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Abstract: When extracting discriminative features from multimodal data, current methods 
rarely concern themselves with the data distribution. In this paper, we present an 
assumption that is consistent with the viewpoint of discrimination, that is, a person’s 
overall biometric data should be regarded as one class in the input space, and his different 
biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, 
we propose a novel multimodal feature extraction and recognition approach based on 
subclass discriminant analysis (SDA). Specifically, one person’s different bio-data are 
treated as different subclasses of one class, and a transformed space is calculated, where 
the difference among subclasses belonging to different persons is maximized, and the 
difference within each subclass is minimized. Then, the obtained multimodal features are 
used for classification. Two solutions are presented to overcome the singularity problem 
encountered in calculation, which are using PCA preprocessing, and employing the 
generalized singular value decomposition (GSVD) technique, respectively. Further, we 
provide nonlinear extensions of SDA based multimodal feature extraction, that is, the 
feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply 
Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we 
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directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the 
singular problem. For simplicity two typical types of biometric data are considered  
in this paper, i.e., palmprint data and face data. Compared with several representative  
multimodal biometrics recognition methods, experimental results show that our approaches 
outperform related multimodal recognition methods and KSDA-GSVD achieves the best  
recognition performance. 

Keywords: multimodal biometric feature extraction; palmprint and face; subclass 
discriminant analysis (SDA); generalized singular value decomposition (GSVD); kernel 
subclass discriminant analysis (KSDA) 

 

1. Introduction  

Multimodal biometric recognition techniques use multi-source features together in order to obtain 
integrated information to obtain more essential data about the same object. This is an active research 
direction in the biometric community, for it could overcome many problems that bother traditional 
single-modal biometric system, such as the instability in one’s feature extraction, noisy sensor data, 
restricted degree of freedom, and unacceptable error rates. Information fusion is usually conducted on 
three levels, i.e., pixel level [1,2], feature level [3–5] and decision level [6–9]. The former two levels 
mainly aim at learning descriptive features, while the last level aims at finding a more effective way to 
use learned features for decision making. Especially, at the pixel level and feature level,  
discriminant analysis technique always plays an important role to acquire more descriptive or more  
discriminative features.  

Linear discriminant analysis (LDA) is a popular and widely used supervised discriminant analysis 
method [10]. LDA calculates the discriminant vectors by maximizing the between-class scatter and 
minimizing the within-class scatter simultaneously. It is effective in extracting discriminative features 
and reducing dimensionality. Many methods have been developed to improve the performance of LDA, 
such as enhanced Fisher linear discriminant model (EFM) [11], improved LDA [12], uncorrelated 
optimal discriminant vectors (UODV) [13], discriminant common vectors (DCV) [14], incremental 
LDA [15], semi-supervised discriminant analysis (SSDA) [16], local Fisher discriminant analysis [17], 
Fisher discrimination dictionary learning [18], and discriminant subclass-center manifold preserving 
projection [19].  

In recent years, many kernel discriminant methods have been presented to extract nonlinear 
discriminative features and enhance the classification performance of linear discrimination techniques, 
such as kernel discriminant analysis (KDA) [20,21], kernel direct discriminant analysis (KDDA) [22], 
improved kernel Fisher discriminant analysis [23], complete kernel Fisher discriminant (CKFD) [24], 
kernel discriminant common vectors (KDCV) [25], kernel subclass discriminant analysis (KSDA) [26], 
kernel local Fisher discriminant analysis (KLFDA) [27], kernel uncorrelated adjacent-class discriminant 
analysis (KUADA) [28], and mapped virtual samples (MVS) based kernel discriminant framework [29]. 

In this paper, we have developed a novel multimodal feature extraction and recognition approach 
based on linear and nonlinear discriminant analysis technique. We adopt the feature fusion strategy, as 
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features play a critical role in multimodal biometric recognition. More specifically, we try to answer the 
question of how to effectively obtain discriminative features from multimodal biometric data. Some 
related works have appeared in the literature. In [1,2], multimodal data vectors are firstly stacked into a 
higher dimensional vector to form a new sample set, from which discriminative features are extracted 
for classification. Yang [3] discussed the feature fusion strategy, that is, parallel strategy and serial 
strategy. The former uses complex vectors to fuse multimodal features, i.e., one modal feature is 
represented as the real part, and the other modal feature is represented as the imaginary part; while the 
latter stacks features of two modals into one feature, which is used for classification. Sun [4] proposed  
a method to learn features from data of two modalities based on CCA, but it has not been utilized in 
biometric recognition, and is not convenient to learn features from more than two modes of data.  

