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Abstract: Non-invasive detection and monitoring of lethal diseases, such as cancer,  
are considered as effective factors in treatment and survival. We describe a new disease 
diagnostic approach, denoted “reactomics”, based upon reactions between blood sera and 
an array of vesicles comprising different lipids and polydiacetylene (PDA), a chromatic 
polymer. We show that reactions between sera and such a lipid/PDA vesicle array produce 
chromatic patterns which depend both upon the sera composition as well as the specific 
lipid constituents within the vesicles. The chromatic patterns were processed through 
machine-learning algorithms, and the bioinformatics analysis could distinguish both 
between cancer-bearing and healthy patients, respectively, as well between two types of 
cancers. Size-separation and enzymatic digestion experiments indicate that lipoproteins  
are the primary components in sera which react with the chromatic biomimetic vesicles. 
This colorimetric reactomics concept is highly generic, robust, and does not require  
a priori knowledge upon specific disease markers in sera. Therefore, it could be employed 
as complementary or alternative approach for disease diagnostics. 
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1. Introduction 

Mortality rates of many cancers have not changed dramatically since the initiation of the “war on 
cancer” more than 30 years ago. Cancer detection and monitoring are considered as effective factors 
for improving cancer treatment and survival [1]. Hence, identification of novel tumor biomarkers and 
development of diagnostics technologies are critical constituents in the fight against cancer [1]. Cancer 
biomarker research generally focuses on blood as a non-tumoral surrogate tissue for cancer diagnostics. 
The continuous contact between the blood and the evolving cancer tissue gives rise to changes in blood 
molecular patterns originating either directly from the tumor or induced by the cancerous state. 
Accordingly, varied technology-based “omics” approaches—proteomics, metabolomics, glycomics, and 
others—have been proposed, so far with limited success, for identifying cancer patterns in blood 
components, such as cells, serum, or plasma [2–4]. Indeed, it has become clear that varied biological, 
physiological, and technical parameters significantly complicate biomarker discovery and validation, 
and often lead to “false discovery” [2–4].  

This study describes a radically different approach for cancer (and other disease) diagnostics. 
Specifically, instead of trying to identify novel cancer biomarkers in sera, we focus here on the 
reactions of sera with an array of artificial biomimetic membrane detectors, a concept denoted 
reactomics. Essentially, our approach aims to exploit variations in sera content between cancer-bearing 
and healthy control patients for cancer diagnosis, through monitoring the interactions of the sera with 
arrays of vesicles containing lipid molecules and polydiacetylene (PDA), a chromatic polymer [5,6].  

PDA is a conjugated polymer which exhibits unique color and fluorescence properties. In particular, 
we have shown over the past several years that the polymer matrix in lipid/PDA vesicle assemblies 
undergoes dramatic color transformations, accompanied by fluorescence changes that are induced by 
external stimuli—particularly interactions with soluble amphiphilic or membrane-active molecules [7]. 
In essence, in such PDA-based platforms, the conjugated polymer acts as a built-in reporter of 
lipophilicity and membrane affinity of soluble molecules, measurable by a chromatic change in both 
the visible absorption and fluorescence emission spectra. In the context of sera-membrane interactions, 
the chromatic signals induced by lipophilic components within sera constitute the fundamental means 
for distinguishing between normal and cancer conditions. Recently we have shown that lipid/PDA 
vesicles undergo chromatic transformations induced by lipoproteins extracted from blood sera [8]. In 
particular, the extent of chromatic transitions was shown to vary between lipoproteins separated from 
sera of healthy individuals and diabetic patients [8]. 

2. Experimental Section 

2.1. Serum Harvesting, Handling, and Processing 

Sera were obtained from RNTech Company (Paris, France). Fifty sera samples from pre-operation 
stomach cancer patients, 50 samples from pre-operation pancreatic cancer patients and 50 sera samples 
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from cancer-free controls were studied. Clinical details are described at Supplemental Table 1. 
RNTech has established and conducted its activity following regulatory and ethical standards, 
implementing local, national, European, US and International (UN) rules and recommendations 
particularly when applicable to biological material collection and treatment and research result 
exploitation. These include both written consent of each patient contributing to the biological and data 
bank, and written study authorization from ethical committees of each clinical institute contributing 
samples to the company’s biobank.  

Table 1. Lipid and PDA compositions of the detector vesicles. 

