to charge from zero voltage to certain level. 

In Figure 3, the capacitor produces a voltage 
Cv by integrating the current iin, and the resistor RT 

produces a voltage proportional to the current iin:  

1
,C

C in

q
v i dt

C C
   (10)  

and: 

.R T inv R i   (11)  

These two voltages are multiplied by a voltage multiplier. The output voltage vx of the voltage 

multiplier is given by:  

.C
x T in

q
v R i

C
   (12)  

Therefore, the input voltage vin is: 

,C
in s T in

q
v R R i

C

 
   
 

 (13)  

where the memristance M(t) is: 

( ) .C
s T

q
M t R R

C

 
   
 

 (14)  

From Equation (14), when a positive pulse is applied at the input terminal, the resistance increases 

proportional to the time integral of input current with Rs, we call this configuration the incrementally 

biased memristor which corresponds to the voltage state where the higher voltage is applied at the  

black bar side of Figure 1(c).  

On the contrary, if a higher voltage is applied to the non-black bar side, then, the memristance is 

decreased. We call this configuration the decrementally biased memristor. By adding a voltage inverter 

after the voltage multiplier as shown in Figure 4, the decrementally biased memristor can be 

implemented. The input voltage in the decrementally biased memristor is given by:  

' .C
in s T in

q
v R R i

C

 
   
 

 

The resultant memristance M(t) of the decremental memristor is: 

' '

'
( ) ( ) 1 ( ) .T T
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s

R R
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 (15)  
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Figure 4. Decrementally-biased memristor emulator circuit (a) memristor emulator circuit; 

(b) a schematic of memristor emulator. 
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4. Memristor Neural Circuit Built with Memristor Emulators 

The memristor bridge synapse circuit [24] is composed of four memristors as shown in Figure 5. In 

this study, the architecture of the memristor bridge synapse is built with memristor emulator circuits. 

4.1. The Memristor Bridge Synapse 

When a positive or negative strong pulse vin is applied at the input terminal of the memristor bridge 

synapse in Figure 5, the memristance of each memristor is increased or decreased depending upon 

its polarity. 

When a positive pulse is applied at input terminal of Figure 5, the memristances of M1 and M4 

(which are decrementally-biased) decrease. On the other hand, the memristances of M2 and M3 (which 

are incrementally-biased) will increase. It follows that the voltage vA at node A (with respect to 

ground) increases while the voltage vB at node B decreases. If the pulse width is wide enough, the 

output voltage Vout varies gradually from negative to positive voltage. 
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Figure 5. Memristor based synaptic circuit in [24]. It is assumed that M1 and M4 are 

decrementally biased memristor while M2 and M3 are incrementally biased memristors. 
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On the other hand, if a negative pulse is applied, when M1 and M4 are minimum and M2 and M3 are 

are their maximum state respectively, then, M1 and M4 vary to higher memristance and M2 and M3 go 

to lower value. It follows that the output voltage Vout varies gradually from positive to negative 

voltage. In consequence, the weight is able to be programmed with any weights in the range from −1 to 

+1 including zero using appropriate duration of pulse. 

Let vin be the input voltage pulse. Also, let VM1, VM2, VM3, and VM4 be the voltages across memristor 

M1, M2, M3, and M4 respectively. Then the voltage at each memristor at time t is:  

1
1

1 2
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(16)  
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(17)  
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(18)  

4
4

3 4

,
M in B

M
v v v
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(19)  

where M1, M2, M3, and M4 denote the corresponding memristance values of the memristors at time t, 

as in Figure 5. 
 The

 

output voltage Vout of the memristor bridge circuit is equal to the voltage difference between 

terminal A and terminal B; namely: 

2 4

1 2 3 4
in

M M
V v v v

out A B M M M M

 
    
  
 

 (20)  

where vA and vB corresponds to the voltages vM2 and vM4, respectively.  