While current methods generally extract discriminative features from multimodal data technically, 
they have rarely considered the data distribution. In this paper, we present an assumption that is 
consistent with the viewpoint of discrimination, that is, in the same feature space, one person’s 
different biometric identifier data can form different Gaussians, and thus his overall biometric data can 
be described using mixture-Gaussian models. Although LDA has been widely used in biometrics to 
extract discriminative features, it has the limits that it can only handle the data of one person that forms 
a single Gaussian distribution. However, as we pointed out above, in multimodal analysis, different 
biometric identifier data of one person can form mixture-Gaussians. Fortunately, subclass discriminant 
analysis (SDA) [30] has been proposed to remove such a limit of LDA, and therefore could be used to 
describe multimodal data that lie in the same input space.  

Based on the analysis above, in this paper we propose a novel multimodal biometric data feature 
extraction scheme based on subclass discriminant analysis (SDA) [20]. For simplicity, we consider two 
typical types of biometric data, that is, face data and palmprint data. For one person, his face data and 
palmprint data are regarded as two subclasses of one class, and discriminative features are extracted by 
seeking an embedded space, where the difference among subclasses belonging to different persons is 
maximized, and the difference within each subclass is minimized. Then, since the parallel fusion 
strategy is not suitable to fuse features from multiple modals, we fuse the obtained features by 
adopting the serial fusion strategy and use them for classification.  

Two solutions are presented to solve the small sample size problem encountered in calculating the 
optimal transform. One is to initially do PCA preprocessing, and the other is to employ the generalized 
singular value decomposition (GSVD) [31,32] technique. Moreover, it is still worthy to explore the 
non-linear discriminant capability of SDA in multimodal feature fusion, in particular, when some 
single-modals still show complicated and non-linearly separable data distribution. Hence, in this paper, 
we further extend SDA feature fusion approach in the kernel space and present two solutions to solve 
the small sample size problem, which are KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first use 
KPCA to transform each single modal input space Rn into an m-dimensional space, where m = rank(K), 
K is the centralized Gram matrix. Then SDA is used to fuse the two transformed features and extract 
discriminative features. In KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by 
applying GSVD to avoid the singular problem. 

We evaluate the proposed approaches on two face databases (AR and FRGC), and the PolyU 
palmprint database, and compare the results with related methods that also tend to extract descriptive 
features from multimodal data. Experimental results show that our approaches achieve higher 
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recognition rates than compared methods, and also get better verification performance than compared 
methods. It is worthwhile to point out that, although the proposed approaches are validated on data of 
two modalities, it could be easily extended to multimodal biometric data recognition. 

The rest of this paper is organized as follows: Section 2 describes the related work. Section 3 
presents our approach. In Section 4, we present the kernelization of our approach. Experiments and 
results are given in Section 5 and conclusions are drawn in Section 6. 

2. Related Work 

In this section, we first briefly introduce some typical multimodal biometrics fusion techniques such 
as pixel level fusion [1,2], Yang’s serial and parallel feature level fusion methods [3]. Further, three 
related methods, which are SDA, KSDA and KPCA, are also briefly reviewed. 

2.1. Multimodal Fusion Scheme at the Pixel Level  

The general idea of pixel level fusion [1,2] is to fuse the input data from multi-modalities in as early 
as the pixel level, which may lead to less information loss. The pixel level fusion scheme fuses the 
original input face data vector and palmprint data vector of one person, and then the discriminant 
features are extracted from the fused dataset. For simplicity and fair comparison, we testified the 
effectiveness of such scheme by extracting LDA features from the fused set in this paper. 

2.2. Serial Fusion Strategy and Parallel Fusion Strategy 

In [3], Yang et al. the authors discussed two strategies to fuse features of two data modes. One is 
called serial strategy and the other is called parallel strategy. Let xi, yi denote the face feature vector 
and palmprint feature vector of the ith person, respectively. The serial fusion strategy obtains the fused 
features by stacking two vectors into one higher dimensional vector αi, i.e.: 

i
i

i

x
y

α ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (1)

On the other hand, the parallel fusion strategy combines the features into a complex vector βi, i.e.,  

 (2)

Yang et al. also pointed out that the fused feature set {αi} and {βi} can either be used directly for 
classification, which is called feature combination, or can be input into a feature extractor to further 
extract more descriptive features with less redundant information, which is called feature fusion.  