No. Composition Mole ratio pH 
1 DMPC/PDA 2:3 8 
2 DOPC/PDA 2:3 7.4 
3 DMPC/Chl/PDA 1:1:3 8 
4 DMPC/Chl/PDA 1.5:0.5:3 8 
5 DMPE/PS/PDA 1:1:3 8 
6 DMPE/DMPG/PDA 1:1:3 8 
7 DMPE/PI/PDA 1:1:3 8 
8 SM/Chl/PDA 1.5:0.5:3 8.2 
9 DOPE/PDA 2:3 7.6 

10 DOPC/CL/PDA 1:1:3 7.8 
Abbreviations are explained in the Methods. pH of each vesicle solution was set in order to 
equilibrate the intrinsic sensitivity. 

Sera from cancer patients and cancer-free controls were taken after overnight fasting in the 
following manner: 5 mL of blood was drawn into a vacuette serum tube (Cat# 456005, Greiner Bio 
One, Kremsmuenster, Austria) and left to clot for about 30 min, after which the tube was centrifuged  
at 3,000 rpm on a Hettich EBA 20S centrifuge (Hettich Ag, Tuttlingen, Germany) for 5 min at room 
temperature. The separated serum was aliquoted into 1 mL aliquots in sterile cryogenic tubes (Nalgene, 
Rochester, NY, USA) and immediately frozen at −70 °C. Sera samples were then transported on dry ice 
and stored at −70 °C immediately upon arrival. Sera samples were thawed on ice for about an hour and 
a half, 50 µL was aliquoted into lo-bind tubes (Eppendorf, Hamburg, Germany) and immediately  
re-frozen at −70 °C. All sample aliquots were stored at −70 °C until further processing (F2 freezing). For 
collecting 100 kDa serum retentate, two F2 aliquots (100 µL) were thawed on ice. 100 kDa centricons 
(YM-100, MilliporeTM, Cat# 42413) were washed twice with 200 μL of TRIS buffer 50 mM-pH 7.2, 
and 90 µL thawed serum were loaded and centrifuged for 90 min at 4 °C at 5,000× g. Retentate was 
washed once on the centricon with 400 μL of TRIS buffer, diluted to twice the original serum sample 
volume (180 μL) with TRIS buffer, and freezed (F3 freezing) for future application to experimental 
plates with chromatic vesicles.  

2.2. Lipids and Detector Chromatic Vesicle Preparation 

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine 
(DOPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG),  
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L-α-phosphatidylserine (brain, porcine) (PS), L-α-phosphatidylinositol (liver, bovine) (PI), cardiolipin 
(heart, bovine) (CL), sphingomyelin (brain, porcine) (SM) and cholesterol (bovine wool) (Chl)  
were purchased from Avanti (Alabaster, AL, USA). The diacetylenic monomer 10,12-tricosadiynoic 
acid (PDA) was purchased from Alfa Aesar (Karlsruhe, Germany). The diacetylene powder was  
washed in chloroform and purified through a nylon 0.45 μm filter (Whatman) before use. 
Tris(hydroxymethyl)aminomethane (TRIZMA base buffer, C4H11NO3) was purchased from Sigma.  

Chromatic vesicles containing the diacetylene monomer 10,12-tricosadiynoic acid and the lipid 
components (Table 1) were dissolved in chloroform/ethanol (1:1) and dried together in vacuo to 
constant weight, followed by addition of deionized water to a final concentration of 1 mM and 
subsequently probe sonicated at 40 W at 70 °C for 3 min. The vesicle solution was subsequently 
cooled at room temperature and kept at 4 °C overnight. The solution was then irradiated at 254 nm  
for 30 s, resulting in intense blue color appearance due to polymerization of the diacetylene units. 

