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Abstract: Superconducting point contacts have been used for measuring magnetic
polarizations, identifying magnetic impurities, electronic structures, and even the vibrational
modes of small molecules. Due to intrinsically small energy scale in the subgap structures of
the supercurrent determined by the size of the superconducting energy gap, superconductors
provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev
reflection process between normal metal and superconductor carries complex and rich
information which can be utilized as powerful sensor when fully exploited. In this review, we
would discuss recent experimental and theoretical developments in the supercurrent transport
through superconducting point contacts and their relevance to sensing applications, and we
would highlight their current issues and potentials. A true utilization of the method based on
Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.
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1. Introduction

Since its first discovery over a hundred years ago [1], superconductors have been utilized for various
sensing applications, among others. Superconducting quantum interference devices (SQUIDs) for
example, are ubiquitous for ultrasensitive magnetic sensors such as magnetic resonance imaging (MRI)
in medical applications, thanks to the Josephson effects [2]. Less common applications are point
contact Andreev reflection (PCAR) spectroscopies, which are still fairly limited mainly in laboratory
demonstrations and theoretical studies. This is due to non-trivial Andreev physics that is involved in the
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supercurrent transport through point contacts (PC) which requires more rigorous theoretical treatments
in order to decipher the underlying physics and therefore to interpret the experimental results correctly.
PC can be fabricated with various methods, for example using a sharp or needle like metallic probe
with chemically etched tip, which is then pressed onto another metallic surface using a combination
of piezoelectric actuator and differential screw mechanism [3]. A combination of reactive ion etching
(RIE) and electron beam machining is also common to produce nanobridges [4], which are basically
nanoholes drilled through a thin insulator. Another common technique is micro-controlled break junction
(MCBJ) [5], which is basically a metallic nanocontact produced with electron beam machining that can
be broken up to produce an atomic gap. This gap can be precisely adjusted using a piezoelectric actuator.
The contact sizes range from a few nanometers down to a single atom, and therefore the transport through
these PCs is mainly ballistic or under the Sharvin limit [6], where the constriction or the contact size is
much smaller than the elastic mean free path of the electrons.

Over the past decade there are mainly two very significant landmarks in the applications of PCAR
spectroscopies. The first one is the measurement of magnetic polarization [3,7], which utilizes
the fact that Andreev process is suppressed when a supercurrent flows from a superconductor to
a magnetic normal metal. The degree of polarization can be precisely measured by fitting the
entire differential conductance with an appropriate model based on a semiclassical theory, which
would be discussed in detail later in this review. This method has spurred new experimental and
theoretical developments in magnetic polarization measurements, partly because the PCAR method
is easier and more flexible compared to the older methods such as spin-dependent tunneling planar
junctions [8] and spin-resolved photoemissions spectroscopy [9]. The second significant landmark
is the experimental determination of individual transmission quantum channels of a superconducting
single-atom contact [10–12], utilizing a microscopic Hamiltonian model and nonequilibrium Green’s
functions technique to fit the current-voltage curves. This was the first time that the details of quantum
conduction channels have ever been resolved experimentally after it was first proposed more than fifty
years ago by Landauer [13,14]. Since then, the microscopic Hamiltonian theory is becoming the
mainstream in the subsequent development of superconducting quantum transport. Many experiments
followed after this pioneering work discussing other various aspects such as using different contact
materials from niobium [15,16] , effects of diffusivity [17], ferromagnetic interface [18], hydrogen
adsorption [19], or structural deformation effects [20], etc. There are also other more recent exciting
experimental developments such as the work of Ji et al. [21] and Marchenkov et al. [22], and we would
also briefly discuss them in the section on experimental surveys.

In order to have a meaningful physical understanding of the PCAR physics, we shall also present
a detailed discussions of the theoretical aspects in both semiclassical and quantum pictures. The
theoretical discussions in this review shall be divided into two parts. The first part is the summary
of the semiclassical treatment based on the famous Blonder–Tinkham–Klapwijk (BTK) theory [23]
and its relevant extensions for the PCAR magnetic polarization measurements. The second part is the
so-called quantum Hamiltonian theory where we would adopt nonequilibrium Green’s function method
which is regarded as the most rigorous quantum perturbative technique for dealing with nonequilibrium
problems [24]. This formalism fits the atomic point contacts where the conduction consists of only
a few quantum channels. We would derive the supercurrent based on the Bardeen–Cooper–Schrieffer
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(BCS) model of Hamiltonian [25], and highlight some applications of the theory such as to resolve
individual quantum channels of a superconducting MCBJ [10], and to study quantum dots coupled to
superconducting leads under external radiations [26].

2. Experimental Surveys

2.1. Magnetic Polarization Measurements

The technique of PCAR spectroscopy has been used for measuring the polarization of ferromagnetic
materials [3,7,27], which is mainly driven by the need to search suitable materials for spintronic
devices [28,29]. The PCAR method provides easier and more flexible measurements compared to the
conventional spin tunneling using planar junctions [8] or spin resolved photoemissions spectroscopy [9].
Unlike the planar junction method, PCAR does not need application of large magnetic field of several
Teslas, and there is no constraints in terms of thin film fabrications which impose severe limitations on
the types of materials that can be tested. Also, PCAR offers better energy resolutions compared to the
photoemission method which is typically limited to ∼1 meV resolutions. The PC and the sample are
immersed in a liquid helium bath to keep the temperature below the transition temperature Tc. The
positioning and adjustment of the PC employed standard piezoelectric actuators for achieving ideal
ballistic contacts. Some cares must be taken to prevent excessive pressure on the tip as this may
change electronic properties of the materials and hence the spin polarizations [30]. The current is usually
obtained using standard AC lock-in techniques at few kHz frequency.

Figure 1. (a) typical I-V curves in PCAR measurements. During the normal state (T > Tc)

the current shows the typical ohmic response. After the PC becomes superconducting
(T < Tc), non-magnetic systems (P = 0) show excess current due to Andreev reflection
(AR) process, while ferromagnetic systems (P = 1) show suppression of AR process leading
to suppression of current; (b) Normalized conductance for various polarizations, in the clean
metallic limit (Z = 0). The bias is in the units of superconducting energy gap.