Equation (20) can be rewritten as a relationship: 

,inV v
out

   
(21)  

where 
2 4

1 2 3 4

M M

M M M M
  

 
 represents the synaptic weighting factor of the memristor bridge synapse.  
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4.2. Memristor Bridge Synaptic Circuit with Memristor Emulators  

The memristor bridge circuit in Figure 5 can be built with memristor emulators which are described 

in Section 3. In the memristor bridge synapse circuit, the serial connection of two memristors M1 and 

M2 are parallel to other serially connected memristors M3 and M4.  

When a voltage pulse is applied at serially connected memristors, the input voltage is distributed to 

every memristor according to the voltage law so that the sum of each memristor voltage is equal to the 

input voltage like in ordinary resistors. 

Figure 6 illustrates the memristor bridge synaptic circuit using four memristor emulators. In this 

architecture, the input current of the first memristor emulator M1 is replicated by a current mirror and 

fed to the second memristor emulator M2 to produce its voltage in the memristor emulator. The voltage 

produced in the second emulator is added to the first emulator with an analog voltage adder. Therefore, 

the sum of the individual voltage across each serially connected memristor equals to the input voltage.  

Figure 6. Schematics of memristor emulator-based synaptic circuit corresponding to the 

synaptic structure of Figure 5. 
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4.3. Synaptic Multiplication 

After the weight setting, the synaptic multiplication between input pulse and weight can be 

performed by applying a pulse with very narrow width. If the weight is set as in Equation (21), the 

synaptic multiplication (
smV ) between input pulse(

SV ) and weighting factor (ξ) is:  

.sm out sV V V    (22)  

Note that the effect of memristance change is negligible for very narrow pulse signal Vs. Therefore, 

the weighting factor ξ is constant and output is the linear multiplication between the input pulse and 

weighting factor ξ. Thus, the memristor bridge circuit acts as a synapse. In case that the memristance 

change (drift) with weighting operation is really the problem, a doublet circuit can be used to suppress 

the effect of the memristance change (drift) [28].  

The differential amplifier as shown in Figure 7 is used for voltage to current converter. The output 

current across differential amplifier for input signal Vs is given as:  

0
2 2

m sm m sg V g V
I

 
   (23)  

where gm is the transconductance of Mosfet. 

Figure 7. Memristor bridge synaptic circuit. The memristor bridge on the left performs the 

weighting operation while the differential amplifier on the right performs the voltage to 

current conversion. 
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Note that the same input terminal in Figure 7 is shared by the signal vin for synaptic weight 

programming and the synaptic input signal Vs for weight processing. The two different kinds of signals 

are discriminated by being assigned at different time slots. 

4.4. Memristor Synapse-Based Neural Circuit  

The synaptic multiplication in neural network is very important in neuromorphic engineering, 

programmable analog vector matrix multiplication and CNN circuits [10,11,16]. 

Figure 8(a) is a general single layered neural network. The circuit of the memristor synapse-based 

neuron using memristor bridge and differential amplifier is shown in Figure 8(b). The synaptic 
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multiplications among input pulses and memristor-based weights are conducted in the multiple 

memristor bridge circuits and the results of the multiplications are summed by simply tying the output 

terminals in a neuron cell. The sum of the currents is then converted back into a voltage using the load 

circuit RL. 

Figure 8. Neural circuit (a) Block diagram of single layer neural network (b) Memristor 

synapse-based neural circuit. 
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The total current (I0) at the neuron output is:  

0 01 02 03 0................ .kI I I I I       

where I0k, is the output current across differential amplifier corresponding to input voltage pulse Vsk for 

k th synapse.  

The final output voltage across the resistor LR  is given as,  

 0 0 01 02 0......... .L k LV I R I I I R      (24)  

From Equations (23) and (24), the output voltage across RL is,  

 0 1 1 2 2 .........
2

m L
s s n sk

g R
V V V V         (25)  

where ξk is the weighting factor of the kth synapse.  

Therefore, the output voltage of the neuron is given as:  

0

1

.
2

n
m L

k sk

k

g R
V V



   (26)  

Equation (26) reveals that, the output voltage at load resistor RL, is the weighted sum of the product 

of each input voltage pulse and programming weight. 