2.3. Chromatic Measurements: Fluorescence Spectroscopy 

Fluorescence was measured on a Fluscan Ascent using a 96-well microplate (Greiner plate  
Cat# 655–180), using excitation of 544 nm and emission of 620 nm using LP filters with normal slits. 
Using this excitation/emission pair assured that the background fluorescence of the detector vesicle 
solutions before addition of the tested serum was negligible. Samples for fluorescence measurements 
were prepared by adding 5 μL processed serum to 30 μL of lipid/PDA detector vesicles followed by 
addition of 30 μL 50 mM Tris buffer (pH is depicted at Table 1). The samples were incubated for 60 min 
at 27 °C prior to measurements. Sixty min time point was chosen as the optimal time in which the 
chromatic response equilibrates (Figure S1). Fluorescent chromatic responses were calculated according 
to the formula: percentage fluorescent chromatic responses (%FCR) = [(Emi − Emc)/(Emr − Emc)] × 
100%, in which Emc is the background fluorescence of blue vesicles without addition of tested sample, 
Emi is the value obtained for the vesicle solution after incubation with tested sample and Emr is the 
maximal fluorescence value obtained for the red-phase vesicles (heating at 80 °C for 2 min). The result 
taken for each serum sample-specific detector was the mean of the triplicate. 

2.4. Statistical Analysis 

Experiments were performed in 96-well plates; a typical plate employed one type of detector vesicle 
and contained replicates of serum samples from each studied group as well as positive and negative 
color controls and identical aliquots of five standardization serum samples. Average %FCR per each 
sample was calculated based on the plate negative and positive color controls (see above, chromatic 
measurements: fluorescence spectroscopy). The %FCR values from different experimental plates  
were standardized according to the results of the five standardization serum samples employed in all 
experimental plates. To further correct for experimental biases between different experimental plates,  
a normalization step was applied to %FCR values in each experimental plate as follows: the mean %FCR 
of the experimental plate control serum samples was subtracted from each %FCR value and the result 
was divided by the standard deviation of the experimental plate control serum samples. This process was 
repeated for each chromatic vesicle, and each normalized %FCR was used as a feature in subsequent 
classification experiments. Classification was conducted using the support vector machine (SVM) 
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method with a linear kernel as implemented in the LIBSVM library [9,10]. Separate machine learning 
experiments were conducted for each pair of class groups: Control vs. Stomach; Control vs. Pancreas 
and Pancreas vs. Stomach. The samples were randomly divided into training and testing subsets, 
maintaining the ratio of control cases to treatment cases analyzed in each experiment. For feature 
selection, all possible subsets were considered. An SVM model was developed for every possible 
subset of features, and the best model was chosen based on its accuracy of predicting the class of the 
training subset samples. The accuracy of this model was evaluated over the remaining testing group, 
using the percent of accurate prediction (“Accuracy”) and Mathews Correlation Coefficient (MCC)  
as quality measures. This procedure was repeated five times, using different random partitions into 
training and test sets each time, and the quality measures (classification Accuracy and MCC) were 
calculated for all partitions. For a binary classification test, Sensitivity measures the proportion of 
actual positives which are correctly identified as such and Specificity measures the proportion of 
negatives which are correctly identified. Accuracy is the proportion of true results (both true positives 
and true negatives) in the population. MCC is used in machine learning as a measure of the quality of 
binary (two class) classifications and returns a value between −1 and +1. A coefficient of +1 represents  
a perfect prediction, 0 an average random prediction and −1 an inverse prediction. MCC is generally 
regarded as a balanced measure which can be used even if the classes are of different sizes. 

3. Results and Discussion  

3.1. Fundamentals of the Reactomics Method 

The hypothesis underlying the reactomics approach is that molecular variations of sera associated 
with cancer onset and progression provide a window of opportunity for disease detection and 
monitoring. The diagnostic concept and experimental concept are depicted schematically in Figure 1. 
Figure 1(A) represents a generic experiment in which three sera are examined (sera i–iii), using an 
array of three lipid/PDA vesicle compositions (vesicles a–c); the actual experiments we carried out (see 
below) employed a larger array of lipid/PDA vesicles. Each serum examined (represented by i–iii) can be 
perceived as a mixture of varied amphiphilic/vesicle-active species. Accordingly, upon interactions 
with a particular lipid/PDA vesicle, the serum produces a chromatic signal which is essentially a sum of 
the contributions of all individual components in the mixture.  