-4∆ -3∆ -2∆ -∆ 0 ∆ 2∆ 3∆ 4∆

C
ur

re
nt

 (
ar

bi
tr

ar
y 

un
its

)

Bias (eV)

(a) normal state
P = 0
P = 1

0.0

1.0

2.0

-4∆ -3∆ -2∆ -∆ 0 ∆ 2∆ 3∆ 4∆

G
N

S
/G

N
N

Bias (eV)

(b)

T/Tc=0.1

P = 0.0
P = 1.0
P = 0.3

The PCAR method is based on the fact that the current through the PC differs when the tip is
superconducting compared to when it is in normal state. The PCAR method is based on the behaviour
of the conductance at very low bias where the current is most dependent on the polarization P of the



Sensors 2012, 12 6052

ferromagnet. At low bias electrons enter the gap through Andreev reflection (AR) mechanism, which
produces a hole that travels in opposite direction for every electron that enters the gap. The net charge
of 2e that moves as supercurrent results in the doubling of conductance, i.e., GNS/GNN = 2. This ratio is
called the normalized conductance. When the normal metal is a ferromagnet with perfect polarization,
i.e., P = 1, then the probability for the electron to make a pair with another electron with opposite spin
is virtually zero, and therefore AR is completely suppressed at the interface as illustrated in Figure 1(a).
This leads to zero conductance, i.e., GNS/GNN = 0. A simple linear interpolation between these two
extremes gives, GNS/GNN = 2(1 − P ), and based on this ballistic assumption, Upadhyay et al. [7] and
Soulen et al. [3,30] independently made the first PCAR magnetic polarization measurements, though
the idea for deducing spin polarization from conductance was already proposed by de Jong et al. [27].
The theoretical normalized conductance for different polarizations can be seen in Figure 1(b). They
fit the entire normalized differential conductance curves for Co, Ni, and some compound ferromagnets
as well as Cu. Of course this ballistic assumption is insufficient and the effects of some diffusivity,
impurities and surface properties at the contact must be incorporated in order to make better fits to the
experimental curves.

Mazin et al. [31] and Strijkers et al. [32] proposed a straightforward extension to the BTK theory,
which then became a more standard method for polarization measurements with PCARs. As the
scattering suppresses AR at low bias and creates sharp peaks in the conductance at eV = ±∆, a
careful account of the diffusive transport is necessary to obtain more reliable estimate for the polarization
measurements. Suppression of AR may be misinterpreted as overestimation of polarization if scattering
is not properly accounted for. A different parameterization for the BTK coefficients was then proposed
and used to determine the spin polarization measurements in half-metallic CrO2 [33]. The modified
BTK versions by Mazin and Strijkers are fairly similar and a comparison for CrO2 system reveals only
0.02 difference in the polarization measurements, which is about the accuracy of the PCAR method [34].
These details shall be discussed in the theoretical sections. The model also incorporates proximity effects
which can reduce the effective gap of superconductors.

Hundreds of related works on PCAR magnetic measurements appeared following these main
experimental and theoretical achievements ever since. For instance, Pérez-Willard et al. [35] performed
PCAR measurements on Al/Co contact fabricated with RIE method [4] and analyzed the dependence
of conductance on the temperatures and magnetic fields. The temperature, as predicted by the extended
BTK model, reduces the effective superconducting gap and still finds nice agreements with the theory
apart from the temperatures close to Tc. Applications of magnetic field parallel to the insulating layer
also modifies the Andreev spectra. Magnetic fields reduces the height of the two maxima around the
gap and the transition to normal conductance at the threshold field was abrupt. Panguluri et al. [36]
performed PCAR measurement on MnAs epitaxial films grown on [011] GaAs using Pb and Sn point
contacts. They also performed a phonon spectra analysis (d2I/dV 2) of the contacts and concluded that
smaller contact diameters are necessary to achieve truly ballistic transport, and to obtain a reliable PCAR
measurements contact sizes around 10 nm or smaller are generally preferable. PCAR can also be used
to measure spin diffusion lengths. For example Geresdi et al. and others [37,38] used PCAR to measure
spin relaxation in Pt thin films grown on the top of a ferromagnetic Co layer, where by the temperature
dependence was investigated and various sources of the spin relaxation in Pt were identified.
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The widespread use of the BTK theory extension for PCAR spectroscopy has been questioned by
Xia et al. [39] who argued that realistic interface conditions must be considered if PCAR measurements
are to be valid after all. From the theoretical works on giant magnetoresistance it is generally known that
reflection processes at the interface between nonmagnetic and ferromagnetic materials are strongly spin
dependent [40], yet the model used in PCAR experiments never introduced spin-dependent scattering at
the interface. Xia et al. found that failing to take spin-dependent scattering potential into account would
result in poor fitting for Pb/Co systems. Grein et al. [41] recently propose spin-active scattering model
of PCAR spectra, which include spin filtering and spin mixing effects. They found that the shape of the
interface potential has important effects on the spin mixing effects, which probably makes it necessary
to reconsider the general validity of some PCAR measurements once again.

2.2. Individual Quantum Channel Measurements

The second important landmark in the applications of the PCAR method is to determine the individual
transmission coefficients of an atomic point contact (APC) [10,11] or often called quantum point
contact (QPC). A typical APC consists only of a small number of eigenchannels and each of them is
characterized by a transmission coefficient, τn. Each eigenchannel contributes to the conductance by
G0τn, where G0 is the quantum conductance given by G0 = 2e2/h. The total conductance of an APC is
thus given by [13,14],

G =
2e2

h

∑
n

τn (1)

Since the transmission coefficient of each channels can take value between zero and unity, the
conductance of a single channel is mostly less than G0 despite the fact that statistically the conductance
of an APC tends to be quantized. The quantitative information on individual conductance channels has
been inaccessible through normal conductance measurements, but for superconducting systems this can
be extracted due to the sensitivity of the so-called sub-gap structures (SGS) of the superconductor at
low bias to small changes of each conductance channels. The SGS originates from multiple Andreev
reflection (MAR) [42] between two superconductors and the centre normal (vacuum) region, which we
shall discuss in detail later in the theory section. This presumably resolves the old question that whether a
quantum conductance in the measurements actually corresponds to a number of partially open channels,
instead of just one channel. Scheer et al. [10] demonstrated using a superconducting Aluminium APC
fabricated with MCBJ method, and fitted the time averaged current with the theoretical model based on
the quantum Hamiltonian theory [43]. They found that a single Al atomic contact actually corresponds
to three partially open eigenchannels, which exactly correspond to the number of the valence orbitals as
illustrated in Figure 2. This conclusion is further verified also for Pb and Nb APCs [12]. The study is
very fundamental to our understanding in the science of molecular electronics and mesoscopic transport
in general. The total current can be analyzed from the independent current contribution of each channels,
i.e.,

I(V ) =
∑
n

In(V, τn) (2)

=
2e

h

∫ ∞

−∞
T (E, V ) [fL(E)− fR(E)] dE (3)



Sensors 2012, 12 6054

from which the individual τn can be deduced, the so-called “PIN code” of the eigenchannels. We shall
later discuss the derivation of the transmission terms using quantum Hamiltonian model. Excellent
quantitative agreements with the experimental data provide a strong justification for the validity of the
subsequent developing theory of superconducting quantum transport.

