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Abstract: The paper presents an indoor navigation solution by combining physical motion 

recognition with wireless positioning. Twenty-seven simple features are extracted from the 

built-in accelerometers and magnetometers in a smartphone. Eight common motion states 

used during indoor navigation are detected by a Least Square-Support Vector Machines 

(LS-SVM) classification algorithm, e.g., static, standing with hand swinging, normal walking 

while holding the phone in hand, normal walking with hand swinging, fast walking,  

U-turning, going up stairs, and going down stairs. The results indicate that the motion states 

are recognized with an accuracy of up to 95.53% for the test cases employed in this study.  

A motion recognition assisted wireless positioning approach is applied to determine  

the position of a mobile user. Field tests show a 1.22 m mean error in ―Static Tests‖ and  

a 3.53 m in ―Stop-Go Tests‖. 

Keywords: motion recognition; LS-SVM; indoor navigation; positioning; wireless; 

smartphone 

 

1. Introduction 

Nowadays, with the explosive growth of the capabilities in handheld devices, various components 

are embedded into smartphones, such as GPS, WLAN (a.k.a. Wi-Fi), Bluetooth, accelerometers, 

magnetometers, cameras, etc. Because of their locating capabilities, which are quickly becoming  
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one of the standard features in mobile devices, more and more people are getting used to the  

location-enabled life. Employing Global Navigation Satellites Systems (GNSS), the applications in the 

―smart‖ devices can greatly enrich the end users' outdoor activities. However, given the nature of 

GNSS design, they are clearly not well-suited for applications in urban canyons and indoor 

environments. Satellite-based positioning technologies continue to struggle indoors, due to well known 

issues, such as the weak signal or non-line-of-sight (NLOS) conditions between the mobile user and 

satellites.  

To address positioning and navigation in GNSS-degraded or denied areas, various technologies are 

broadly researched [1]. Most research topics focus on the high-sensitivity GNSS [2], optical navigation 

systems [3,4], ultrasound solutions [5], WLAN [6], Bluetooth [7,8], ZigBee [9], Ultra Wide Band [10], 

cellular networks [2], RFID [11], magnetic localization [12], inertial measurement units [13,14], 

signals of opportunity [15], biosensor [16,17], and also hybrid solutions [18–21]. 

Benefiting from the existing infrastructure, RF-based technologies, such as WLAN, Bluetooth, 

cellular network, and RFID, are definitely one of highest potential alternatives. RADAR [6] was one of 

the first WLAN-based positioning systems to compute the mobile device‘s location based on radio 

signal strength (RSS) from many access points (APs). Skyhook wireless is a system that depends on 

information about the AP‘s coordinates in a database in order to predict location [22]. Ekahau [23] 

provides an easy and cost-effective solution for locating people, assets, inventory and other objects 

using Wi-Fi. The Active Badge [24] system uses ceiling-mounted infrared sensor detectors to detect 

signals from a mobile active badge. Place Lab [25] has even more ambitious goals as seeking to create 

a comprehensive location database that uses fixed-commodity Wi-Fi, GSM and Bluetooth devices as 

global beacons.  

Meanwhile, human physical activity recognition using MEMS sensors has been extensively applied 

for health monitoring, emergency services, athletic training, navigation, etc. [26,27]. Since motion 

sensors such as accelerometers, gyroscopes and magnetometers are integrated into a smartphone, they 

bring the opportunity to assist navigation with knowledge about the motion of a pedestrian [28,29].  

Since mobile devices are becoming smarter and smarter nowadays, the smartphone already contains 

the potential for indoor navigation and positioning within the existing infrastructures [19]. This paper 

presents an indoor pedestrian navigation solution relying on motion recognition in an office 

environment utilizing the existing WLAN infrastructure.  

