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Abstract: A nanosensory membrane device was constructed for detecting liposome fusion 
through changes in an enzymatic activity. Inspired by a biological signal transduction 
system, the device design involved functionalized liposomal membranes prepared by  
self-assembly of the following molecular components: a synthetic peptide lipid and a 
phospholipid as matrix membrane components, a Schiff’s base of pyridoxal 5’-phosphate 
with phosphatidylethanolamine as a thermo-responsive artificial receptor, NADH-dependent 
L-lactate dehydrogenase as a signal amplifier, and Cu2+ ion as a signal mediator between 
the receptor and enzyme. The enzymatic activity of the membrane device was adjustable 
by changing the matrix lipid composition, reflecting the thermotropic phase transition 
behavior of the lipid membranes, which in turn controlled receptor binding affinity toward 
the enzyme-inhibiting mediator species. When an effective fusogen anionic polymer was 
added to these cationic liposomes, membrane fusion occurred, and the functionalized 
liposomal membranes responded with changes in enzymatic activity, thus serving as an 
effective nanosensory device for liposome fusion detection.  
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1. Introduction  

Recently, much effort has been devoted to developing nanoscale devices using molecules or 
molecular devices composed of molecular elements, such as switches, wires, and logic gates, and 
capable of extending current semiconductor technology to nanoscale information technology [1–4]. 
However, integration of these functional elements to produce real molecular devices still remains a 
challenge. A biologically inspired approach may present a unique solution for achieving integrated 
system architectures that will orchestrate a huge number of molecular devices inside future 
nanomachines. In this respect, our recent attention has been focused on functional simulation of 
biological signal transduction systems by employing self-organized molecular assemblies in aqueous 
media. A signal transduction system located in the cell membrane is an example of naturally occurring 
nanodevices, in which signal transmission among functional biomolecules, such as receptors and 
enzymes, is efficiently achieved in the cell membrane [5]. Previously, we have reported on artificial 
cell membrane-type nanodevices, employing a concept inspired by biological signal transduction, 
which entails a system essentially comprised of three molecular components: a synthetic receptor, 
enzyme, and liposomal membrane (Figure 1). The receptor and the enzyme are self-assembled on the 
liposomal membrane through noncovalent interactions and the enzyme's catalytic activity is controlled 
by an external signal subsequent to receptor activation, with signal transduction mediated by metal 
ions. In this system, the receptor adjusts the enzymatic activity depending on the molecular recognition 
for a specific signal [6–16].  

Figure 1. Schematic illustration of a liposomal molecular device inspired by biological 
signal transduction system.  
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This paper reports the construction of a bio-inspired molecular device that senses membrane fusion 
by changes in membrane-bound enzyme activity. Membrane fusion is one of the most fundamental 
processes in biological system, involved in cargo transport through secretory pathways, fertilization, 
organelle inheritance, and viral entry into host cells [17–22], but there have been few reports of a 
molecular device sensing membrane fusion. The present system functions through cooperation of a 
thermo-responsive receptor and a natural enzyme, with a signal mediator, as a means of converting a 
liposomal membrane state change into a measurable enzyme response (Figure 2). The liposomal 
platform was constructed with an incorporated cationic peptide lipid (1), a phospholipid (2), and three 
functional elements: a Schiff’s base of pyridoxal 5’-phosphate (PLP) with phosphatidylethanolamine 
(3) as a thermo-responsive artificial receptor; NADH-dependent L-lactate dehydrogenase (LDH) as an 
effector; and copper (II) (Cu2+) ions as the signal mediator (Figure 3). In this study, we report an 
examination of this system’s enzymatic activity in response to various conditions and additives, 
adjustment of the system’s lipid composition while monitoring the phase transition temperature, and 
detection by the designed enzymatic response of phase transitions triggered by liposome fusion.  

Figure 2. Schematic illustration of a bio-inspired molecular device that detects liposome 
fusion by altering the activity of an enzymatic reaction. Left and right figures represent on 
and off-states of L-lactate dehydrogenase (LDH) before and after membrane fusion, 
respectively. The lipid bilayers are in gel and liquid-crystalline (LC) phases for on and  
off-states, respectively. 