Figure 2. Measured I-V curves for two different Al atomic point contacts having different
sets of {τn}: a = {0.747, 0.168, 0.036} and b = {0.519, 0.253, 0.106}. Each τn is associated
with each valence orbital of Al. The current and voltages are in reduced units, the current
is normalized with respect to the total conductance measured by the slope of the I-V at high
voltages eV > 5∆. Effectively exact fitting of the experimental data shows the reliability of
the theoretical model based on quantum Hamiltonian [11]. Adapted figure reproduced with
kind permission from the authors [10]. Other details can be found in the original paper.

2.3. Magnetic Impurities Measurements

PCAR spectroscopy has also been used to detect and identify magnetic impurities on superconducting
surfaces. Yazdani et al. [44] used gold scanning tunneling microscope (STM) tip to study excitations
from magnetic adatoms of Mn and Gd on superconducting Nb substrate. Atoms such as Cr, Mn and Gd
have been found to reduce the transition temperature Tc of Nb films, and magnetic impurities in general
reduce superconducting order parameter and lead to quasiparticle excitations within the superconducting
gap [45,46]. Excitations from the magnetic impurities were confirmed by Yazdani et al. by comparing
them with non-magnetic adatoms such as Ag, which showed almost featureless conductance across the
entire bias. Ji et al. [21] performed an improved experiment with both the STM tip and the substrate made
from superconducting materials Nb and Pb respectively. Unlike Yazdani’s work where a quantitative
analysis for adatom identifications had been hindered by poor energy resolutions, Ji et al. made very
significant improvements due to the existence of MAR between the two superconductors which provides
high resolution SGS in the conductance, as illustrated in Figure 3. More symmetric SGS structures
which are resolved up to 0.1 meV can clearly be seen in the conductance measurements. They claimed
that the method can potentially be used to unambiguously detect magnetic adatoms on a superconducting
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surface, because these spectra are unique fingerprints of the spin states of adatoms, as a result of complex
interactions between Andreev bound states (ABS) process and the electronic properties of the adatoms.
They also performed similar measurements on dimers of Mn and Cr.

Figure 3. Detecting a single atom magnetic impurities of Mn and Cr on Pb surface with a
Nb STM tip. (a) is the schematic view of the set up; and (b) is the differential conductance
(dI/dV ) for a clean Pb surface; (c) is for Cr atom where six peaks are detected and (d) is
for Mn atom where four peaks are detected. The method proposes the use of SGS to identify
atomic size magnetic impurities on surfaces. Figures were reproduced and adapted with kind
permission from the authors [21].

Ji et al. used a thin film superconducting Pb which is deposited on a clean Si(111) up to 20 monolayers
thick. The superconducting gap of the Pb thin film was found to be 1.30 meV while the Nb STM tip was
between 1.44 to 1.52 meV. The effective energy gap of the system turned out to be around 3.0 meV as
can be seen in in Figure 3(b) for a clean Pb surface. Different number of peaks with varying intensities
were observed for different adatoms. Ji et al. suggested that these correspond to each angular momentum
channels, though this still requires further investigations. Electron transport process between the STM
tip and the adatoms clearly involves only a few quantum channels and the interactions of the ABS with
the spin impurities need to be modeled microscopically in order to fit and interpret the experimental
data. Apart from the interface issues which are always tricky, first principle calculations of the adatoms
combined with suitable model of the superconductors possibly enable unambiguous determination of
magnetic adatoms.
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2.4. Vibrational Mode Measurements

Excitations of vibrational modes by traversing electrons have been observed in metallic electrodes
attached to nanostructures and molecules such as carbon nanotubes [47,48], hydrogen molecules [49],
organic molecules [50,51], gold atomic chains [52], and fullerenes [53]. When a vibrational mode
resonates with the bias energy, the conductance can either be enhanced or suppressed by the vibrations.
The vibrational energy of the nth-mode is given by ~ωn, and the bias at which this takes place is
Vn = ~ωn/e. Thus in such systems, vibrational modes can be detected directly from current
measurements alone and to determine the actual modes one must combine it with standard first principle
calculations in order to model the complete vibrating molecule. A recent application of PCAR is to
study vibrational modes of a suspended Nb dimer conducted by Marchenkov et al. [22], as illustrated
in Figure 4. The dimer was fabricated with the MCBJ technique, and from previous study based on
density functional theory (DFT) calculations and conductance measurements, it was confirmed that the
configurations at the tip before the break-up was a Nb dimer, where the symmetry and asymmetry of
the dimer position across the gap corresponds to either high or low conductance respectively [54,55].
Though in this particular setup the dimer is made of the same atoms as the leads, the idea is still
applicable for other types of molecules to be probed with similar technique. This would enable us to
study vibrational modes of a truly isolated molecule, unlike the behaviours of ensembles such as in the
conventional IR, UV or NMR spectroscopies [56,57].

Figure 4. The schematic view of the atomic configurations for measuring vibrational
modes of an Nb dimer fabricated with MCBJ technique [22]. The Nb leads were adjusted
with piezoelectric movements. The dimer was found to have four modes of vibrations:
longitudinal (along the dimer), transverse (up and down), and wagging (torsional) about
its centre of mass. These modes affect the MAR tunneling process between the leads and
were detected as current singularities inside and outside the superconducting gaps.

The measurements were performed at various temperatures from well below Tc up to 12 K.
Resonances for high conductance configurations (the dimer is symmetric between the leads) were
analysed which appeared both inside and outside the SGS. Particularly for resonances outside SGS, the
so-called over the gap structure (OGS), they observed more symmetric and persistent patterns through
out different temperatures until they diminished as T > Tc. Unlike the usual SGS which originate from
MAR, the OGS do not change positions with bias as the temperature varies. The OGS is not governed
by MAR; rather Marchenkov et al. suggested that the OGS originated from the atomic scale structural
and dynamical properties of the dimer which resonate with the Josephson current oscillations. The
exact shapes, amplitudes and widths of these features correspond to different vibronic and electronic
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coupling regimes. The time dependent electromagnetic fields of the Josephson oscillations resonate
with the vibrational eigenmodes of the Nb dimer. Further they compared the frequencies with ab
initio calculations based on DFT and found nice agreements for three different modes of vibrations:
longitudinal, transverse and wagging. The method offers a new physics to be used to study dynamical
properties of small molecules in general.