2. Motivation 

Related research indicates that utilizing opportunistic signals of, e.g., WLAN, is an efficient 

locating alternative in GPS-denied environments. However, in order to minimize a smartphone‘s 

battery drain, the WLAN scanning interval is always limited. For instance, most of the Nokia mobile 

phones refresh the scanned WLAN information proximately every 8–10 s. The default scanning 

interval of most Android devices is 15 s. On the other hand, other built-in sensors such as 

accelerometers are always turned on, in order that the physical orientation of the smartphone is always 

known to the system. These sensors provide an alternative for positioning while WLAN positioning is 

unavailable.  
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During the gaps where no wireless signal is updated, the most essential elements for navigation are 

the movement speed and orientation (i.e., heading). As long as they are determined, it is possible to 

estimate the position of the user every second using dead-reckoning. Therefore, this paper presents a 

method to use the built-in tri-axial accelerometer and magnetometer on a smartphone to recognize the 

user's movement parameters. The proposed solution detects the physical movements using simple 

acceleration and orientation features throughout the navigation process. With the recognized motions, 

it is possible to reasonably estimate the speed and position over the period between wireless scans. 

Human motion has been widely studied for decades, especially in recent years using computer 

vision technology. Poppe gives an overview of vision based human motion analysis in [30]. Aside 

from vision-based solutions, sensor-based approaches are also extensively adopted in biomedical 

systems [31–34]. Most of the previous motion recognition related research assumed that the  

Micro-Electro-Mechanical Systems (MEMS) inertial sensors used are fixed on a human body [35–38] 

(e.g., in a pocket, clipped to a belt or on a lanyard) and that an inference model can be trained 

according to a handful of body positions. Some of them use phones as a sensor to collect activities for 

off-line analysis purposes [39]. Compared to the daily activities, such as ―Sitting‖, ―Walking‖, 

―Running‖, ―Jumping‖, the motions of a pedestrian who is using a smartphone for navigation in  

three-dimensional indoor structures are far more complicated due to the arbitrary gestures while a 

phone is kept in hand. Hence this paper primarily focuses on the possible motion states of a user with a 

phone in hand while navigating. References [28] and [29] have briefly presented the preliminary 

results of our previous research in this topic.  

3. Motion States 

Unlike the solution with sensors fixed on the body, a smartphone in hand has more degrees of 

freedom (DOF) during the navigation process. Even if we only consider the case where the user holds 

the phone in hand, the motion behaviour is still complicated. For this reason, we defined eight most 

common motion states during pedestrian navigation in this paper. In order to classify the motion states, 

twenty-seven features are investigated in this section.  

3.1. Motion Definition 

The motion states, as defined in Table 1, are grouped into four series as follows: 

Table 1. Motion state definition. 

State Series Definition 

ST S A state where a user keeps a phone in hand without any movement. 

SS S User‘s location does not change but the phone is in a swinging. 

WS W Walking with a small arm swinging. 

WH W Using the navigation application on the handset while walking. 

WF W Fast walking with a significantly arm swinging. 

UT  T Making a U-turn. 

US V Going up stairs. 

DS V Going down stairs. 
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(1) S-series motion states (Figure 1) refer to the stationary behavior during a navigation process. 

ST is a state where a user keeps a phone in hand without any movement. In contrast, SS is a 

category of the movement where user‘s location does not change, but the phone is moving in a 

swinging.  

Figure 1. S-series (left and middle: ST, right: SS).  

 

 

(2) W-series is relevant to walking. After observing the walking behaviour of the user when 

navigating, three types of walking motion states have been defined. As shown in the left image 

of Figure 2, WH represents the motion state where the user is using the navigation application 

on the handset while walking. The user often keeps his or her eyes on the screen of a 

smartphone in this state. WS stands for the normal walking behaviour, when the user is not 

using the navigation application but is holding the smartphone in his or her hand. As the center 

image of Figure 2 indicates, a small arm swinging motion exists when the user is walking in 

normal speed, while the right image of Figure 2 shows the WF state, which represents a fast 

walking behaviour with significantly arm swinging. 

Figure 2. W-series (left: WH, middle: WS, and right: WF). 
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(3) T-series is related to turning motions. UT represents so-called U-turning, which is a spot turn 

without any horizontal displacement. As shown in Figure 3, a UT motion results in a heading 

change of 180° after turning. 