As depicted in the schematic picture in Figure 1, vesicle variability is the core feature facilitating 
the diversity of signals generated in the chromatic system. Essentially, the sera are applied to an array 
of lipid/PDA vesicles comprising PDA and different lipid molecules (chromatic vesicles a–c). Each 
serum is expected to induce a distinct chromatic (color/fluorescence) transition when added to a 
particular lipid/PDA vesicle. Importantly, the total color/fluorescence transformations will depend 
upon the distinct affinities of sera components to lipids having different structures, head-group  
charges, membrane packing, and other molecular properties. Overall, application of each serum sample 
to the vesicle array will result in a chromatic pattern (each row in Figure 1(B)), in which the number  
of components is determined by the different vesicle compositions employed in the experiment. 
Crucially, through application of simple bio-informatics algorithms, we show here that distinct color 
patterns (e.g., chromatic fingerprints) can be discerned following interactions between sera from 
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cancer-bearing and healthy individuals, respectively, and the lipid/PDA vesicle array. We show here 
that these disease-marker patterns were statistically distinguishable from the patterns recorded for 
healthy patients. 

Figure 1. Schematic description of the reactomics concept. (A) Three tested sera, having 
varying compositions (i–iii), are applied to three vesicle types comprising PDA (blue), and 
different lipid compositions (a–c). The chromatic responses induced by the three sera in 
each vesicle are shown in the bar diagram; (B) The chromatic matrix depicting the relative 
degrees of chromatic response (color/fluorescence) in the sera/vesicle assembly tested in (A). 
Each serum is assigned a distinct “chromatic pattern” depending upon its content of 
vesicle-reactive species on the one hand and the lipid composition of the vesicles on the 
other hand. 

 

Previous studies have shown that PDA-based vesicle assays can be carried out in specific pH 
“windows”; in solutions exhibiting pH under 6.5 the PDA matrix does not undergo chromatic 
transitions, while at highly basic solutions (generally pH > 9–9.5), PDA changes its color/fluorescence 
due to the high concentration of the hydroxide ions. In the experiments depicted here we have 
optimized the pH conditions individually for each vesicle composition, accounting for the different 
environmental sensitivity of each composition. The pH values ranged between 7.5–8.5, and with most 
samples around 8 (Table 1). 

3.2. Vesicle Activity of Sera and the Molecular Components Affecting Chromatic Transitions 

Figure 2 depicts the colorimetric transformations observed upon incubation of lipid/PDA vesicles 
with sera. The scanned picture in Figure 2 clearly shows that DMPC/PDA vesicles that were initially 
blue underwent noticeable color changes upon incubation with different sera. Importantly, Figure 2 
indicates that changes in sera-induced chromatic transitions were apparent between serum obtained 
from healthy individuals (Figure 2(B,C)) and a cancer-bearing patient (Figure 2(D), serum sample 
from stomach cancer patient). However, some variations in chromatic transitions were also observed 
between the color transitions induced by sera from healthy persons (Figure 2(B) vs. (C)). These 
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variations were the impetus for the comprehensive statistical method, described below, which was 
designed to distinguish and correlate among sera and pathological conditions. 

Figure 2. Color transitions in lipid/PDA vesicles induced by serum. DMPC/PDA vesicle 
solutions are shown prior/after incubation for 30 min with human sera. (A) Control 
solution (no addition of serum); (B–D) vesicles were incubated with sera obtained from 
different samples. 

 

To partially characterize the vesicle-reactive species in serum, we size-separated serum components 
employing Centricon filtration, and separately carried out an enzymatic digestion assay (Figure 3). 
Serum samples were separated to >100 kDa, 30–100 kDa, 10–30 kDa, and <10 kDa, respectively, and 
the size-separated fractions were subsequently incubated with chromatic vesicles having three different 
lipid compositions (Figure 3(A)). Figure 3(A) clearly shows that the primary response for all chromatic 
vesicles was manifested by the >100 kDa fraction, which included high-molecular weight proteins but 
also serum nanoparticles like lipoproteins. Indeed, we previously showed that the chromatic vesicles 
exhibited significant chromatic response when incubated with purified lipoproteins [8]. Furthermore, 
differences in vesicle binding between low-density lipoproteins (LDL) and high-density lipoproteins 
(HDL) purified from sera were correlated with physiological conditions such as diabetes [8].  