 

Figure 3. Molecular components of the bio-inspired molecular device. 
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The strategy for the design of this molecular device involved taking advantage of specific attributes 
of the three incorporated components. Receptor 3’s ability to change its binding affinity toward metal 
ions, depending on the liposomal membrane’s phase state [13] was one of the receptor’s most 
important properties in the present fusion sensing system. When the liposome is in a gel state, the 
receptor has higher binding affinity for the signal mediator than does the enzyme, which results in an 
enzymatically active state, or “on state” (Figure 2). It is well known that the liposome fusion can be 
induced by a membrane-interacting polymer as a fusogen. For example, the fusion of cationic 
liposomes was induced by anionic polymers [23,24]. When liposome fusion occurs in the presence of 
liposomes functionalized with both receptor and enzyme, the maxtrix lipid composition shifts during 
fusion, changing the liposome’s phase state from gel to liquid-crystal. We have previously reported 
here that a similar supramolecular system using receptor 3 and LDH markedly decreases enzymatic 
activity within a specific temperature range, reflecting the membrane's gel to liquid-crystalline phase  
transition [14]. This is due to increased mediator binding to the enzyme as a result of decreased 
mediator binding affinity toward the receptor. As the Cu2+ ions are an LDH competitive inhibitor, this 
molecular device turns the system to the enzymatically inactive state, or “off state” (Figure 2). Thus, 
the present membrane device detects liposome fusion by translating the state change to an enzymatic 
response. 

2. Experimental Section 

2.1. Materials  

N,N-Dihexadecyl-Nα-(trimethylammonio)hexanoyl-L-alaninamide bromide (1) was prepared as 
previously described [25]. The following compounds were commercially available and used without 
further purification: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (2, NOF Corporation, Tokyo, Japan), 
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE, Avanti Polar Lipids, Inc., Alabaster, AL, 
USA), pyridoxal 5'-phosphate (PLP, Sigma-Aldrich, St. Louis, MO, USA), L-lactate dehydrogenase 
(LDH) from pig heart (Roche Diagnostics GmbH, Basel, Switzerland), β-nicotinamide adenine 
dinucleotide disodium salt (NADH, Sigma-Aldrich), sodium pyruvate (Wako Pure Chemical Industries, 
Ltd., Osaka, Japan), copper(II) perchlorate hexahydrate (Kanto Chemical Co., Inc., Tokyo, Japan),  
N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE, 
Invitrogen, Life Technologies, Grand Island, NY, USA), Lissamine Rhodamine B 1,2-dihexadecanoyl-
sn-glycero-3-phosphoethanolamine (Rh-PE) (Invitrogen), poly(vinyl alcohol) and poly(viny1 sulfate) 
potassium salt (PVA and PVSK, respectively, Wako Pure Chemical Industries). Other chemicals were 
of analytical grade.  

2.2. Preparation of Liposomes  

Giant liposomes were prepared using an established protocol [26]. Briefly, appropriate amounts of 
lipids 1 and 2 and DMPE were dissolved in chloroform, the solvent evaporated under a nitrogen gas 
stream, and residual trace solvent completely removed in vacuo. Hydration of the resulting thin film on 
the vial wall was performed at 50 °C with an appropriate amount of pure water or 2-[4-(2-hydroxyethyl)-
1-piperazinyl]ethanesulfonate (HEPES) buffer (10 mM, pH 7.0) to produce DMPE and binary lipid (1 



Sensors 2012, 12                            
 

 

5970 

and 2) concentrations of 0.050 and 1.0 mM, respectively. Multilamellar liposomes with a 200–300 nm 
diameter were formed by vortex mixing the aqueous dispersion of the thin lipid film. Small unilamellar 
liposomes with a 60 nm diameter were prepared by sonication of the multilamellar liposomes using a 
cup-type sonicator (Sonifier 250D, Branson Ultrasonics Corp., Danbury, CT, USA) at 30 W for 20 min 
and above the phase transition temperature. Receptor 3 was prepared by addition of PLP to liposomes 
containing DMPE and incorporation confirmed by electronic absorption spectra [9,13].  