5. Simulations 

In this paper, the memristor bridge architecture [24], is built with memristor emulator circuit. The 

parameters are chosen as realistic value as possible, so the minimum memristance RON (RS) = 100 Ω, 

and the maximum memristance ROFF (R's) = 16 KΩ, are taken from those of Stanley Williams’ real 

memristor [17]. Also, capacitance C and resistance RT employed for the memristor emulator are 0.1 μF 

and RT = 4 KΩ, respectively. The architecture has been simulated in PSPICE with input voltage pulse 

±1 V and power supply ±5 V. 

For the weight programming, strong wide pulses were applied to change the state of memristor and 

very narrow pulses (3 ns) were used for synaptic multiplication. The PSPICE simulations were 

conducted for the weight programming and synaptic multiplication of the memristor emulator-based 

bridge synapses. 

5.1. Weight Programming 

Simulations for the weight programming of the memristor emulator-based synaptic circuit as in 

Figure 6 have been conducted. The synaptic weights were programmed with ±1 V input pulses.  

Figure 9(b) and Figure 9(c) show the memristance variation and the voltage across each memristor in 

the memristor bridge circuit for a positive and negative wide pulse.  

We assume that the initial memristance of the memristors M1 = M4 and M2 = M3 are  

16 KΩ(maximum) and 100 Ω(minimum) respectively. Since the polarity of M1 and M4 are opposite to 

that of M2 and M3, the memristances M1 and M4 decrease, while those of M2 and M3 increase for 

positive pulse input, as shown in Figure 9(b). Thus, the voltage vA increases while vB decreases as 

shown in Figure 9(c). When M1 = M2 = M3 = M4, vA equals to vB and the output voltage becomes zero. 
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At this state, the synaptic weight is zero. When M1 or M4 is less than M2 or M3, the voltage vA is 

greater than vB. If the pulse width is sufficiently wide, the voltages at vA and vB reach to +1 V and 0 V, 

respectively. Note that each memristor pair (M1, M4) or (M2, M3) is with opposite polarity. Therefore, 

the composite memristance of each memristor pair is constant.  

Similarly, when M1, M4 and M2, M3 are in minimum and maximum state respectively, then a 

negative wide voltage pulse is applied to the memristor bridge synapse, so that the memristance  

of memristor M1, M4 and M2, M3 are moved to the opposite direction compare to the positive case 

input pulse. In this case, voltage vA moves toward 0V and that of vB moves toward −1 V as shown  

in Figure 9(c). 

Figure 9. Variation of memristance and voltages (vA, vB ) when positive and negative pulses 

are applied to the emulator-based memristor bridge synapse (a) positive and negative input 

voltage pulses; (b) memristance variations; (c) voltage variations at vA and vB. 

Positive Pulse Negative Pulse

M1 and M4

M2 and M3

vA vB 

(a)

(b)

(c)

Time

1.0V

-1.0V

0V

20 KΩ

10 KΩ

0 KΩ

1.0V

-1.0V

0V

200ms 205ms 210ms 214ms

Balanced 

State

Balanced 

State

Balanced 

State

V
o
lt

a
g
e

M
e
m

ri
st

a
n
c
e

V
o
lt

a
g
e

 

The linearity of the weight programming of the memristor emulator-based memristor bridge 

synapse has been tested by applying wide positive and negative pulses. The weight values were 

computed by measuring the output voltages of the memristor bridge circuit while known input voltages 

were applied, as described in Section 4.1 and 4.2. The results of circuit simulations for the synaptic 

weighting are shown in Figure 10.  

As seen in this simulation result, synaptic weight (ξ) can be changed toward positive  

(from −1 to +1) and negative direction (+1 to −1) by a positive pulse and negative pulse, respectively. 

Observe that the programmed weight (ξ) is almost linearly proportional to the width of the input pulse. 