3. Theoretical Surveys

At the heart of the supercurrent transport mechanism is the so-called Andreev reflection (AR) process
which can take place when a superconductor is in contact with a normal metal [58]. In the superconductor
the quasiparticles form pairs of opposite spins commonly known as the Cooper pairs [59]. For a normal
electron to move into the superconductor, it needs to make a pair with another electron with the opposite
spin. At bias higher than superconducting gap energy, denoted as ∆, the electron enters as quasielectron
which relaxes into the Cooper pair over a charge relaxation distance. At bias eV < ∆, superconducting
gap prevents direct transfer of single electron states and as a result a hole is reflected back at the interface
in order to create a Cooper pair in the superconductor, resulting in the doubling of the conductance as
discussed in Section 2.1. When two superconductors are separated by a normal region, a series of
electron and hole reflection process take place, which is called multiple Andreev reflections (MAR) [42].
Illustrations can be made with a simple diagram in Figure 5 where a normal region is sandwiched in
between two superconductors with identical energy gaps and a small bias eV < ∆ is applied across the
superconductors. The current is oscillating across the junction with a frequency proportional to the bias,
ω = 2eV/~, known as the AC Josephson frequency, and the MAR process creates SGS in the IV curves.

Figure 5. Multiple Andreev reflection (MAR) process in a symmetric superconductor-
normal-superconductor (SNS) system with the normal region sufficiently thin to provide
ballistic trajectories. The dark particles (electrons) are the antiparticle of the white particles
(holes), and the reflection process repeats until they attain sufficient energy to overcome the
superconducting gap ∆. The horizontal axes on the superconductor sides represent density
of states.
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To illustrate the MAR process, we can use the following arguments: initially an electron from the
interface between N and S on the left is accelerated by the external field toward the right, but unable
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to enter due to the energy gap. This would result in a reflection of a hole moving back to the left.
The charge of 2e (one from the electron, the other from the hole moving in opposite direction) increase
the supercurrent. The process is repeated until the particle gains sufficient energy to overcome the
gap. Octavio et al. [42] explains, using the extension of BTK model [23], the SGS in the supercurrent
behaviour when the bias is comparable or smaller than ∆. Many researchers have suggested that the SGS
are basically current singularities that take place at bias V = 2∆/en where n = 1, 2, 3, . . . . However
the details of SGS also involve some subtle aspects that are still missing from the semi-empirical
approaches, such as the delicate interface properties. An entirely first principle microscopic theory
would be needed to quantitatively model the interface natures. A successful quantum theory that can do
so would enable PCAR to be used as a reliable sensor with ultrahigh sensitivity, since the SGS provide
submili-electronvolt energy resolutions.

3.1. The BTK Theory

Now we shall summarize the derivations of the phenomenological treatments for transport through
a normal-superconducting (NS) interface of the famous BTK theory [23]. First, let us discuss some
elementary results of the Bogoliubov de Gennes equation from which the BTK theory is derived. Readers
who are not familiar with superconductivity can consult some well known references [59].

3.1.1. The Bogoliubov de Gennes Equation

The Bogoliubov de Gennes equation [60] describes quasiparticles of electrons and holes in
superconductors, analogous to the way Schrödinger equation describes electrons and holes in normal
solids. Using the standard two state basis of electron-like and hole-like states, we can describe the wave
function as,

ψ(x, t) =

[
f(x, t)

g(x, t)

]
(4)

and the Bogoliubov de Gennes equation reads,

i~
∂ψ(x, t)

∂t
=

(
H(x) ∆(x)

∆(x) −H(x)

)
ψ(x, t) (5)

where,

H(x) = − ~2

2m

d2

dx2
+ V (x)− EF (6)

∆(x) is the spatially dependent superconducting energy gap (or quasiparticle coupling) and EF is the
Fermi energy. The mathematical structure of the equation implies time reversed dynamics of the holes
compared to that of the electron quasiparticles. For the simplest scenario where we have ∆(x) = ∆ and
V (x) = 0, we can have an eigenfunction solution of the form,

ψ(x, t) =

[
u

v

]
expi(kx−ωt) (7)

which gives the eigenenergy solution,

E2 =

(
~2k2

2m
− EF

)2

+∆2 (8)
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and the sketch of this energy can be seen in Figure 6 for a normal metal (∆ = 0) and a superconductor
(∆ > 0). The positive solution of the energy refers to the electron quasiparticles and the negative one to
hole quasiparticles. The superconducting energy gap is introduced whenever ∆ > 0, and this is typically
in the order of 1 meV for elemental (low Tc) superconductors, while EF is several eV in magnitude.
Another useful quantity is the density of states (DOS) which can be derived from elementary solid state
physics,

ρ(k)dk =
V

(2π)3
4πk2dk (9)

and a simple expression for the DOS ratio between the superconducting state to the normal state can be
easily derived. Assuming equal Fermi energy between N and S, (EF )N = (EF )S , and in the limit of
small energy range compared to the Fermi energy, we have,

ρS(E)

ρN(E)
= ρ(E) =

E√
E2 −∆2

(10)

for E > ∆ and zero otherwise.