2.3. Measurements 

Electronic absorption spectra were recorded on a Shimadzu UV-2400 spectrophotometer (Shimadzu, 
Kyoto, Japan). Fluorescence spectra were collected with a Hitachi F-4500 spectrofluorometer (Hitachi 
High-Technologies Corp., Tokyo, Japan). Differential scanning calorimetry (DSC) was performed on 
an ultrasensitive microcalorimeter (VP-DSC; MicroCal Software Inc., GE Healthcare Japan Corp., 
Tokyo, Japan). Fluorescence microscopic observation was carried out using an Olympus IX71 
microscope with the images recorded using an Olympus DP70 color CCD camera (Olympus, Center 
Valley, PA, USA). 

2.4. Enzyme Assay 

LDH activity was evaluated in HEPES buffer (10 mM, pH 7.0) at 35 °C using sodium pyruvate as a 
substrate. A 1 mL sample solution was prepared by mixing LDH and NADH (2.8 nM and 0.25 mM, 
respectively) in the presence or absence of an appropriate amount of Cu2+ ions and liposomes, and the 
reaction initiated by addition of pyruvate (0.50 mM). Under the enzyme assay conditions, concentrations 
of LDH, NADH and pyruvate were set to give the maximum initial velocity. The catalytic activity was 
evaluated spectrophotometrically by measuring NADH consumption coupled with pyruvate reduction to 
L-lactate. The NADH molar extinction coefficient at 340 nm was 6,220 M–1·cm–1. 

3. Results and Discussion  

3.1. Design of Bio-Inspired Molecular Device 

Liposomes are spherical, hollow particles with a lipid bilayer shell several nanometers thick and 
have been frequently used in drug and gene delivery systems and as bioreactors [27–29]. In this study, 
a liposome formed with a cationic peptide lipid (1) and a phospholipid (2) was employed as 
scaffolding for a molecular device designed to sense liposome fusion. A water-soluble enzyme, LDH, 
was immobilized on the external liposomal surface through electrostatic interactions [30], with LDH 
catalytic activity retained; in contrast, activity was not retained by LDH on micelles of the 
cationic surfactant cetyltrimethylammonium bromide, which denatures LDH, extinguishing catalytic 
activity [31]. Thus, the cationic liposomal membrane used here served as a sophisticated scaffold for 
the supramolecular assembly of an enzyme and a synthetic receptor.  

Some metal ions act as enzyme inhibitors and we have previously reported that Cu2+ ions potently 
inhibit LDH in a reversible and competitive manner, regardless of its residence on liposomes [31].  

A functional synthetic receptor in the current system must fulfill the following requirements: (i) the 
receptor effectively binds to the liposomal membrane; (ii) the receptor provides a molecular 
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recognition site for a metal ion acting as a mediator between the receptor and enzyme; and (iii) the 
receptor binding affinity toward the mediator varies according to the membranes’ lipid composition. 
Based on these criteria, receptor 3 was employed as it is capable of changing metal ion binding affinity 
depending on the liposome phase state [13].  

3.2. Effect of Lipid Matrix on Enzymatic Activity 

The effect of the liposome lipid matrix on enzymatic activity was evaluated using multilamellar 
liposomes formed from lipids 1 and 2 at various molar ratios. The transition temperatures from the gel 
to liquid-crystalline phase were observed from 25 to 41 °C by DSC (Figure 4). The results indicated 
that the liposome phase transition was easily controlled by the lipid molar ratio.  

Figure 4. Correlations of lipid molar fraction with LDH activity (open circle) and phase 
transition temperature (closed) of the bio-inspired molecular device in HEPES buffer  
(10 mM) at pH 7.0 and 35 °C. Concentrations in mM: [1]+[2], 1.0; [DMPE], 0.05; [PLP], 
0.02; [LDH], 2.8 × 10−6; [NADH], 0.25; [pyruvate], 0.50; and [Cu2+], 4.0 × 10−3.  