The linearity of synaptic weight programming in the memristor bridge comes from the complementary 

action of the back-to-back memristors at each branch of the memristor bridge circuit. 
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Figure 10. Weight variations of the memristor bridge circuit while positive and negative 

pulses are applied (a) positive and negative input pulses; (b) weight variations during each 

pulse period. 
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5.2. Synaptic Multiplication 

Simulations of the synaptic weight processing were also conducted with our memrisor  

emulator-based bridge synapse. Figure 11(b) shows the linearity of the relationship between the input 

voltages, and the output of the memristor emulator-based bridge synapse. The weighting factor ξ is in 

the range [−0.1,0.1] when synaptic input range is [−1,1] V. The performance of the conventional 

analog multiplication (synaptic weight) circuit employed in the programmable analog vector matrix 

multiplication and CNN [10,16] is shown in Figure 11(a). As in the Figure 11(a), the linear region on 

the function of input-output relation is quite narrow and the intervals between graphs are not quite 

uniform. However, in the case of memristor bridge synapse, the linear regions are very wide and the 

intervals between graphs are uniform as in Figure 11(b). The linearity of the memristor bridge synaptic 

circuit comes from the linear weight assignment at the memristor bridge synapse and the operation at 

the middle of the memristor dynamic range.  

Figure 11. Synaptic multiplication with (a) Gilbert multiplier-based circuit [10,16];  

(b) memristor based circuit. 
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Figure 11. Cont. 
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5.3. Memristor Synapse-Based Neuron 

A single layer neuron with two input terminals as in Figure 8(a) has been built with the proposed 

memristor emulator-based synapse circuit. Two different kinds of sinusoidal voltage signals were 

sampled by doublet pulses and applied to the memristor synaptic circuits. Figure 12(a–e) are input 

voltage signals, weighted voltage signals of Figure 12(a,b) with weighting values of ξ = −0.25 and 0.1, 

and weighted sum appeared across RL where RL was 10 K.  

Figure 12. Operations of the memristor emulator-based neuron. Input signals sampled with 

doublet pulses from two different sinusoidal signals were applied to the memristor bridge 

synapses, (a) input voltage signal for ξ = −0.25; (b) input voltage signal for ξ = 0.1;  

(c) weighted voltage signals with ξ = −0.25; (d) weighted voltage signals with ξ = 0.1 and 

(e) weighted sum appeared at the output of the neuron. 
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Figure 12. Cont. 
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The use of doublet signals [28] is aimed at preventing the memristances from unwanted drifting. 

For the subsequent processing with non-memristor circuits, each doublet pulse signal needs to be 

converted to a singlet pulse. This can be achieved by sampling the output signal at every first pulse 

period of each doublet. The simulation result shows that the proposed memristor synapse circuit 

performs synaptic action excellently without significant distortion. 

 

6. Conclusions 

This paper is the extension of our previous work on memristor bridge synapses [24]. In this paper 

the mathematical model-based memristor bridge synapse of the previous work is built with memristor 

emulator-based synapse circuits.  

Simulations for the weight programming were performed with memristor emulator-based bridge 

synapse circuit. The programmed weights were almost linearly proportional to the width of the input 

pulses. The linearity of weight programming in the memristor bridge synapse comes from the 

complementary action of the back-to-back memristor pair of the memristor bridge synapse. The 

simulations of synaptic multiplication between programmed weight and input signal also was conducted. 

It showed an excellent linearity compared to that of the conventional Gilbert multiplier-based circuit. In 

the simulation of a single layer neuron, the proposed memristor-based neural circuit performs both 

synaptic weighting and summing actions very well without significant distortion.  

There are several benefits with the proposed memristor synapse circuit over the conventional 

circuits. The number of transistors required for the memristor based synaptic circuit is three, while that 

of Gilbert multiplier-based synaptic circuit is seven. Considering the fact that the total size of four 

memristors with the proposed circuit is less than that of a single transistor, the size benefit of the 



Sensors 2012, 12              

 

 

3603 

proposed synaptic circuit is obvious. Also, non-volatility as memory and excellent linearity in synaptic 

operation are additional benefits of the proposed memristor synaptic circuit. 
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