To further test the assumption that lipoproteins are primary contributors to the reaction of serum 
with the chromatic vesicles we recorded the fluorescence changes undergone by the vesicles following 
digestion with different enzymes ((Figure 3(B)). Specifically, we treated the serum with DNase, 
protease, or lipase, which degrade a broad substrate scope of DNA, proteins, and lipids, respectively. 
Figure 3(B) shows that treatment of serum with DNase did not affect serum interactions with the 
chromatic vesicles, while digestion of the serum with lipase or protease considerably reduced the 
chromatic response (Figure 3(B)). While the data in Figure 3(B) cannot rule out that individual lipid 
and protein molecules in serum contributed to the chromatic vesicle signals, the results in both  
Figure 3(A,B) suggest that lipoproteins are plausible candidates for the primary vesicle-active 
components in serum. Indeed, the lipophilicity of lipoprotein surface could constitute the driving force 
for vesicle surface binding and the chromatic interactions. This hypothesis was further corroborated 
through the observation that serum-derived lipoproteins concentrated through sodium borate-based 
centrifugation, induced significant chromatic response when added to lipid/PDA vesicles (data not 
shown). Lipoproteins are composed of a lipid core and surface-displayed proteins, in which 
apolipoproteins are the primary component. The notion that apolipoproteins’ levels (and thus 
lipoproteins) in blood are potential biomarkers for different cancers was recently reported [11,12]. 
Indeed, ApoC-I was identified as a potential serum biomarker for colorectal cancer, hormone-refractory 
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prostate cancer, and liver fibrosis [12–14]. Other reports indicated that ApoC-III might also be a 
potential biomarker in pancreatic cancer and breast cancer [11,15]. 

Figure 3. Effects of size fractionation and enzyme treatment upon the chromatic reactions 
of serum with lipid/PDA vesicles. (A) Using centricons, serum was continuously 
fractionated to >100 kDa, 30–100 kDa, 10–30 kDa and <10 kDa fractions. Aliquots from 
each fraction, derived from the same serum quantity, were reacted with three different 
chromatic vesicles and the sum of %FCR reactions of all fractions per each chromatic 
vesicle was normalized to one; (B) Identical aliquots of serum were treated with the 
different enzymes or with mock treatment and reacted with DMPC/PDA (2:3 mole ratio). 
Proteinase K and Lipase by themselves did not affect the basic chromatic response. Similar 
results were observed with five other lipid/PDA vesicles. Experiments were performed in 
triplicates and the results were normalized to the reaction with mock treated-serum.  
** p-value < 0.01, single factor ANOVA. 

 
Finally, we tested the sensitivity and repeatability of the assay for serum samples. When purified 

lipoproteins were applied in a dose response assay to the chromatic vesicles (e.g., DMPC/PDA),  
a %FCR range between 20 to 80 was reached upon incubation with 50 to 250 µg protein/mL of 
purified HDL [8]. When control sera were applied to the chromatic vesicles, a similar response range 
was reached upon incubation with 1 to 10 µL sera (data not shown). Therefore, we employed the 
equivalent of 5 µL serum volume per each chromatic vesicle in the following experiments. To test 
repeatability, five control serum samples were tested in a 10-repeat assay with the different chromatic 
vesicles (Figure S2). For eight of the ten chromatic vesicles, average relative standard deviation (RSD) 
for the five control sera was ≤8. For DOPC/PDA and DMPE/PS/PDA vesicles (Table 1), average RSD 
was 12.6 and 11.4, respectively. Overall, these RSD values represent good repeatability.  

3.3. Chromatic Experiments of Sera from Cancer-Bearing and Healthy Control Groups  

Serum sample aliquots from 50 subjects were analyzed per each studied clinical group: stomach 
cancer, pancreatic cancer, and non-cancer controls. Information on the sera samples and their 
physiological profiles is provided in the Supplementary Information. The vesicle array we employed 
contained ten different types of chromatic detector vesicles (Table 1), designed to span a broad  
range of lipid properties, including head group size and charge, alkyl-chain saturation, and transition 
temperatures [16].  
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The vesicles were incubated with 100 kDa-separated serum sample aliquots from the clinical groups 
and percentage fluorescent chromatic responses (%FCR) were calculated per each plate based on the 
negative and positive color controls. Subsequently, %FCR results from different experimental plates 
were standardized and normalized to adjust for experiment-specific biases (see Methods). Figure 4 
shows the normalized %FCR results per each chromatic vesicle type on the 3 group classes; results are 
presented as standard box and whiskers plots (see legend).  