 

The activity of LDH immobilized on the liposome also functionalized with the receptor and 
mediator was evaluated in HEPES buffer (10 mM, pH 7.0) and at 35 °C. The reduction rate of 
pyruvate to L-lactate was monitored spectrophotometrically by following the concurrent NADH 
consumption rate (v0), and the LDH activity represented as the v0 magnitude in the presence of Cu2+ 
ions relative to the copper-free system. The lipid matrix dependence of LDH activity showed good 
correlation with the phase transition temperature (Figure 4).  

When the molar ratio of lipid 1 to lipid 2 was changed from 5/5 to 2/8, LDH activity drastically 
switched from 37% to 65%. At 35 °C, the liposomes with a molar ratio of 2/8 and 5/5 were in a gel and 
liquid-crystalline state, respectively, and thus, the enzymatic activity was clearly capable of switching 
on and off below and above the membrane’s phase transition temperature, respectively.  

Receptor 3 has previously been shown to decrease the binding constant for Cu2+ ions in the  
liquid-crystalline state compared to the gel state [13]. In the latter state, receptor 3 exhibits higher 
affinity for Cu2+ ions than the enzyme, resulting in an enzymatically active state. On the other hand, 
the liquid-crystalline state allows the enzyme to bind Cu2+ ions more strongly than the receptor and 
switches off activity, the Cu2+ ion competitively inhibiting LDH. These results indicated that, if the 
present functionalized liposomes changed their phase state upon liposome fusion, fusion events could 
be detected by changes in enzymatic activity.  
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3.3. Liposome Fusion Behavior  

It is well known that liposome fusion can be induced by water-soluble polymers [23,24]. The present 
work utilized an anionic and a non-ionic polymer, poly(viny1 sulfate) potassium salt (PVSK) and 
poly(vinyl alcohol) (PVA), respectively. Fusion efficiency upon addition of these polymers to liposomes 
was evaluated by a published method using fluorescence resonance energy transfer (FRET) [32]. Briefly, 
liposome fusion was monitored using a couple of fluorescent phosphatidylethanolamine derivatives 
containing a rhodamine (Rh-PE) or N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) moiety (NBD-PE). The 
NBD-PE absorption and fluorescence maxima appeared at 450 and 530 nm, respectively. On the other 
hand, the Rh-PE has absorption and fluorescence maxima at 540 and 590 nm, respectively. If Rh-PE 
was located close to NBD-PE in the liposome, NBD-PE excitation resulted in Rh-PE emission at  
590 nm due to FRET behavior.  

Fluorescence-labeled liposomes were prepared by sonication of an aqueous liposome dispersion 
composed of lipids 1 and 2 (0.20 and 0.80 mM, respectively) in the presence of Rh-PE and NBD-PE 
(both 0.5 µM). The resulting liposomes were mixed with unlabeled aqueous liposomes, composed of  
1 and 2 (both 0.50 mM), in a 1/9 (v/v) ratio at pH 7.0 and 35 °C. Upon NBD-PE excitation at 450 nm, 
the resulting solutions showed fluorescence emission at 530 and 590 nm, reflecting emissions from 
NBD-PE and Rh-PE, respectively. When PVSK or PVA was added to the aquous liposome, the 
fluorescence intensity at 530 nm increased as polymer concentration increased, with a concomitant 
decrease of the intensity at 590 nm. Thus, fusion efficiency was evaluated using a calibration set of 
fluorescent spectra, allowing description of fusion dependence on polymer concentration (Figure 5). 
Anionic PVSK was bound on the cationic liposome surface through electrostatic interactions to induce 
membrane fusion probably due to dehydration and disruption of membrane surface. On the other hand, 
nonionic PVA showed little effect on fusion of cationic liposomes as compared with anionic PVSK. In 
the present cationic liposomal system, anionic PVSK was the more effective fusogen compared with 
non-ionic PVA.  