2.3. Subclass Discriminant Analysis (SDA) and Its Kernelization 

Subclass discriminant analysis (SDA) [30] is an extension of LDA, which aims at processing data 
of one class that form mixture Gaussian distribution. It divides each class into a number of subclasses, 
and calculates a transform space where the distances between both class means and subclass means  
are maximized, and distances between samples of each subclass is minimized. SDA redefines the  
between-class scatter ΣB, within-class scatter ΣW as:

 
 

i i ix i yβ = + ⋅
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 (3)

 (4)

where Hi is the number of subclasses of class i, pij = nij/n is the prior of the jth subclass of class i, μij is 
the mean of the jth subclass of class i. The advantage of this new definition of between class scatter is 
that it emphasizes the role of class separability over that of intra-subclass scatter. The optimal solution 
of SDA is the eigenvectors of matrix (ΣW)−1ΣB associated with the largest eigenvalues.  

Kernel subclass discriminant analysis (KSDA) is the nonlinear extension of SDA based on kernel 
functions [26]. The main idea of the kernel method is that without knowing the nonlinear feature 
mapping explicitly, we can work on the feature space through kernel functions. It first maps the input 
data x into a feature space F by using a nonlinear mapping ׎. KSDA adopts nonlinear clustering 
technique to find the underlying distributions of datasets in the kernel space. The between-class scatter 
matrix ܵ௄ௌ஽஺ሺ௕ሻ  and within-class scatter matrix ܵ௄ௌ஽஺ሺ௪ሻ  of KSDA are defined as: 

(5)

 (6)

where ׎పఫതതതത indicates the mean vector of jth subclass of ith class,  ׎ഥ  is the global mean. Like SDA, KSDA 
tries to maximize the ratio ቚ்ܸܵ௄ௌ஽஺ሺ௕ሻ ܸቚ/ቚ்ܸܵ௄ௌ஽஺ሺ௠ሻ ܸቚ to find a transformation matrix V. The columns of 

V are the eigenvectors corresponding to the largest eigenvalues of ሺܵ௄ௌ஽஺ሺ௪ሻ ሻିଵܵ௄ௌ஽஺ሺ௕ሻ . 

2.4. Kernel Principle Component Analysis 

In kernel PCA [33], the input data x is mapped into a feature space F via a nonlinear mapping ׎ and 
then perform a linear PCA in F. To be specific, we centralize the mapped data as ∑ ௜ሻெ௜ୀଵݔሺ׎  = 0 firstly, 
where M is the number of input data. Then the covariance matrix of the mapped data ׎(xi) is defined  
as follows: 

 (7)

Like PCA, the eigenvalue equation λV = CV must be solved for eigenvalue λ ≥ 0 and eigenvector  
V א F\{0}. We can prove that all the solutions V lie in the space spanned by ׎(x1),... ׎(xM). Therefore, 
we may consider the equivalent system: 

 for all  (8)

and V can be represented as the linear combination of the mapped data ׎(xi): coefficients α1,...αM  
such that: 

 (9)

where α1,...αM denotes the coefficients. Substituting Equations (8) and (9) into Equations (7), and 
defining an M × M matrix K by: 
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As can be seen from Figure 1, identifier samples of one person show typical mix-Gaussian 
distribution, i.e., the face data cluster together and form a Gaussian, while the palmprint data form 
another Gaussian. If we apply traditional LDA, which enforces both of face and palmprint data of one 
person to cluster together, then data of two persons would be very likely overlap in the embedded 
space. It is apparent that, in Figure 1, SDA is a better descriptor of such a data distribution.  

Let ݔ௜ଵ௞  and ݔ௜ଶ௞  be the kth face sample and palmprint sample of person i, respectively; nc represent 
the sample number of each subclass. Then we construct the between-subclass scatter matrix SB and 
within-subclass scatter matrix SW as follows:  

 (13a) 

 (13b)

where N = c ×nc, pij = pkl = nc/N, μij = ∑ ௜௝௞ݔ /݊௖௡೎௞ୀଵ . 
Let ݓෝ  be the optimal transform vector to be calculated, and then it can be obtained by: 

 (14)

The within-class matrix SW is usually singular, and the solution cannot be calculated directly. We 
present two solutions below to solve this problem, i.e., SDA-PCA and SDA-GSVD. 