Figure 4. Chromatic reactions induced by the incubation of sera samples with ten different 
chromatic vesicles. Sample size is 50 per each clinical group and specific chromatic 
vesicle. The header of each panel indicates the composition of the chromatic vesicle used. 
Results are presented as standard box and whiskers plots of the normalized %FCR (see 
Methods). Briefly, for each distribution the main box depicts the 1st (bottom) and 3rd (top) 
quartiles, the band inside the box depicts the median, and the whiskers depict the upper and 
lower extreme values that are within 1.5 times the inter-quartile range. Control correspond 
to chromatic response of the vesicles following addition of sera from healthy individuals, 
stom. corresponds to sera from stomach-cancer patients, panc. corresponds to sera from 
pancreatic-cancer patients. 

 

Differences between patterns of chromatic responses were clearly observed in Figure 4. 
Specifically, sera from stomach cancer patients induced chromatic change to a lesser extent as 
compared to sera from the control group. This result was very encouraging as we already reported for 
the same sera samples that both mass-spectrometry based peptidomics and clinical-based 
apolipoprotein analysis pointed to reduced quantities of apolipoproteins C-I and C-III in sera derived 
from stomach cancer patients [17]. Combining this observation with the results from Figure 3 the 
reported interaction of the chromatic vesicles with lipoproteins [8], it is evident that the correctness of 
the reactomics approach results is supported by results derived from other technologies. Sera from 
pancreas cancer patients showed a mixed chromatic response as compared to control. While the median 
of chromatic reaction was higher as compared to control with DMPC/Chl/PDA (1:1:3) and 
DMPE/PS/PDA [1:1:3] chromatic vesicles, sera from pancreas cancer induced chromatic change 
similarly or to a lesser extent as compared to control with the other eight types of vesicles. However, the 
lack of clear straightforward differences and the large margins of distribution (Figure 4) support the 
need for machine learning-based protocols for the production of prediction classifiers.  
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3.4. Bioinformatics Analysis of Chromatic Data Reveals Patterns that Distinguish between the Different 
Clinical Groups 

To test the ability of the chromatic array to identify cancer patients and to distinguish pancreatic 
cancer from stomach cancer, we used machine learning algorithms to develop disease classifiers of  
the various studied groups. In this approach, chromatic responses are considered to be features, and  
a learning algorithm uses a training set (i.e., examples) to identify a complex set of rules, or a model, 
that is further used to classify new samples (test set) given the same features. To do that we randomly 
divided the 50 samples from each class group to form balanced training and test sets (i.e., 25 samples 
per each set, per each class group). We chose to use the support vector machine (SVM) algorithm for 
its robustness and strength. However, because SVM is a binary classification algorithm, separate 
machine-learning experiments were performed for each pair of class groups: (i) control vs. stomach 
cancer; (ii) control vs. pancreatic cancer; and (iii) pancreatic cancer vs. stomach cancer. The processed 
chromatic result from each specific detector vesicle (Figure 4) was employed as a feature for the SVM. 
Therefore chromatic results from 10 different detector vesicles (Table 1) yielded 10 features per  
tested sample.  

Building a successful classifier using machine learning usually requires that an informative subset of 
features is selected for model development (i.e., feature selection). Due to the relatively small number of 
features involved in this study (10 features), all the possible combinations of features could be 
considered (n = 1,023). In other words, every possible combination of features involving 1–10 features 
was tested for the training set. Essentially, for each features subset, an SVM model was trained and 
evaluated using only the training subset. The classifier that gave the highest Accuracy and Matthews 
Correlation Coefficient (MCC) values was chosen (see Methods for definitions). These measures  
of classifier quality reflect the concordance between predicted and actual classes of the samples  
(e.g., control or stomach cancer); however, while the Accuracy value reports only the fraction of 
correct predictions, the MCC statistic also accounts for the frequency of each class in the original 
sample, and is thus a more robust measure of prediction quality. The quality of the model that gave the 
highest Accuracy and MCC in the training set was then evaluated by applying it to new samples, 
namely the test set, and evaluating its Accuracy and MCC measures in this test set. Table 2 shows 
these parameters for the test set.  

Table 2. SVM-based classification of cancer patients from serum reactome measurements. 