Figure 5. Dependences of polymer concentration on liposome fusion efficiency for PVSK 
and PVA (open and closed circles, respectively) evaluated by FRET assay. Aqueous 
fluorescence-labeled liposomes composed of lipids 1 and 2 (0.20 and 0.80 mM, respectively) 
and Rh-PE and NBD-PE (both 0.50 µM) were mixed with unlabeled aqueous liposomes 
composed of 1 and 2 (both 0.50 mM) in a volume ratio of 1/9 (v/v) at pH 7.0 and 35 °C; 
fusion efficiency evaluated for by addition of various concentrations of a polymer.  
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Polymer-induced fusion behavior was also evaluated by DSC measurements (Figure 6), and it was 
found that small unilamellar liposomes composed of lipids 1 and 2 at a 5/5 molar ratio and 60 nm 
diameter showed a broad phase transition from the gel to liquid-crystalline state, with a maximum at 
28.1 °C. On the other hand, liposomes with a molar ratio of 2/8 exhibited a phase transition at 39.5 °C. 
When 5/5 lipid molar ratio liposomes were mixed those with a 2/8 molar ratio in a 9/1 (v/v) ratio, the 
DSC thermogram was a simple overlay of the individual DCS thermograms. Upon addition of PVSK 
to the mixed liposome preparation, the thermogram changed to show a single phase transition with a 
maximum at 30.8 °C, which was in good agreement with thermograms for large unilamellar liposomes 
composed of lipids 1 and 2 at a 47/53 molar ratio and a maximum at 31.4 °C, corresponding to 
liposomes formed through ideal fusion.  

Figure 6. DSC thermograms from aqueous liposomes composed of lipids 1 and 2 at a 5/5 
or 2/8 molar ratio (dotted and dashed line, respectively) with no polymer and their 9/1 (v/v) 
mixture with PVSK (solid line). Concentrations in mM: [1]+[2], 1.0 and [PVSK], 0.80 (per 
monomer unit).  

 

Figure 7. Fluorescence microscopic images of a giant liposome composed of 1 and 2 at a  
2/8 molar ratio and labeled with Rh-PE (A), small unilamellar liposomes at a 5/5 molar ratio 
and labeled with rhodamine 123 (B), and their 1/9 (v/v) mixture with PVSK (C). 
Concentrations in mM: [1]+[2], 1.0 and [PVSK], 0.80 (per monomer unit); scale bar, 10 µm.  

 

PVSK-induced fusion of liposomes was also observed by fluorescence microscopy. Giant 
liposomes composed of lipids 1 and 2 at a 2/8 molar ratio and ca. 10 µm were prepared and the 
membranes labeled with red fluorescent Rh-PE (Figure 7(A)). Small unilamellar liposomes at a 5/5 
lipid molar ratio and 60 nm were also prepared and the inner aqueous phase labeled with green 
fluorescent rhodamine 123 (Figure 7(B)). The aqueous dispersions of giant and small unilamellar 
liposomes were then mixed in a 1/9 (v/v) ratio, followed by PVSK addition. The resulting giant 
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liposomes possessed clearly observed red-colored lipid bilayers and green-colored inner aqueous 
phases, indicating that PVSK induced liposome fusion (Figure 7(C)).  

3.4. Switching of Enzymatic Activity 

Based on the above results, the performance of these functionalized liposomes as molecular devices 
for sensing liposome fusion was next kinetically evaluated by means of electronic absorption 
spectroscopy. Enzymatic activity was evaluated as the initial velocity (v0) magnitude in the presence of 
Cu2+ ions relative to the absence of Cu2+ ions.  

Table 1. Enzymatic activity on liposomes in HEPES buffer (10 mM) at pH 7.0 and 35 °C a. 