3.2. SDA-PCA 

The first solution is to first apply PCA to project each image ݔ௜௝௞  into a lower dimensional space, 
and then apply SDA to do feature extraction. By employing the Lagrange multipliers method to solve 
the optimization problem (15), we could obtain the optimal solution WSDA, i.e., the eigenvectors of 
matrix (SW)−1SB associated with the largest eigenvalues. 

Based on Formula (14), the rank of SW is n – 2c, where n represents the total number of training 
samples (including face and palmprint images), and c represents the number of persons. Therefore, we 
can project original samples into a subspace whose dimension is no more than n – 2c, and then apply 
SDA to extract features.  

Let ௉ܹ஼஺ଵ , ௉ܹ஼஺ଶ  separately denote the initial PCA transformations of the sample set of each modal, 
and WSDA denote the later SDA transform. Then the final transformations for each modal are expressed as: 

 (15)

 (16)

After the optimal transformations  and  are obtained, we project the face sample ݔ௜ଵ௞  and 
palmprint sample ݔ௜ଶ௞  on them: 

 (17)

Then, features derived from face and palmprint are fused used using serial fusion strategy and used 
for classification: 

 (18)
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3.3. SDA-GSVD 

While PCA is a popular way to overcome the singular problem and accelerate computation, it may 
cause information loss. Therefore, we present a second way to overcome the singularity problem by 
employing GSVD. First, we rewrite the between-class scatter matrix and within-class scatter matrix  
as follows: 

 (19)

Hb is obtained by transforming formula (13) as follows:

 

 

 (20)

Compared with Equation (21), Hb is defined as: 
 (21)

where . 

According to Equation (14), we can easily achieve Hw : 

 (22)

Then, we employ GSVD [31,32] to calculate the optimal transform, and the procedures are given in 
Algorithm 1. 

Algorithm 1. Procedures of GSVD based LDA. 

Step 1: Define matrix K = [Hb, Hw]T, and compute the complete orthogonal decomposition  
PTKQ =ቄܴ 00 0ቅ.

 Step 2: Compute G by performing SVD on matrix , i.e., , where t is the 
rank of K. 

Step 3: Compute matrix M = Qቄܴିଵܩ 00   ,ቅ. Put the first c − 1 columns of M into matrix W. Thenܫ

W is the optimal transform matrix. 

Then, face data ݔ௜ଵ௞  and palmprint data ݔ௜ଶ௞  are separately projected on W and fused using serial 
fusion strategy: 

 (23)

 .௜௞ is then used for classificationݕ
  

,T T
B b b w w wS H H S H H= =

1 2 2

1 1 1 1

1 2 2

1 1 1 1

2

1 1

( )( )

[2( ) ]

[2( ) ]

c c
T

B ij kl ij kl ij kl
i j k i l

c c

ij kl ij kl
i j k i l

c
T

ij kl
k i l

S p p

p p c i

c i

μ μ μ μ

μ μ

μ μ

−

= = = + =

−

= = = + =

= + =

= − −

= − − ⋅

− −

∑∑∑∑

∑∑ ∑∑

∑∑

( 1)1 ( 1)2 ( 2)1 11 12[ , , , ]b c c cH H H H H H− − −= …， ，

2

( )
1 1

2( )
c

c m n mn kl
k m l

H c N μ μ−
= + =

= − − ∑ ∑

1 2
1,... , 1,2[ , ,... ]cn

w ij ij ij ij ij ij i c jH x x xμ μ μ = == − − −

(1: ,1: )P c t (1: ,1: )T
AU P c t G = Σ

11

2 2

ˆ

ˆ

T kk
ik i

i k T k
i i

W xy
y

y W x

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦



Sensors 2012, 12 5559 
 

 

3.4. Algorithmic Procedures 

In this section, we summarize the complete algorithmic procedures of the proposed approach. In 
practice, if the dimension of two biometric data ݔ௜ଵ௞  and ݔ௜ଶ௞  are not equal, we could simply pad the 
lower-dimensional vector with zeros until its dimension is equal to the other one before fusing them 
using SDA. In case of SDA-PCA, after PCA projection, it is easy guarantee that ݔ௜ଵ௞  and ݔ௜ଶ௞  have the 
same dimension if we select the same number of principal components for them.  