Figure 3. T-series (UT). 

 

 

(4) V-series concerns motions in the vertical dimension. In Figure 4, US and DS are going 

up/down the stairs, respectively.  

Figure 4. V-series (left: US and right: DS). 

 

3.2. Feature Definition 

When using tri-axis accelerometer sensors, the sensor orientation determines the local coordinate 

system of each (x, y, z) reading. Most previous research work on motion recognition has used  

body-worn accelerometer sensors, i.e., sensors attached to the body in a constrained orientation. When 

smartphones are used as portable sensors, the orientation of the sensors is not known a priori. Figure 5 

gives a typical example of the accelerometer readings after filtering from a smartphone while different 

motion states are performed. 
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Figure 5. Accelerometer readings. 

 

 

To avoid this orientation problem, the magnitude of the accelerometer signal (see the ‗AccFilter‘ 

line of Figure 5) can be used. This solution, however, will cause the three-directional acceleration 

information to be lost. Therefore, we use an estimated gravity vector as a reference to compute the 

dynamics of the smartphone‘s orientation. The gravity vector is trained with the data obtained in the 

static status (see the left image of Figure 1) in a calibration phase (e.g., 10 s). When the estimated 

gravity vector is known, it enables the estimation of the vertical component and the magnitude of the 

horizontal component of a user‘s motion [39].  

The gravity vector is denoted as:  

       (1) 

where gx, gy, gz are the mean values of the gravity vector along the respective axes over the calibration 

phase.  

The acceleration vector can be expressed as: 

      (2) 

where ax, ay, az are the accelerometer readings along the respective axes at the given time.  

The projection of A (denoted as Ap) onto the gravity vector G can be calculated as the vertical 

component inside of A. The vertical component of A can be calculated as the projection of A onto the 

gravity vector G:  

      (3) 

Then the horizontal component Ah can be computed using vector subtraction: 

       (4) 
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The direction of Ah relative to the horizontal axis in the global 3-axis coordinate system, however, 

still cannot be obtained. For this reason, we use the magnitude of the acceleration in the horizontal 

plane, which is orthogonal to the estimated gravity vector G. In this paper, the mean of the acceleration 

in the horizontal plane (MeanAccH), variance of the acceleration in the horizontal plane (VarAccH), 

and the variance of the magnitude of the acceleration (VarAcc) are selected as the simple features to 

detect the motion states. 

In addition to the accelerometer sensors, a magnetometer, also known as a digital compass, is 

another data source that can be utilized for motion recognition in a smartphone. The magnetometer, 

however, has some significant drawbacks. Indeed, magnetic disturbances are numerous, particularly in 

indoor environments. Figure 6 shows the corresponding heading readings from a built-in 

magnetometer for the same example readings presented above in Figure 5. Even though the user was in 

the ST state (0–200 s), the mean error introduced during this time period is still more than  

20°. This large level of error means the magnetometer readings cannot be used directly for positioning 

in indoor navigation applications. Filtering and map matching are always demanded in the practical 

application. Instead of using the heading readings for navigation directly, in this paper we focus on 

applying them for recognizing the motion state of the user. 

Figure 6. Magnetometer readings. 

 

 

After analyzing the physical characteristics of the motion behavior, twenty-seven features are 

defined for the motion state estimation, including time-domain features of acceleration (Features 1–18) 

and heading (Features 19–21) and frequency domain features of acceleration (Features 22–27). Note 

that in Table 2 the dynamic acceleration denotes the real-time acceleration reading from smartphone 

minus the acceleration due to gravity.  
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Table 2. Feature definition. 