Figure 6. Band diagram for N (left) S (right) interface for the BTK model. The
superconducting energy gap in reality is much smaller to Fermi energy (∆ ≪ EF ). Label
e is the incident electron, a is Andreev reflection, b is normal reflection, c is electron like
transmission, and d is hole like transmission. Figures are adapted from reference [23].
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3.1.2. Deriving Supercurrent in the BTK Theory

The original BTK theory solves the scattering conditions to obtain reflection and transmission
probabilities at the interface between normal metal and superconductor using the simplest possible
assumptions. First, BTK theory assumes equal Fermi energy between normal metal and superconductor.
Second, the superconducting gap ∆(x) is assumed to be spatially independent. In reality, when a
superconductor is in contact with a normal metal, there will be some proximity effects [60] due to
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diffusions of some Cooper pairs into the metal, which reduces the effective gap at the superconsuctor
interface. Proximity effects require spatially dependent ∆ for a certain length scale around the interface,
however in the BTK theory we shall neglect these effects and assume a sudden change of ∆. Third,
we shall neglect interactions in both the superconductor and the metal, i.e., V (x) = 0, for regions deep
inside the conductors and in the vicinity of x → 0 we can model a simple interface scattering potential
such as V (x) = Hδ(x) whereH is the strength of the scattering potential. Such a simple (but unrealistic)
scattering potential allows for analytical spatial solutions for the wave function as follows,

ψN(x) =

[
1

0

]
ei(kF+kN )x + a

[
0

1

]
ei(kF−kN )x + b

[
1

0

]
e−i(kF+kN )x (11)

ψS(x) = c

[
u

v

]
ei(kF+kS)x + d

[
v

u

]
ei(−kF+kS)x (12)

The wave-numbers kN and kS are measured from the Fermi-wave number kF . Referring to Figure 6,
the incident electron e has probability of unity, and it can experience Andreev reflection (a) or normal
reflection (b) an the interface. The transmission can take in the form of electron-like (c) or hole-like (d)
quasiparticles in the superconductor. Boundary conditions at the interface give,

ψN(0) = ψS(0) = ψ(0) (13)

ψ′
S(0)− ψ′

N(0) = H
2m

~2
ψ(0) (14)

This allows for the solutions of the coefficients and therefore the probabilities, A = |a|2, B = |b|2, etc.
The expressions for A and B are listed in Table 1, while the transmission probabilities C and D can
be calculated from conservation of probability C + D = 1 − A − B, but we do not really need their
expressions directly in order to derive the current later. The dimensionless quantity Z is defined as

Z2 =
mH2

2~2EF

often called the barrier strength, representing the strength of the scattering potential Hδ(x). Now we
consider those energies less than the gap energy, i.e., |E| < ∆. The incident electrons cannot enter the
superconductor as quasiparticles, therefore A + B = 1. If Z = 0, all electrons are Andreev reflected,
(A = 1, B = 0), while for Z > 0 some electrons are normally reflected, (A < 1, B > 0). To resolve
this we need to consider normal-normal (NN) interface by letting ∆ → 0 or ρ → 1. The transmission,
evaluated as 1− (A+B) is given by,

T =
1

1 + Z2
(15)

which is the standard result for delta potential scattering, and for Andreev reflection probability at the
Fermi energy is given by,

A =

[
1

1 + 2Z2

]2
(16)

which is roughly the square of the normal transmission. This reflects the fact that AR process requires
simultaneous transmission of two independent electrons.
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Table 1. Table for coefficients A (Andreev reflection) and B (normal reflection).

E < ∆ E > ∆

A = ∆2/
[
E2 + (∆2 − E2)(1 + 2Z2)2

]
A = (ρ2 − 1)/[ρ+ (1 + 2Z2)]2

B = 1− A B = 4Z2(1 + Z2)/
[
ρ+ (1 + 2Z2)]2

]
After we know the probabilities A and B, we are ready to calculate the current, which can be deduced

either from the left (normal metal) or the right (superconductor) hand side of the interface. Let us
consider from the normal metal side: at energy interval δE, there is a current contribution to the right
from the incident electron, a current contribution from AR which reflects holes to the left, i.e., current to
the right, and the normal reflection that contributes current to the left. Summing up all these we have,

δI(E) = −eAv(E)ρ(E)
[
1 + A(E)−B(E)

]
f(E)δE (17)

where e is the electronic charge, A is the point contact cross sectional area, v(E) is the electron velocity,
ρ(E) is the DOS, and f(E) is the Fermi–Dirac distribution function. There is also equivalent current
flowing to the left from the superconductor, but it has a different Fermi–Dirac distribution function due
to the applied bias,

δI(E) = eAv(E)ρ(E)
[
1 + A(E)−B(E)

]
f(E − eV )δE (18)

and the total current can be written as,

I = eA
∫
v(E)ρ(E)

[
1 + A(E)−B(E)

][
f(E − eV )− f(E)

]
dE (19)

The integration is mainly over a small energy region around the Fermi level since the term
[
f(E−eV )−

f(E)
]

is zero for large energy. In practice, eV ∼ ∆ ≪ EF , and thus the velocity and DOS can be taken
as constants,

I = eAvρ
∫ [

1 + A(E)−B(E)
][
f(E − eV )− f(E)

]
dE (20)

The conductance defined as G = dI/dV can be derived for both NN and NS system, giving the
conductance ratio of NN to NS as

GNS

GNN
= −(1 + Z2)

∫ [
1 + A(E)−B(E)

]
f ′(E − eV )dE (21)

which is the main results of the celebrated BTK theory. f ′(E) refers to the derivative of f(E) with
respect to energy. To calculate the current through SNS systems, Octavio et al. combined two BTK
formulations and used it to explain MAR effects in SNS junctions [42]. Interested readers can refer to
the original paper for details.

In order to extend the BTK theory to measure the spin polarizations of ferromagnets, Mazin et al. [31]
and Strijkers et al. [32] proposed that the current I is a superposition of a fully polarized current PI
and a fully non-polarized current (1 − P )I . The non-polarized current can be calculated using the
standard BTK theory while the polarized current needs to be calculated with modified expressions for
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the reflectivities Ã and B̃. The modified constants are determined as follows. The fully polarized current
consists of one electron spin species only, therefore there is no Andreev reflection, i.e., Ã = 0 and
B̃ + C̃ + D̃ = 1. At small energies |E| < ∆, there is no transmission, implying B̃ = 1 [32]. For
|E| < ∆, B̃ can be determined by assuming that the ratio between normally reflected and transmitted
electrons is independent of the polarization, in other words,

B

C +D
=

B̃

C̃ + D̃
(22)

that subsequently gives,

B̃ =
B

1− A
(23)

Complete tabulations of Ã and B̃ can be found in the original paper by Strijkers et al. [32].
However, Mazin et al. proposed a slightly different approach that, for electron with energy above the
superconducting gap, describes Andreev reflected holes as spatially decaying evanescent wave with finite
probability but carrying no current. This difference turns out to be a minor issue as they differ only by
a negligible amount when used to interpret the experiments [34]. The conductance ratio for the spin
polarized system is hence given by,

GNS

GNN
=− P (1 + Z2)

∫ [
1 + Ã− B̃(E)

]
f ′(E − eV )dE

− (1− P )(1 + Z2)

∫ [
1 + A(E)−B(E)

]
f ′(E − eV )dE

(24)

In the metallic limit of perfect contact, there is perfect transparency (Z = 0) and the normalized
conductance ratio for zero bias is simply given by 2(1 − P ) as stated earlier in the previous section
on the experimental surveys.