Figure 2. The complete procedures of SDA based multimodal feature extraction. 

 

Figure 2 displays the complete procedure of the proposed approach for multimodal biometric 
recognition. It is worthwhile to note that, on one hand, our approach outputs features of each modal 
separately, which is convenient for later processing; on the other hand, discriminative information of 
different modals have been initially fused in the extraction process, since their features are extracted 
from the same input space and the transformed space also consider the distribution of data of other 
modals. Therefore, we think this approach can effectively obtain fused discriminative information 
from multimodal data. 
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4. SDA Kernelization Based Multimodal Biometric Feature Extraction 

In this section, we provide the nonlinear extensions of two SDA based multimodal feature 
extraction approaches, which are named KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first 
apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly 
perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. 

4.1. KPCA-SDA 

In this subsection, the SDA-PCA approach is performed in a high dimension space by using the 
kernel trick. We realized the KPCA-SDA in the following steps: 

(1) Nonlinear mapping. 

Let ׎: Rd → F denote a nonlinear mapping. The original samples ݔ௜ଵ௞  and ݔ௜ଶ௞  of two modalities 
(face and palmprint) are injected into F by ݔ :׎௜ଵ௞ ௜ଵ௞ݔሺ׎ →  ሻ, ݔ௜ଶ௞ ௜ଶ௞ݔሺ׎ →  ሻ. We obtain two sets of 
mapped samples Ψ1 = {׎ሺݔଵଵଵ ሻ, ׎ሺݔଵଵଶ ሻ,…, ׎ሺݔ௖భ௡೎ሻ}, Ψ2 = {׎ሺݔଵଶଵ ሻ, ׎ሺݔଵଶଶ ሻ,…, ׎ሺݔ௖మ௡೎ሻ}. 

(2) Perform KPCA for each single modal database . 

For the jth modal, we perform KPCA by maximizing the following equation: 

 (24)

where , and ௝݉׎ is the global mean of the jth modal database in the 

kernel space.  
According to the kernel reproducing theory [34], the projection transformation ݓ௞௣௖௔௝׎

 in F can be 
linearly expressed by using all the mapped samples: 

 (25)

where  is a coefficient matrix.  

Substituting Equation (26) into Equation (25), we have: 
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where Kj = Ψ௝் Ψ௝ , which indicates an N × N non-symmetric kernel matrix whose element is 
, where  denotes the total number of the samples,  ݔ௝೘ denotes the mth sample 

of the jth modal database. 
The solution of Equation (27) is equivalent to the eigenvalue problem: 

 (27)

The optimal solutions αj = (αj1, αj2,…, αj(N-c))T are the eigenvectors corresponding to N − c largest 
eigenvalues of ܭ௝ܭ௝் . We project the mapped training sample set Ψj on ݓ௞௣௖௔௝׎

 by: 

 (28)
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(3) Calculate kernel discriminant vectors in the KPCA transformed space. 

By using the KPCA transformed sample set ܼ௄௉஼஺௝׎
, we reformulate Equations (13) and (14) as: 

 (29)

 (30)

where ܼ௜௝௞׎
 is the sample in ܼ௄௉஼஺௝׎

, and . 

We can obtain a set of nonlinear discriminant vectors ௌܹ஽஺׎ , i.e., the eigenvector of matrix (ܵௐ׎ )−1ܵ஻׎ 
associated with the largest eigenvalues. 

(4) Construct the nonlinear projection transformation and do classification. 

We then construct the nonlinear projection transformation ܹ௝׎ as: 

 (31)

After the optimal transform ܹ௝׎ is obtained, the fused features can be generated as: 
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4.2. KSDA-GSVD 

In this subsection, the SDA-GSVD is performed in a high dimension space by using the kernel trick. 
Given two sets of mapped samples Ψ1 = {׎ሺݔଵଵଵ ሻ, ׎ሺݔଵଵଶ ሻ,…, ׎ሺݔ௖భ௡೎ሻ}, Ψ2 = {׎ሺݔଵଶଵ ሻ, ׎ሺݔଵଶଶ ሻ,…, ׎ሺݔ௖మ௡೎ሻ}, that correspond to face and palmprint modalities, respectively. Afterwards, Hb and Hw are 
recalculated in the kernel space: 

 (33)