Feature No. Feature Name Feature Definition 

1 MeanAccX Mean value of the acceleration along x-axis. 

2 MeanAccY Mean value of the acceleration along y-axis. 

3 MeanAccZ Mean value of the acceleration along z-axis. 

4 MeanAcc Mean value of the acceleration. 

5 MeanDynAccV Mean value of the dynamic acceleration in the vertical plane. 

6 MeanDynAccH Mean value of the dynamic acceleration in the horizontal plane. 

7 MeanAccH Mean value of the horizontal acceleration. 

8 MeanAccV Mean value of the vertical acceleration minus gravity acceleration. 

9 MeanDynAcc Mean value of the dynamic acceleration. 

10 VarAccX Variance of the acceleration along x-axis. 

11 VarAccY Variance of the acceleration along y-axis. 

12 VarAccZ Variance of the acceleration along z-axis. 

13 VarAcc Variance of the acceleration. 

14 VarDynAccV Variance of the dynamic acceleration in the vertical plane. 

15 VarDynAccH Variance of the dynamic acceleration in the horizontal plane. 

16 VarAccH Variance of the horizontal acceleration. 

17 VarAccV Variance of the vertical acceleration. 

18 VarDynAcc Variance of the dynamic acceleration. 

19 MeanMag Mean value of the heading. 

20 DiffMag Heading change. 

21 VarMag Variance of the heading. 

22 1stFreqAcc 1st dominant frequency of the acceleration.  

23 Amp1stFreqAcc  Amplitude of the1st dominant frequency of the acceleration. 

24 2ndFreqAcc 2nd dominant frequency of the acceleration.  

25 Amp2ndFreqAcc Amplitude of the 2nd dominant frequency of the acceleration. 

26 FreqDiffAcc Difference between two dominant frequencies. 

27 AmpScaleAcc Amplitude scale of two dominant frequencies. 

4. LS-SVM Based Motion Recognition 

The motion recognition method presented in this paper aims at determining which of the eight 

motions have caused the above twenty-seven simple features. The possible classification algorithms 

include k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA), Naïve Bayesian Classifier (NBC), Bayesian Network (BN), Decision Tree (DT), 

Artificial Neural Networks (ANN), Support Vector Machines (SVMs) and so forth. Thanks to the 

efficient pattern reorganization performance for the non-linear multi-class scenarios, in this study, we 

adopt the Least Square-Support Vector Machines (LS-SVM) [40] based classification algorithm, 

which is a class of kernel-based learning methods widely used for classification and regression 

analysis. 
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4.1. Support Vector Machines (SVMs)  

The concept of SVMs, which was originally developed for binary classification problems, is the use 

of hyperplanes to define decision boundaries separating data points of different classes. SVMs are able 

to handle both simple, linear classification tasks, as well as more complex, i.e., nonlinear, classification 

problems [41]. The idea behind SVMs is to map the original data points from the input space to a high 

dimensional, or even infinite-dimensional, feature space such that the classification problem becomes 

simpler in the feature space, as shown in Figure 7.  

Figure 7. Mapping of the data from the input space to a high-dimensional feature space. 

 

 

When the data are linearly separable, the separating hyperplane can be defined in many ways. 

SVMs are based on the maximal margin principle, where the aim is to construct a hyperplane with 

maximal distance between the two classes. In most of real life applications, however, data of both 

classes overlap, which makes a perfect linear separation impossible. Therefore, a restricted number of 

misclassifications should be tolerated around the margins. The resulting optimization problem for 

SVMs, where violation of the constraints is penalized, is written as:  

     (5) 

such that: 
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T

i       (6) 

      (7) 

where J1 is the cost function, ω is termed the weight vector, and the C is a positive regularization 

constant. The regularization constant in the cost function defines the tradeoff between a large margin 

and a misclassification error (i.e., empirical risk minimization). SVMs are based on the principle of 

structural risk minimization which balances model complexity and empirical error. The first set of 

constraints corresponds to Equation (5), while the second set imposes positive slack variables ξi, 

tolerating misclassifications. The value ξi indicates the distance of xi with respect to the decision 

boundary, as follows:  
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ξi ≥ 0: yi(ω
T
φ(xi) + b) < 0 implies that the decision function and the target have a different sign, 

indicating that xi is misclassified, 

0 < ξi < 1: xi is correctly classified, but lies inside the margin, 

ξi = 0: xi is correctly classified and lies outside the margin or on the margin boundary. 