3.2. Quantum Hamiltonian Theory

In this section we shall summarize a model based on quantum Hamiltonian theory, whose origin can
be traced back from the early work by Bardeen who proposed a microscopic Hamiltonian approach for
tunneling junction problems [61]. We shall adopt nonequilibrium Green’s function (NEGF) formalism
to formulate relevant physical quantities. NEGF is a big topic on its own, and readers who are not
familiar with its formalism are recommended to browse reference [24], and perhaps some many body
topics such as reference [62] and [63]. The historical accounts for the developments of the theory for
superconducting resonant tunneling systems can be found in the well known references [43,64–70],
and readers who are interested in the details should consult the original papers. In particular, we
shall illustrate in detail the method by Sun et al. [67] for the supercurrent formulation. The quantum
Hamiltonian theory is based on the Bardeen–Cooper–Schrieffer (BCS) model [25], and it still has
free adjustable parameters such as the tunneling Hamiltonian and the leads. In order to have a truly
first principle method which takes into account the real atomic structure of the device, the theory of
superconductivity needs to be combined, for example, with density functional theory (DFT). Fortunately
such formalisms are already under developments [71,72] and by combining this formalism with NEGF
would enable a first principle calculation for superconducting transport. This is perhaps the future
endeavor for the researchers in the field.
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3.2.1. Model Hamiltonian and Current Derivation

In quantum Hamiltonian theory, a system with two metallic leads can be represented by two
independent Hamiltonians, HL and HR, together with a weak tunneling Hamiltonian between the leads,
HT , that represents coupling by which electrons are transferred from one lead to another. To model
experimental systems described in Sections 2.3 and 2.4 where quantum point contacts are used to
probe magnetic impurities or molecules, we can add an intermediate centre region where electrons
transit before they tunnel to the next lead. This can also be thought of a quantum dot represented by
a Hamiltonian HC . For a vacuum region between the leads such as in Section 2.2 we do not need HC .
The schematics for the system is shown in Figure 7. Expressions for the whole system’s Hamiltonian
can be written as the following,

H(t) = HL +HT (t) +HC +HR (25)

where [43],

HL +HR =
∑

k,σ,α=L,R

ϵkασa
†
kασakασ +

∑
k,α=L,R

∆kαakα↓a−kα↑ + H.c (26)

HC =
∑
i,σ

ϵiσc
†
iσciσ + interaction terms (27)

HT (t) =
∑

k,i,σ,α=L,R

tkαi e
i(ϕα+2eVαt)a†kασciσ + H.c. (28)

Figure 7. A resonant tunneling system which consists of two superconducting leads and a
quantum dot. The system is represented by three subsystem Hamiltonians, H = HL+HT +

HC +HR.
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The leads are governed by the mean field BCS theory [59]. Momentum index k refers to the leads,
and index i (or j) refers to the quantum dot which contains discrete energy levels ϵiσ. σ refers to the
spin, Vα is the chemical shift due to bias potential across the junction, and ϕα is the superconducting
phase of the leads. Operators a(†) annihilate (create) particle on their respective leads, while operators
c(†) do the same for the quantum dot. The time dependent phase is the consequence of the AC Josephson
effects in finite bias, and it is incorporated into the tunneling terms following a gauge transformation
suggested by Rogovin et al. [73]. For superconducting systems governed by the BCS Hamiltonian, we
can construct Green’s functions as 2 × 2 Nambu (spinor) space [74] similar to previous construction
for Bogoliubov de Gennes, and this is due to the anomalous terms in the potential which contain two
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operators with opposite spins and momentum. Nambu representation provides consistent and convenient
form of Green’s function required for the evaluation of equation of motion and perturbation theory. The
spinor terms are defined as,

αk =

[
ak↑

a†−k↓

]
and α†

k =
[
a†k↑ , a−k↓

]
(29)

For example we can calculate the (retarded) free propagator gr for the mean field BCS model as
the following,

gr(k, t, t′) =− iθ(t− t′)⟨{αk(t), α
†
k(t

′)}⟩

=− iθ(t− t′)

[
⟨{ak↑(t), a†k↑(t′)}⟩ ⟨{ak↑(t), a−k↓(t

′)}⟩
⟨{a†−k↓(t), a

†
k↑(t

′)}⟩ ⟨{a†−k↓(t), a−k↓(t
′)}⟩

]
(30)

Evaluations of this term gives [67,68],

∑
k

gr(k, t, t′) = −iθ(t− t′)

∫
dϵρNβ(ϵ)e−iϵ(t−t′)

[
1 ∆/ϵ

∆/ϵ 1

]
(31)

where ρN is normal density of states and β(ϵ) is a complex term related to the BCS DOS defined as,

β(ϵ) =
|ϵ|√

ϵ2 −∆2
θ(|ϵ| −∆) +

ϵ

i
√
∆2 − ϵ2

θ(∆− |ϵ|) (32)

Another useful free propagator is the lesser propagator given by,

∑
k

g<(k, t, t′) = i

∫
dϵρNf(ϵ)Re[β(ϵ)]e−iϵ(t−t′)

[
1 ∆/ϵ

∆/ϵ 1

]
(33)

Time-dependent supercurrent across the junction can be derived from the expectation value of the
time derivative of the number operator in any one leads, say the left one for convenience,

I(t) = −e⟨ṄL⟩ = ie⟨[NL(t), H(t)]⟩

= 2e Re
∑
i,k

Tr{G<
i,Lk(t, t)tLi(t)σz}

(34)

The term G<
i,Lk(t, t) is called lesser Green’s function, which is defined as,

G<
j,Lk(t, t1) = i

[
⟨a†Lk↑(t1)cj↑(t)⟩ ⟨aL−k↓(t1)cj↑(t)⟩
⟨a†Lk↑(t1)c

†
j↓(t)⟩ ⟨aL−k↓(t1)c

†
j↓(t)⟩

]
(35)

and the term tLi(t) is tunneling matrix given by,

tLj(t) =

[
tLje

i(ϕL+2eVLt) 0

0 −tLje−i(ϕL+2eVLt)

]
(36)

