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Abstract: This paper is focused on the template-free synthesis of nanosized ferric oxide 
(nano-Fe2O3) and its application in quartz crystal microbalance (QCM) resonators to detect 
dimethyl methylphosphonate (DMMP), a simulant of Sarin. The X-ray diffraction (XRD) 
patterns confirm that the synthesized samples are made of Fe2O3 and the scanning electron 
microscopy (SEM) pictures show that the samples have ball-like shapes. The DMMP 
sensors with a sensing film of hollow ball-like and solid ball-like Fe2O3 are fabricated and 
their sensing characteristics are compared. The sensitivity of the hollow ball-like Fe2O3 
sensor is more than 500% higher than the one of the solid ball-like Fe2O3 sensor. The 
hollow ball-like nano-Fe2O3 can be synthesized by a novel low temperature hydrothermal 
method. The sensors with the hollow ball-like Fe2O3 film perform well in a range of 1 to  
6 ppm, with a sensitivity of 29 Hz/ppm at room temperature, while the appropriate 
recoverability and selectivity are maintained. In addition, the performance of different 
thicknesses of the sensing film of the hollow ball-like nano-Fe2O3 is investigated and  
the optimized relative film thickness of the hollow ball-like nano-Fe2O3 is found to be  
20 μg/mm2. 
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1. Introduction 

Recently, fast and easy detection of dimethyl methylphosphonate (DMMP) has been the focus of 
much research [1–6]. Due to its similar molecule structure to Sarin, a kind of dangerous chemical 
warfare agent, DMMP is commonly considered as a simulant of Sarin [7–10]. Several methods have 
been developed to detect DMMP at the ppm level [4,7,8,11–13]. Because of their high sensitivity and 
rapid response as well as their room temperature working conditions, quartz crystal microbalance 
(QCM)-based sensors have become the most popular choice [14–18]. For a QCM sensor, the 
selectivity is determined by the sensing film material. Therefore, the key challenge for a QCM gas 
sensor is how to adopt an appropriate sensing film material for the analyte to be detected.  

In order to improve the selectivity of QCM sensors, various sensing materials have been 
investigated [7,9,14–18]. In particular, nano-structured and hybrid materials [16] are studied for use as 
sensing materials because they have large specific surface areas due to their ultra-fine grain. 

In this paper, a kind of hollow ball-like nano-Fe2O3 is synthesized via a simple template-free 
method and used as the sensing material to detect DMMP. The thickness of the sensing film is 
optimized. The sensitivity and selectivity of the sensor with the optimized sensing film thickness are 
also investigated.  

2. Experimental Section  

2.1. Materials 

DMMP (dimethyl methylphosphonate) was purchased from Qindao Hanhua Fireproofing Material 
Ltd., China. Ferric trichloride (FeCl3·6H2O), ammonia solution, anhydrous methanol, anhydrous 
alcohol trichloromethane and n-hexane were all AR grade. The HC-49/U AT-cut 6.0 MHz quartz 
crystals were from Hosonic International (Hangzhou) Ltd., China.  

2.2. Methods 

2.2.1. Preparation of Hollow Ball-like and Solid Ball-like Nano-Fe2O3 

In a typical procedure, 0.1 mol·L−1 FeCl3 solution (30 mL) prepared from FeCl3·6H2O and 
deionized water was placed in a 100 mL glass vessel. Diluted aqueous ammonia solution (2 mL,  
1:1 v/v) was gradually injected into the continuously stirred solution and brown milk-like ferric 
hydroxide precipitate was obtained. This was then stirred for 30 minutes and aged for 24 hours at room 
temperature.  

(a) Hollow ball-like nano-Fe2O3 synthesis: The brown milk-like ferric hydroxide precipitate was 
put into a 100 mL autoclave and treated in a 90 °C oven for 3 hours. After cooling down to 
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room temperature, the upper liquid layer was recycled. The deposit was washed with deionized 
water five times and dried at a 100 °C oven to obtain a reddish brown powder.  

(b) Ball-like Fe2O3 synthesis: after the sample was aged again for 24 hours (total 48 hours), the 
clear upper liquid was recycled. After replacing with deionized water, the mixture was moved 
to a 100 mL glass vessel and treated in a 90 °C oven for 3 hours. The deposit was washed with 
deionized water five times and dried in an 80 °C oven to obtain a brown powder. 