Typically, the problem formulation in Equations (5)–(7) is referred to as the primal optimization 

problem. Alternatively, however, the optimization problem for SVMs can be written in the dual  

space using the Lagrangian with Lagrange multipliers αi ≥ 0 for the first set of constraints shown in  

Equation (6). This alternative but equivalent formulation is useful in the cases where the original data 

are nonlinear. 

The solution for the Lagrange multipliers is obtained by solving a quadratic programming problem. 

The SVM classifier takes the form: 

     (8) 

where the kernel function K(∙,∙) is positive definite. It satisfies Mercer‘s condition then, meaning that 

K(x,xi) equals φ(x)
T
φ(xi). Using this so-called kernel trick, no explicit construction of the mapping φ(∙) 

is needed. This enables SVMs to work in a high-dimensional (or infinite-dimensional) feature space, 

without actually performing calculations in this space. Various types of kernel functions can be 

chosen: 

 Linear SVM:  (9) 

 Polynomial SVM of degree  (10) 

 Radial basis function (RBF):   (11) 

 Multi-layer perceptron (MLP):   (12) 

where K(∙,∙) is positive definite for all δ values in the RBF kernel case and τ ≥ 0 values in the 

polynomial case, but not for all possible choices of κ1, κ2 in the MLP case. Such kernels transform the 

original data into a higher dimensional feature space, where they are separable by a hyperplane in this 

feature space. 

4.2. LS-SVM 

The classification technique used in this work is the LS-SVM. LS-SVM tackles linear systems 

rather than solving convex optimization problems, typically quadratic programs, as in standard support 

vector machines (SVM) [40]. This is done by both introducing a least squares loss function and 

working with equalities, instead of the intrinsic inequalities of SVM formulations. One advantage of 

this reformulation is complexity reduction. In the training phase, the LS-SVM classifier constructs a 

hyperplane in a high-dimensional space aiming to separate the data according to the different classes. 

This data separation should occur in such a way that the hyperplane has the largest distance to the 

nearest training data points of any class. These particular training data points define the so-called 

margin. 
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These parameters can be found by solving the following optimization problem having a quadratic 

cost function and equality constraints: 

     (13) 

subject to: 

Niebxy ii

T

i  ..., ,1,1))((        (14) 

with e = [e1…eN]
T

 
a vector of error variables to tolerate misclassifications, φ(∙): ℝd

→ℝdh

 mapping from 

the input space into a high-dimensional (e.g., infinite dimensional) feature space of dimension dh, ω a 

vector of the same dimension as φ(∙), γ is a positive regularization parameter, determining the trade-off 

between the margin size maximization and the training error minimization. b is a bias term. In this 

equation, the standard SVM formulation is modified using a least squares loss function with error 

variables ei and replacing the inequality constraints with equality constraints. Since, the value 1 in the 

equality constraints is a target value instead of a threshold value, the method is related to kernel Fisher 

discriminant analysis [40]. The Lagrangian for the problem in Equations (13) and (14) is: 
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Whereas the primal problem is expressed in terms of the feature map, the linear optimization 

problem in the dual space is expressed in terms of the kernel function: 

      (17) 

where y = [y1…yN]
T
 ,
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T
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T
1×N and Ω    ℝN×N

 is a matrix with elements  

Ωij = yiyj φ(xi)
T
φ(xj), with i, j = 1, ..., N. Provided with an input vector x, the resulting LS-SVM 

classifier in the dual space is similar to the standard SVM classifier: 

      (18) 

where K(x,xi) = φ(x)
T
φ(xi) is a positive definite kernel matrix. The support values αi are proportional to 

the error of the corresponding training data points. This implies that usually every training data point is 
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a support vector and no sparseness property remains in the LS-SVM formulation. However, high 

support values indicate a high contribution of the data point to the decision boundary. The choice of 

the regularization parameter and the kernel hyperparameter δ in case of an RBF kernel, is out of the 

scope for discussion in this paper. Hospodar gives an example of the kernel parameters selection  

in [42]. 