Rep. # Selected Features Accuracy Sensitivity Specificity MCC 
Pancreatic cancer vs. control 

1 No. 1, 2, 3, 4, 5, 8, 10 90.20 84.62 96.00 0.81 
2 No. 1, 2, 3, 4, 7, 8, 10 86.27 80.77 92.00 0.73 
3 No. 1, 2, 3, 6, 7, 10 90.20 88.46 92.00 0.80 
4 No. 1, 2, 3, 5, 8, 10 86.27 80.77 92.00 0.73 
5 No. 1, 2, 3, 9, 10 84.31 76.92 92.00 0.70 
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Table 2. Cont. 

Rep. # Selected Features Accuracy Sensitivity Specificity MCC 
Stomach cancer vs. control 

1 No. 2, 4, 6, 7, 9 68.63 84.62 52.00 0.39 
2 No. 1, 2, 4, 5, 7, 8, 9, 10 62.75 65.38 60.00 0.25 
3 No. 2, 6, 9 70.59 80.77 60.00 0.42 
4 No. 1, 2, 4, 7, 8, 9 70.59 65.38 76.00 0.42 
5 No. 2, 3, 4, 6, 7, 8 72.55 69.23 76.00 0.45 

Stomach cancer vs. pancreatic cancer 
1 No. 1, 2, 3, 4, 7, 9 80.77 84.62 76.92 0.62 
2 No. 1, 2, 3, 6, 7, 9 78.85 84.62 73.08 0.58 
3 No. 1, 2, 3, 4, 5, 9 76.92 84.62 69.23 0.54 
4 No. 1, 2, 3, 6, 7, 9 71.15 76.92 65.38 0.43 
5 No. 1, 3, 4, 5, 8, 9, 10 76.92 73.08 80.77 0.54 

To further ensure that the predictive efficiency of the chromatic response–based classifier was not 
due to a fortuitous partition to training and testing subsets, we repeated the partition process 5 times, 
choosing for each repeat the best features subset (i.e., the best model) based on the training set and 
then applied the best model to the test set. The Accuracy and MCC values for the test set (Table 2) did 
not noticeably vary between repeats, ranging from 84.3% to 90.2% (or an MCC of 0.70–0.81) for  
the pancreatic cancer vs. control classification. This range of accuracy values is well within the 95% 
confidence interval from mean accuracy of the five repeats (estimated with the binomial distribution). 
Similarly, the range of accuracies observed from the stomach cancer vs. controls and stomach cancer vs. 
pancreatic cancer, respectively, also fall within the confidence interval of the mean accuracy observed in 
the five repeats. 

The accuracies achieved by the reactomics-based classifier analysis, depicted in Table 2 for the test 
set, were significantly better than expected through random selection (e.g., “chance” selection). For the 
comparison of pancreatic cancer vs. controls, an accuracy of 84% or better was obtained for the testing 
group for all five repeats (Table 2); the likelihood of achieving such classification accuracy even once 
by chance is very low (p = 7 × 10−7, binomial distribution), let alone five times. The comparison of 
stomach cancer and pancreatic cancer patients yielded accuracy levels ranging from 71% to 81%; 
similarly, the likelihood to obtain 71% accuracy by chance even once is less than 3 × 10−4.  

Table 2 indicates that distinguishing between stomach cancer sera and controls was less convincing 
than the two other pairs, with estimated accuracy levels ranging from 62.8 to 72.6%. Yet the likelihood 
to obtain 62.8% is less than 0.02, let alone repeating such a result or better five times. Overall, the 
reactomics-based detection of pancreatic cancer state was better compared to stomach cancer. In 
particular, the prediction’s specificity was lower when comparing stomach cancer to either control or 
pancreas cancer (Table 2). This could be attributed to the fact that some detector vesicles manifested 
enhanced reaction with the pancreatic cancer sera as compared to control and other detectors manifested 
the opposite trend. Yet, sera from stomach cancer patients generally manifested a reduced reaction as 
compared to control sera (Figure 4). Our results can only hint to the ability of this approach to 
distinguish cancer types: the distinction between healthy controls and pancreatic cancer was better than 
the classification of healthy controls vs. stomach cancer. Without investigating additional tumor types, 



Sensors 2012, 12 5583 
 

 

it is difficult to predict which types will be amenable to detection with the reactomics approach, and 
which can be distinguished from one another. The results presented here were based on 10 lipid 
compositions. It is tempting to speculate that finer classification can be obtained by adding additional 
compositions to obtain more sensitive and informative patterns. With such improved sensitivity, it 
might be possible to achieve higher classification accuracies, better patient stratification and to assist in 
the diagnosis of a wider spectrum of tumors. Indeed, we are currently investigating additional 
compositions of detector vesicles.  