2.2.2. Characterization of the Fe2O3 Samples 

Scanning electron microscopy (SEM) observation was performed with an S4800 system (Hitachi, 
Tokyo, Japan). The Fe2O3 samples were coated on the Ag electrodes of AT-cut 6.0 MHz quartz 
crystals. The X-ray diffraction (XRD) patterns were recorded on an X-ray diffraction device (X’Pert 
PW3050/60, PANalytical, Sugapore) running with Cu Kα radiation in an angle degree range from 20° 
to 80° (2θ). 

2.2.3. Fabrication of a QCM Gas Sensor 

After an AT-cut 6.0 MHz quartz crystal was unshelled, typically, 4 μL of sample mixture (the 
concentration was 100 ± 5 mg⋅mL−1) was dispensed onto a Ag electrode of one side. Then the quartz 
crystal was dried at room temperature for 24 hours. 

2.2.4 Gas Sensing Experiment 

The gas sensing response was measured in a 500 mL sealed chamber. One coated quartz crystal was 
the sensing QCM and the other non-coated one was the reference one [19,20]. The frequency 
difference between them was recorded every second by a personal computer (PC) via a RS-232 serial 
communication port. When a gas sample, such as DMMP, was injected into the chamber, the change 
of frequency difference was recorded as the sensor response. Before each test, a new QCM sensor 
should be purged in the chamber with alternating high-purity N2 and N2 diluted sample gas at least five 
times. After every test, the sensor had to be purged with high-purity N2. The detailed experimental  
set-up can be found in our previous work [20]. 

3. Results and Discussion 

3.1. Template Free Synthesis and the Detection at Room Temperature 

Recently, Buathong and co-workers reported a template-free synthesis of nano-Fe2O3 particles  
with diameters of about 39 nm, but the synthesis has to be carried out at 250–300 °C under argon  
protection [21]. Rangaraju and co-workers synthesized iron oxide nanotubes on a pure iron substrate 
by an electrochemical anodization method. The grain size is in the range of 80–110 nm. When sodium 
tetraborate and sodium tetrafluoroborate were used, annealing at 500–550 °C was indispensable [22]. 
The synthesis including a 200–450 °C heating treatment process was reported in the references [23,24] 
as well. Instead of room temperature, the best detection temperature was 230 °C, as described in the 
reference [25].  
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For the experiments reported in this paper, the highest temperature for synthesis was as low as  
100 °C, and all detection measurement were carried out at room temperature, so both the synthesis and 
measurement temperatures were much lower than those reported in the references [23,24]. 
Furthermore, several environmentally friendly concepts were introduced throughout our experiments 
such as the relatively low temperature reaction, the recycle of the clear upper liquid and the detection 
at room temperature. The synthesis quality could be improved by further study and the synthesis 
conditions could also be optimized to obtain uniform grains. 

3.2. XRD Diffraction 

The XRD patterns of the hollow and solid ball-like Fe2O3 samples are shown in Figures 1(a) and 1(b), 
respectively.  

Figure 1. The X-ray diffraction pattern of the Fe2O3 samples: (a) Hollow ball; (b) Solid ball. 
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The diffraction peaks in 33.1, 36, 40.8, 49.4, 54 and 57.4 degrees as labeled in Figure 1(a,b) are 
well matched with the characteristic peaks of α-Fe2O3 [24], so the spectra indicate the samples are 
mostly made of Fe2O3. Due to the drying at room temperature in air, the samples suffered from poor 
crystallinity and humidity. As a result, background peaks can be seen in Figure 1. But this will not 
affect the sensing tests, because the specific surface area and morphology of the material are the most 
important factors. Better XRD patterns could be obtained by annealing [24,25], but the QCM would 
suffer from such high temperatures. In order to save energy and simplify the processes, the same 
experimental conditions were used in both XRD and QCM gas sensing experiments. 

3.3. SEM Morphology 

In Figure 2(a,b), Fe2O3 samples exhibit a hollow and solid ball-like morphology, respectively. The 
hollow balls have a diameter range from 20 nm to 120 nm, and the solid balls are of 200–800 nm. 
Figure 2(a,b) also illustrates that most of hollow ball samples are of nanometer scale, but their solid 
ball counterparts are not. The solid balls are just used for the comparison. The larger the diameter, the 
smaller is the specific surface area, so the wide range of the solid ball diameters will not affect the 
comparison results. Because the hollow and solid balls have the same total mass on sensors’ films, it is 
obvious that the hollow balls have larger specific surface area when they have the same diameter. 
Moreover, for ball-like Fe2O3, the larger diameters mean less specific surface area for the same mass, 
so the specific surface area of the hollow ball-like nano-Fe2O3 film is larger than the solid ball-like one 
when the hollow ball’s diameter is less than that of the solid ones.  