The term σz is the Pauli matrix,

σz =

[
1 0

0 −1

]
(37)
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The next step is to express the current in terms of the free propagator of the leads and Green’s function
of the quantum dot. This can be done through NEGF procedure where the corresponding time-ordered
Green’s function for G<

i,Lk is evaluated with NEGF time contour integral, followed by Langreth’s
analytical continuation. This gives the expression for G<

i,Lk as the following,

G<
j,Lk(t, t) =

∑
i

∫
dt′
(
Gr

ji(t, t
′)t∗Li(t

′)g<
Lk(t

′ − t) +G<
ji(t, t

′)t∗Li(t
′)ga

Lk(t
′ − t)

)
(38)

where the quantum dot’s Green’s functions are given by,

Gr
ij(t, t1) = −iθ(t− t1)

[
⟨{ci↑(t), c†j↑(t1)}⟩⟨{ci↑(t), cj↓(t1)}⟩
⟨{c†i↓(t), c

†
j↑(t1)}⟩⟨{c

†
i↓(t), cj↓(t1)}⟩

]
(39)

G<
ij(t, t1) = i

[
⟨c†j↑(t1)ci↑(t)⟩⟨cj↓(t1)ci↑(t)⟩
⟨c†j↑(t1)c

†
i↓(t)⟩⟨cj↓(t1)c

†
i↓(t)⟩

]
(40)

We can then substitute these into G< and write out the current equation. For simplicity in the current
example we can include only one localized level in the quantum dot, i.e., transport is only through a
single eigenchannel. Using the expressions for the BCS free propagators in the previous chapter and
after rearranging the terms we would obtain,

I(t) = −2e Im

t∫
−∞

dt1

∫
dϵ

2π
eiϵ(t−t1)Tr

{[
Re (βL(ϵ)) fL(ϵ)Gr(t, t1) + β⋆

L(ϵ)G
<(t, t1)

]
ΓLΣ̃L(ϵ)σz

}
(41)

and the term Σ̃L/R(ϵ) is a product term from the rearrangements defined as,

Σ̃L/R(ϵ) =

[
eieVL/R(t1−t) −∆L/R

ϵ
e−i(ϕL/R+eVL/R(t1+t))

−∆L/R

ϵ
ei(ϕL/R+eVL/R(t1+t)) e−ieVL/R(t1−t)

]
(42)

The term ΓL is the line width matrix function, a product of interlevel tunneling matrices and the normal
density of states ρN ,

ΓL;ij(t, t1) = 2πtLi(t)t
∗
Lj(t1)ρ

N
L (43)

which would be a constant in the case of single level quantum dot. Now in order to solve G
r/<
ij we need

to be more specific with the actual form of the interactions in Equation (27) of the quantum dot. For
illustrations, we can use the simplest case where the quantum dot is non-interacting, which enables exact
evaluations for Gr/<

ij . This corresponds to larger quantum dots where charge screening is sufficiently
strong to make the interactions to be accounted only as an overall self-consistent potential. In such simple
cases we can use the Dyson and Keldysh equations by first computing the corresponding selfenergies.
The selfenergies can be calculated easily from the equation of motions, which take the same form as the
resonant tunneling model [66,67],

Σ
r/<
L/Rij(t, t1) = t⋆L/Ri(t)

(∑
k

g
r/<
L/Rk(t, t1)

)
tL/Rj(t1) (44)

and using the BCS free propagators stated above we can easily get their explicit forms.



Sensors 2012, 12 6066

3.2.2. Time Averaged Current and Fourier Transformations

The Josephson current through SNS QPC oscillates at very high frequency, typically in the terahertz
range, which makes the time resolved quantities not so easily compared with the experiments. A
more convenient way would be to work with the time averaged quantities derived from the Fourier
transformation of the correct intrinsic frequencies of the systems. All dynamic quantities can be
expanded as harmonics of the fundamental frequency ω = 2 eV , i.e.,

I(t) =
∑
n

Ine
inωt (45)

The time average current is derived simply from the zeroth order term I0. Due to the two-time
correlations in the Green’s function, we require a transformation that can account them in a consistent
manner, and this is done through a so-called double Fourier transform of the Green’s functions,

Gmn(ϵ) =
1

2π

∫ T/2

−T/2

dt1e
−i(ϵ+nω)t1

∫ T/2

−T/2

dtei(ϵ+mω)tG(ϵ, t, t1) (46)

The retarded Green’s function is calculated with the Dyson equation in Fourier transformed form, hence
the matrices here are in Fourier space and Nambu space, and for the case of multilevel system it
would be the tensor product of all, i.e., [m,n] ⊗ [i, j] ⊗ [2 × 2] and the retarded function is obtained
by straightforward inversion of the whole matrix. The lesser function is calculated with the Keldysh
equation and the entire composite matrices are substituted, i.e.,

Gr(ϵ) =
[
gr(ϵ)−1 − (Σr

L(ϵ) +Σr
R(ϵ))

]−1

(47)

G<(ϵ) =
[
Gr(ϵ)(Σ<

L(ϵ) +Σ<
R(ϵ))G

a(ϵ)
]

(48)

The advanced function is obtained from the retarded function by Ga = [Gr]†, and the time-average
current can then be expressed as the zeroth order component of the Fourier transform,

I0 = − e

π
Im
∫
dϵTr

{[
fL(ϵ)Re(β(ϵ))Gr

00(ϵ) +
1

2
β∗(ϵ)G<

00(ϵ)
]
ΓLΣ̃(ϵ)σz

}
(49)

The sample plot for the time averaged current and differential conductance (dI/dV ) for single level
quantum dot in SNS QPC can be seen in Figure 8. Notice the rich SGS at small bias due to MAR
compared to fairly featureless behaviours at higher bias eV > 2∆. The quantum Hamiltonian theory
enables us to incorporate more physics into the quantum dot. For example to describe magnetic
interactions of the impurities, one may consider a model for HC of the following,

HC =
∑
i,σ

ϵiσc
†
iσciσ +

∑
i ̸=j

Ui,j ninj (50)

or other suitable forms of interactions. With this the underlying physics when MAR oscillates across
a magnetic impurity can be studied, and general interactions can also be computed with first principle
method. For such interacting systems the Green’s function may be calculated perturbatively or with
other methods. Some examples on such works are by Avishai et al. [75] and Pala et al. [76]. For a
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vacuum region between the superconducting leads we do not include HC and the resulting model is
slightly simpler. The model Hamiltonian they used is similar to Equation (25), but in this case without
the quantum dot,

H(t) = HL +HR +HT (t) (51)

where,
HT (t) =

∑
σ

[
tei(ϕ0+2eV t)a†LσaRσ + t∗e−i(ϕ0+2eV t)a†RσaLσ

]
(52)

The tunneling Hamiltonian directly couples left and right leads. For a single eigenchannel system the
hopping term t is just a constant, and the phase term is the difference between left lead and right
lead, i.e., ϕ0 = ϕL − ϕR and eV = µL − µR. The equation for the current can then be re-derived
using the same procedure as explained in the last sections. Excellent quantitative agreements with the
experimental data provide a strong justification for the validity of the microscopic model in the quantum
Hamiltonian theory.