Entry 
Component v 0  

(nM·s−1) b 
Activity  

(%) c Liposome Polymer Metal ion 

1 none none none 360 100 
2 none none Cu2+ 10 4 
3 none PVA none 340 100 
4 none PVA Cu2+ 20 6 
5 none PVSK none 340 100 
6 none PVSK Cu2+ 20 6 
7 1 & 2 (2/8)d none none 290 100 
8 1 & 2 (2/8)d none Cu2+ 200 68 
9 1 & 2 (mix)e PVA none 290 100 

10 1 & 2 (mix)e PVA Cu2+ 180 62 
11 1 & 2 (mix)e PVSK none 290 100 
12 1 & 2 (mix)e PVSK Cu2+ 120 42 

a Concentrations in mM: [1]+[2], 1.0; [DMPE], 0.05; [PLP], 0.02; [LDH], 2.8 × 10−6; [NADH], 0.25; 
[pyruvate], 0.5; [Cu2+], 4.0 × 10−3; and [polymer], 0.8; b Initial velocity for LDH reduction of pyruvate to  
L-lactate monitored by spectrophotometric detection of NADH consumption; values accurate within ±5%; c 

Magnitude of v0 in presence of Cu2+ ions compared to that in the Cu2+-free system; d Liposome composed 
of 1 and 2 in 2/8 molar ratio and receptor; e 1/9 (v/v) Mixture of aqueous liposome composed of 1 and 2 
(molar ratio, 2/8) with receptor and aqueous liposome composed of 1 and 2 (molar ratio, 5/5) without 
receptor.  

In homogeneous aqueous solution, LDH activity was reduced to 4% of the Cu2+-free system by  
4.0 μM Cu2+ ions (Table 1, Entries 1 and 2). Upon addition of polymers, such as PVA or PVSK, the 
enzymatic activity was comparable to the polymer-free system (Table 1, Entries 3 and 5), indicating 
that these polymers did not influence enzymatic activity. The enzyme inhibition response to Cu2+ ions 
in the presence of polymers was also analogous to the polymer-free system (Table 1, Entries 4 and 6).  

In a liposome system composed of lipids 1 and 2 at a 2/8 molar ratio containing the receptor 3, LDH 
relative activity in the presence of Cu2+ ions was 68% of the Cu2+-free system (Table 1, Entries 7 and 
8). The higher enzymatic activity in liposome system than that without liposome in the presence of 
Cu2+ ions strongly suggests that the pyridoxal moiety of receptor 3 acted as an effective metal-binding 
site. That is, as the liposomes were in a gel state under the present conditions, the receptor 3 binding 
affinity for Cu2+ ions was much higher than the enzyme and, thus, LDH activity drastically recovered 
in the functionalized liposome compared to the homogeneous aqueous solution. 
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In the mixed liposomal system containing the liposomes composed of lipids 1 and 2 at both 2/8 and 
5/5 molar ratios, LDH activity in the presence of Cu2+ ions and PVA was 62% of the Cu2+-free system 
(Table 1, Entries 9 and 10). The Cu2+-inhibition effect was comparable to the corresponding  
polymer-free system (Table 1, Entries 7 and 8), as PVA scarcely induced liposome fusion. On the 
other hand, in the mixed liposome system containing PVSK instead of PVA, LDH activity in the 
presence of Cu2+ ions was 42% of the Cu2+-free system (Table 1, Entries 11 and 12). The difference in 
LDH activities in the presence of Cu2+ ions upon addition of either polymer clearly reflected the 
difference in their fusion efficiencies. At 35°C, liposomes composed of lipids 1 and 2 at 2/8 and 5/5 
molar ratios are in a gel and liquid-crystalline state, respectively. When PVSK induced fusion of these 
functionalized liposomes, the fused liposomes transitioned from the gel to liquid-crystalline state. Thus, 
receptor binding affinity toward the mediator decreased, enhancing mediator inhibition of the enzyme. 

4. Conclusions  

A novel bio-inspired molecular device was created in which enzymatic activity on a liposomal 
membrane was switched on or off by a thermo-responsive receptor sensitive to changes in the phase 
state of membrane. Although the switching range of the present system should be expanded much 
more, the present supramolecular system represents a unique signal transduction behavior, detecting 
liposome fusion through its response in enzyme activity changes. Further improvement of the present 
sensing system will be achieved, for example, by development of a potent artificial receptor exhibiting 
more drastic switching behavior for the recognition of mediator species above and below the phase 
transition of lipid membrane. Attempts to apply this system to molecular communication are currently 
underway [33], representing a new communication paradigm by using molecules as information carriers. 
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