Figure 2. The SEM images of the Fe2O3 samples: (a) Hollow ball; (b) Solid ball. 

 

(a) 
  



Sensors 2012, 12 4599 
 

 

Figure 2. Cont. 

 
(b) 

3.4. Repeatable Response to DMMP 

For the sake of simplicity, the sensors with the sensing films of hollow ball-like nano-Fe2O3 and 
solid ball-like Fe2O3 are called SENSOR No.1 and SENSOR No.2, respectively. SENSOR No.1 has a 
rapid (25 s) and high (115 Hz) response to 4 ppm DMMP, as shown in Figure 3.  

Figure 3. The reversible response curve to 4 ppm DMMP: (a) Hollow ball; (b) Solid ball. 
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response time of our SENSOR No.2 is about 20 s, but the amplitude is a little bit lower than 20 Hz. As 
a result, SENSOR No.1 has a sensitivity of 29 Hz/ppm, which is at least 500% more sensitive than 
SENSOR No.2. Ying and coworkers reported that their DMMP sensor’s sensitivity was 3.19 Hz/ppm [9]. 
Since the responses of the two sensors, SENSOR No.1 and SENSOR No.2, are repeatable, N2 is a 
successful desorption gas. Because adsorption of N2 is physical, namely, unspecific surface absorption, 
the successful desorption of DMMP suggests that the DMMP adsorption in the sensing film is not 
chemical, or it would not be desorbed well by N2, so the intermolecular force between the gas and the 
sensing material must be the main interaction force, which can explain why the SENSOR No.1 can 
have higher response amplitude. Because of the larger specific surface area, SENSOR No.1 has more 
surface energy than SENSOR No.2.  

3.5. Responses of the SENSOR No.1 to Different DMMP Concentrations 

Figure 4 shows the responses of SENSOR No.1 to DMMP with concentrations from 1 to 10 ppm, 
which illustrates that the responses are gradually enhanced with the increasing concentrations of 
DMMP. It is important to note that there is a linear response from 1 to 6 ppm.  

Figure 4. The response curves to 1, 2, 4, 6 and 10 ppm DMMP (from bottom to top). 
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the sensor, which has been observed in our experiments. Considering both the response amplitude and 
the recovery time, 20 μg/mm2 film (a balanced condition) was adopted as the optimized thickness 
based on our experimental results.  

Figure 5. The response curve of various sensing film thicknesses of SENSOR No.1 to  
4 ppm DMMP. 

 

3.7. Selectivity of the SENSOR No. 1 

Figure 6 depicts the response amplitude of the SENSOR No.1 to eight different kinds of gases with 
10 ppm concentration.  

Figure 6. The response of the sensor to different 10 ppm sample gases (from left to right). 
1, methanol; 2, ethanol; 3, formal dehyde; 4, acetal dehyde; 5, ethyl acetate; 6, n-hexane; 7, 
chloroform; 8, DMMP. 
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those of other gases, which indicates that the sensor has an excellent selectivity towards DMMP. Since 
the P=O function group may easily interact with the -OH groups of the nano-Fe2O3 surface by 
hydrogen bond [12,15], the response of the sensor to DMMP is better than the others. 

4. Conclusions 

Hollow ball-like nano-Fe2O3 was synthesized by a template-free hydrothermal method at a low 
temperature. After the relative thickness of the sensing film was optimized to 20 μg/mm2, the DMMP 
sensors based on the Fe2O3 sensing films were investigated. As results, the sensor with the hollow  
ball-like nano-Fe2O3 has a sensitivity of 29 Hz/ppm to DMMP, while the appropriate recoverability 
and selectivity were maintained. Comparison tests indicated that the hollow ball-like nano-Fe2O3 is 
more sensitive than the solid ball-like one. Our experimental results showed the sensitivity of the 
hollow ball-like material is more than 500% higher than that of the solid ball-like one. Therefore, the 
hollow ball-like nano-Fe2O3 is a promising sensing material to fabricate Sarin sensors which work at 
room temperature.  
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