It is important to note that the statistical analyses described above did not involve intensive multiple 
testing: while over a thousand models were considered for the training set, the chosen model was then 
tested only once with the test set. The successful classification of pre-operation sera from pancreatic 
cancer and stomach cancer patients has two additional implications. First, it excludes the possibility 
that being at pre-operative state is the main factor mediating the differences revealed by the reactomics 
approach. Secondly, it suggests that sera derived from patients with different cancer diseases could 
manifest a specific reactomics pattern. 

To further validate the statistical significance of the results, a shuffling experiment was conducted in 
which the class names of the different samples were randomly rearranged. Specifically, the 150 samples 
were randomly assigned 50 “Control” labels, 50 “stomach cancer” labels and 50 “pancreatic cancer” 
labels. The entire binary classification process, from partitioning to model building, through feature 
selection, up to evaluation on a test set was then repeated with the shuffled data. Crucially, the MCC  
of the best classifiers generated with the shuffled data was close to 0, which would be expected from  
a classifier that performs as well as guessing. This result clearly demonstrates the validity of the 
reactomics analysis and indicates that the “true” clinical assignment of the sample was essential for the 
generation of an accurate classification model (data not shown).  

Three classification experiments were conducted, comparing pancreas cancer vs. control patients, 
stomach cancer vs. control patients, or stomach cancer vs. pancreas cancer patients. Each classification 
experiment involved partitioning the data into training and testing subsets, selecting the most informative 
features for the training set and evaluating the quality of the resulting model predicting class of the 
individuals in the testing subset and comparing the results to their actual classes. The process was 
repeated five times (rep. #), randomly choosing training and testing subsets for each repeat. Since the 
entire process was repeated, the features selected in each repeat were not always the same (Selected 
Features). Features that were selected in all five repeats for a given classification experiments are 
underlined (consensus features). Table 1 shows the description of the corresponding detector vesicle. The 
accuracy of each model was evaluated with the appropriate testing subset, using both the Accuracy 
parameter, determined by Sensitivity and Specificity, and the Mathews Correlation Coefficient (MCC) 
measures (see Methods for definitions). It is interesting to note that the “consensus features” of each 
replicate was not reported as the best classifier of any of the replicates. Because every possible feature 
combination was considered, the implication is that without exception, the consensus set did not 
perform better than the reported feature set in the training set in any of the replicates (Table 2). It is 
possible that the consensus set would produce more stable, general models that would perform better 
in the testing set. However, it is important to note that using the stability of features across five 
replicate experiments “contaminates” the test set, as samples from the test set of one replicate would be 
included in the training set of another, and vice versa. Despite this bias toward better performance in 
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the testing set of “consensus features”, the chosen models generally outperform the consensus features 
set in the five replicates (data not shown).These results may suggest that adding features beyond the 
“consensus set” produces models with better accuracy, but that the added feature’ contribution is  
small and is thus unstable across replicates. This hypothesis can be tested by considering  
additional samples. 

Our results indicate that reactomics can be used to distinguish cancer patients from healthy 
individuals and these different patterns can be identified in the sera of patients harboring different 
tumors. However, further research is required to evaluate the power of this approach for early diagnosis. 
The majority of the pancreatic cancer samples, which were successfully classified, came from patients 
with stage I–II tumors (45 of 50 samples). Nevertheless, for screening purposes very high level of 
accuracies must be attained. The number of samples analyzed with this approach will have to be much 
higher to allow the false-positive rate to be estimated with sufficient accuracy to imply clinical 
usefulness. For stomach cancer, on the other hand, only half of the samples were from early stages  
(25 of the 50 samples were from stages I–II), making it impossible to estimate the potential of our 
approach for early detection. Further stratifying these patients, not only by tumor stage but by survival, 
requires that larger patient populations be investigated. 

4. Conclusions 

In our study we show that chromatic patterns produced through interactions between blood sera and 
an array of lipid/PDA vesicles containing different lipid compositions, constitute an effective vehicle 
for distinguishing between cancer-bearing and healthy patients. Furthermore, statistical analysis 
showed that the chromatic data can be used to discern between different cancers. Overall, the novel 
“reactomics” concept is a promising tool for disease diagnostics through pattern analysis.  
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