 (34)

where , and  (35)

Then, we apply GSVD to calculate the optimal transformation so that the singular problem is 
avoided. The procedures are precisely introduced in Algorithm 1. When the optimal ܹ׎ is obtained, 
the fused features can be generated as: 

 
(36)

Finally, the nearest neighbor classifier with cosine distance is employed to perform classification. 
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5.2. Experimental Identification Results  

Firstly, the identification experiments are conducted. Identification is a one-to-many comparison 
which aims to answer the question of “who is this person?” We compare the identification 
performance of two proposed approaches, i.e., SDA-PCA (which is abbreviated to SDA here),  
SDA-GSVD, with single modal recognition method using traditional LDA, a representative pixel level 
fusion method [1], parallel and serial feature level fusion [3], and score level fusion method using the 
sum rule [7], respectively. Further, we compare the proposed kernelizaion methods (KPCA-SDA and 
KSDA-GSVD), with single modal recognition method using KDA. Figures 6 and 7 show the 
recognition rates of 20 random tests of our approaches and other compared methods: (a) SDA,  
SDA-GSVD, LDA (single modal), Pixel level fusion, parallel feature fusion, Serial feature fusion and 
Score level fusion; (b) KPCA-SDA, KSDA-GSVD and KDA (single modal). The average recognition 
rates are given in Tables 1 and 2, which correspond to the figures above. 

Figure 6. Recognition rates of compared methods on AR face and PolyU palmprint 
databases: (a) Linear methods; (b) Nonlinear methods. 

 

(a) 

 

(b) 
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Figure 7. Recognition rates of compared methods on FRGC face and PolyU palmprint 
databases: (a) Linear methods; (b) Nonlinear methods. 

 

(a) 

 

(b) 

Table 1. Average recognition rates of compared methods on AR face and PolyU palmprint databases 

AR and palmprint Average recognition rates (%) 

Single modal recognition 
AR LDA 75.09  7.39 
Palmprint LDA 82.26  3.50 

Multimodal recognition 

Pixel level fusion [1] 95.35  4.50 
Parallel feature fusion [3] 92.48  2.61 
Serial feature fusion [3] 90.71  3.06 
Score level fusion [7] 92.99  2.63 
SDA based feature extraction 96.52  1.16 
SDA-GSVD based feature extraction 98.23  0.68 

(a) Linear methods 

AR and palmprint Average recognition rates (%) 
Single modal recognition AR KDA 79.50  6.83 
 Palmprint KDA 83.45  4.47 
Multimodal recognition KPCA-SDA 98.74  0.45 

 KSDA-GSVD 99.15  0.63 

(b) Nonlinear methods 
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±
±
±
±
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Table 2. Average recognition rates of compared methods on FRGC face and PolyU 
palmprint databases. 

FRGC and palmprint Average recognition rates (%) 

Single modal recognition 
FRGC LDA 78.26  4.53 
Palmprint LDA 80.22  3.26 

Multimodal recognition 

Pixel level fusion [1] 97.21  2.89 
Parallel feature fusion [3] 94.92  2.17 
Serial feature fusion [3] 94.54  1.57 
Score level fusion [7] 95.59  4.70 
SDA based feature extraction 98.06  1.09 
SDA-GSVD based feature extraction 98.61  0.99 

(a) Linear methods 

FRGC and palmprint Average recognition rates (%) 

Single modal recognition 
AR KDA 80.44  2.57 
Palmprint KDA 81.23  3.26 

Multimodal recognition 
KPCA-SDA 98.82  0.32 
KSDA-GSVD 99.02  0.31 

(b) Nonlinear methods 

Table 1 shows that on the AR and PolyU palmprint databases, SDA and SDA-GSVD perform better 
than other compared linear methods. It also shows that KPCA-SDA and KSDA-GSVD achieve better 
recognition results than KDA (single modal). Compared with the single modal LDA, pixel level fusion, 
parallel feature fusion, parallel feature fusion, serial feature fusion and score level fusion, SDA 
improves the average recognition rate at least by 3.53% (=98.23%–92.99%), SDA-GSVD improves 
the average recognition rate at least by 5.24% (=98.23%–92.99%). And the average recognition rate of 
KPCA-SDA is at least 15.29% (=98.74%–83.45%) higher than that of KDA (single modal), and the 
average recognition rate of KSDA-GSVD is at least 15.7% (=99.15%–83.45%) higher than that of 
KDA (single modal). Table 2 shows a similar phenomenon on the FRGC and PolyU palmprint 
databases. SDA boosts the average recognition rate at least by 0.85% (=98.06%–97.21%), and  
SDA-GSVD boosts the average recognition rate at least by 1.40% (=98.61%–97.21%) than other linear 
methods. The average recognition rate of KPCA-SDA is at least 17.59% (=98.82–81.23) higher than 
that of KDA (single modal), and the average recognition rate of KSDA-GSVD is at least 17.79% 
(=99.02%–81.23%) higher than that of KDA (single modal). 