Figure 8. Plot of the time averaged I-V and dI/dV curves for SNS QPC systems with single
level quantum dot (ϵd = 0). Other parameters are, ΓL = ΓR = 0.5∆ and kbT = 0.1∆.
Rich subgap structures mainly at low bias (eV < ∆) can potentially be used to identify the
quantum dot’s electronic structures and magnetic properties.
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3.2.3. Shapiro Effects and External Radiations

Another interesting application of the quantum Hamiltonian theory is for studying the interactions
with some external electromagnetic radiations. The frequency range of interests in this case would
be in the microwave regions, due to the intrinsic energy scale of typical superconducting energy
gaps. The interplay between the AC Josephson effect in superconducting junctions under finite bias
with the external radiations exhibit the phenomenon known as the Shapiro effects in the supercurrent
behaviours [77]. Cuevas et al. [78] proposed that the effects from the external radiations of frequency
ωr to some extent can be modeled as effective time dependent voltage, Vac cosωrt, acting on top of the
existing AC Josephson frequency. The total effective bias can be written as V (t) = V + Vac cosωrt, and
the time dependent phase in the tunneling Hamiltonian becomes

ϕ(t) =
(
ϕ0 + ωt+ α cosωrt

)
(53)
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where α is a measure of the coupling strength with the external radiations. The Fourier series expansion
of the current takes the following form,

I(t) =
∑
m,n

Imn exp
[
i(nϕ0 + nωt+mωrt)

]
(54)

For a superconducting QPC system with a featureless barrier, i.e., a vacuum region between two
superconducting leads, Cuevas et al. managed to compute the supercurrent numerically with the use
of Bessel basis functions. They found that the Shapiro effects take place at bias V = (m/n)~ωr/2e,
where m and n are integers. The effects from external radiations are basically current singularities that
are distinct from the fundamental SGS of the QPC, since each singularity takes place at infinitely short
bias interval and appear as prominent spikes. Chauvin et al. [79] have experimentally confirmed this
with very good agreements with the model, except for very low bias regions.

Figure 9. Effects of single mode external radiations on SNN transport in weak coupling
limit. (a) Time averaged current for a single-level quantum dot in SNN system and the
effects of single level oscillations upon external radiations. The external radiations create
current resonances at interval ~ω and preserve the main DC resonance at eV = 4∆; (b) Time
averaged current for a symmetric two-level quantum dot in SNN system and the effects of
interlevel transitions due to the external radiations. In this case the external radiations can
only affect the transport when the frequency is equal to the energy difference between the
localized levels, i.e., at Rabi frequency ~ω = (ϵ1 − ϵ2). The main DC resonance at 4∆
splits into two, and the separation between the split is equal to 2B. The simple relationship
provides a way to directly measure the interlevel coupling strength from a simple current
measurements [26].
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For superconducting QPC with a quantum dot at the centre, the localized energy levels at the quantum
dot exhibit another intriguing physics upon exposure to external radiations, at least in two ways. First,
in semiclassical limit the external field would oscillate the entire set of localized energy levels in unison.
Second, absorptions and emissions of the photons would also stimulate interlevel transitions as the
electrons tunnel through the quantum dot, and both would affect MAR process inside the quantum dot
and hence the supercurrent behaviours. However, in order to do time averaged analysis, one needs
to perform multi-frequency Fourier transformation on the dynamical quantities because of the two
frequencies dependence of the phase factor. This is non-trivial particularly when the frequencies are
non-commensurate, i.e., when their ratio is irrational. To slightly simplify the problem, one may consider
replacing one of the superconducting leads with a normal lead (SNN system) and use the gauge where
the bias potential at the superconducting lead is zero, thereby eliminating time dependence term from
the AC Josephson effects [26].

External radiations can be modeled semiclassically adopting typical dipole approximations [80],

HC(t) =
∑
i,σ

[εi + A cos(ωt)] c†iσciσ +
∑
i ̸=j,σ

B cos(ωt)c†iσcjσ (55)

In this case, the Green’s function of the quantum dot may be computed with the use of Floquet basis [81],
which was found to enable flexible modeling of quantum transitions in a multilevel quantum dot [26].
One can study the effects of localized level oscillations by letting B = 0, and it was found that series of
resonances appear due to the oscillations and the energy spacing between these resonances is equivalent
to the radiation energy as can be seen in Figure 9. On the other hand the effects from interlevel transitions
can be studied by simply letting A = 0 and transitions was found to produce splitting on the primary DC
resonance when radiation frequency is at Rabi frequency. Furthermore, the splits were separated by the
energy proportional to the interlevel hopping constant B. This provides the possibility for experimental
inference of the interlevel coupling strength from simple current measurements. In addition, the details
of the quantum dot can greatly affect the transport behaviours such as the symmetry of the quantum
dot with respect to the leads [82], the relative energy difference between the localized level and the
superconducting gap, electronic interactions etc. [83]. If these additional factors are not carefully taken
into account, any physical deductions based on the incomplete model would potentially lead to false
conclusions.

4. Conclusions

Intrinsically small energy gap in superconducting PCAR spectroscopy provides a promising candidate
for ultrasensitive sensors, making use of the AR process which carries rich physics at the contacts.
AR process in NS systems can be used to probe spin polarizations of ferromagnetic materials with
convenience and high precision compared to the conventional methods. Theoretical developments in
this area are mainly based on the BTK theory, which had begun earlier and has become a relatively
mature theory to be used in spin polarization measurements. However, some problems still remain
that relate to various delicate details of the surface properties at the contacts which have been treated
phenomenologically.

Atomic contacts such as STM tips and MCBJ have discrete eigenchannels and the quantum
Hamiltonian theory combined with NEGF enables rigorous descriptions of the complex transport
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properties of MAR. The method also has promising potentials to be extended for a fully first principle
method if we combine the existing first principle superconductivity theory [71,72] with NEGF, which is
a possible future research direction for anyone working in this field.
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