5.3. Experimental Results of Verification 

Verification is a one-to-one comparison which aims to answer the question of “whether the person 
is one he/she claims to be”. In the verification experiments, we show the receiver operating 
characteristic (ROC) curves, which plot the false rejection rate (FRR) versus the false accept rate 
(FAR), to report the verification performance. There is a tradeoff between the FRR and the FAR. It is 
possible to reduce one of them with the risk of increasing the other one. Thus the curve which is called 
receiver operating characteristic (ROC) reflects the tradeoff between the FAR and FRR, and FRR is 
plotted as a function of FAR. 

±
±
±
±
±
±
±
±

±
±
±
±
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Figures 8 and 9 show the Receiver Operating Characteristic (ROC) curves of our approaches and 
other compared methods on different databases. Table 3 shows the equal error rate (EER) of all 
compared methods. From the ROC curves shown in Figures 8–9 and the results listed in Table 3, we 
can see that our SDA based feature extraction approaches attains a significantly low EER (a point on 
the ROC curve where FAR is equal to FRR) than other representative multimodal fusion methods, 
including pixel level fusion method, score level fusion method and feature level fusion methods. On 
the AR face and PolyU palmprint databases, the lowest EER of related methods is 3.71%, while the 
EER of our approaches are all below 1%. And our KSDA-GSVD approach obtains the lowest  
EER 0.56% among all compared methods. On the FRGC face and PolyU palmprint databases, the 
lowest EER of other methods is 2.62%, while the EER of ours are all below 2%. Especially, the 
proposed SDA-GSVD approach gets the lowest EER that is 0.28%. The above experimental results 
demonstrate the superiority of our approaches. 

Figure 8. ROC curves of all compared methods on AR face and PolyU palmprint 
databases: (a) Linear methods; (b) Nonlinear methods. 

 

(a) 

 

(b) 
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Figure 9. ROC curves of all compared methods on FRGC face and PolyU palmprint 
databases: (a) Linear methods; (b) Nonlinear methods. 

 
(a) 

 
(b) 

Table 3. The equal error rate (EER) of all compared methods on different databases. 

Method AR and PalmprintEER (%) FRGC and Palmprint EER (%) 
Single modal  
recognition 

Face LDA 15.45 8.13 
Palmprint LDA 4.32 3.14 
Face KDA 6.13 5.72 
Palmprint KDA 8.36 10.85 

Multimodal  
recognition 

Pixel level fusion [1] 3.95 3.25 
Parallel feature fusion [3] 3.71 3.27 
Serial feature fusion [3] 7.84 4.41 
Score level fusion [7] 5.12 2.62 
SDA based feature extraction 0.83 1.05 
SDA-GSVD based feature extraction 0.72 0.28 
KSDA based feature extraction 0.87 1.90 
KSDA-GSVD based feature extraction 0.56 0.84 
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6. Conclusions 

In this paper, we present novel multimodal biometric feature extraction approaches using subclass 
discriminant analysis (SDA). Considering the nonsingularity requirements, we present two ways to 
overcome this problem. The first is to initially do principle component analysis before SDA, and the 
second is to employ generalized singular value decomposition (GSVD) to directly obtain the solution. 
Further, we present the kernel extensions (KPCA-SDA and KSDA-GSVD) for multimodal biometric 
feature extraction. We perform the experiments on two public face databases (i.e., AR face database 
and FRGC database) and the PolyU palmprint database. In designing the experiments, we firstly do 
extraction on the AR and palmprint database, secondly on the FRGC and palmprint database. 
Compared with several representative linear and nonlinear multimodal biometrics recognition 
methods, the proposed approaches acquire better identification and verification performance. In 
particular, the proposed KSDA-GSVD approach performs best on all the databases. 
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