As shown in Figure 8, in this research we label the eight motion states as classes 1 to 8. These states 

are difficult to separate linearly in the original feature space. In order to classify the states, we apply a 

LS-SVM classifier using a RBF kernel function. The Nelder-Mead Simplex algorithm [43] is applied 

for tuning parameter optimization. The cross validation as a cost function is used for estimating the 

performance of the selected parameters [44]. As the optimized result, the regularization parameter  

γ equals 23.7002 and the kernel hyperparameter δ
2
 equals 0.21229. Figure 8 presents the projection of 

the hyperplanes in the original feature space, which shows that the states are separable in the high 

dimensional feature space. The accuracy of the LS-SVM classifier for motion recognition will be fully 

discussed in Section 6. 

Figure 8. The projections of LS-SVM hyperlanes in the original feature space.  

(Class 1: ST, 2: SS, 3: WH, 4: WS, 5: WF, 6: UT, 7: US, 8: DS). 

 

5. Positioning Algorithms 

In this paper, the motion recognition assisted indoor navigation solution interpolates the locations 

calculated by wireless positioning which uses the fingerprinting approach described below. Provided 

with the discrete locations from wireless positioning and recognized motion states, a grid-based filter 

based on the hidden Markov model is applied to compute the continuous positions of a smartphone 

user. 
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5.1. Fingerprinting Based Wireless Positioning 

Received signal strength indicators (RSSIs) are the basic observables in this approach. The process 

consists of a training phase and a positioning phase. During the training phase, a radio map of 

probability distributions of the received signal strength is constructed for the targeted area. The 

targeted area is divided into a grid, and the central point of each cell in the grid is referred to as a 

reference point. The probability distribution of the received signal strength at each reference point is 

represented by a Weibull function [7], and the parameters of the Weibull function are estimated with 

the limited number of training samples.  

During the positioning phase, the current location is determined using the measured RSSI 

observations in real time and the constructed radio map. The Bayesian theorem and Histogram 

Maximum Likelihood algorithm are used for positioning [45,46].  

Given the RSSI measurement vector O  = {O1, O2… Ok} from APs, the problem is to find the 

location l with the conditional probability P(l|O ) being maximized. Using the Bayesian theorem: 

     (19) 

where P(O ) is constant for all l. Therefore, the Equation (19) can be reduced as: 

     (20) 

We assume that the mobile device has equal probability to access each reference point, thus P(l) can 

be considered as constant in this case, Equation (20) can be simplified as: 

     (21) 

Now it becomes a problem of finding the maximum conditional probability of: 

       (22)  

where the conditional probability P(On |l) is derived from the RSSI distribution stored in the fingerprint 

database.  

5.2. Grid-Based Filter of HMM 

The grid-based filter of hidden Markov model (HMM) is implemented to produce an optimal 

estimation based on the previous state. The transit probability matrix of HMM is computed according 

to the travelled distance which can be estimated by the knowledge about the motion over time. For 

instance, the travelled distance is zero if the current motion mode is static. The user travel distance 

while navigating can be calculated each second as: 

      (23) 

where vt is the velocity output based on the recognized motion state and t is the time. 

The velocity estimation models vary in different motion states. These estimations are out of the 

scope of this paper. More details about velocity estimation can be found in [27].  
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The grid-based filter produces an optimal estimation if the state space is discrete and consists of a 

finite number of states. If a numerical approximation is employed to obtain a discrete and finite state 

space, the grid-based filter produces a suboptimal estimation [47]. 

Given measurements up to epoch t-1, let the conditional probability of each state Si be denoted  

by ω
i
t-1|t-1, that is ω

i
t-1|t-1 = P(Xt-1 = Si|o1,…,ot-1), i = 1,…, N. Then, given a hidden Markov model  

Λ = (A,B,π) [48], the posterior probability related to each state Si at epoch t-1can be written as: 

   (24)  

where δ(∙) is the Dirac delta function. 

The grid-based filter consists of prediction and update stages as follows, similar to those used in 

other recursive Bayesian filters. 

Prediction stage: 

    (25) 

Update stage: 

    (26) 

where 

      (27) 

     (28) 

Once the posterior probabilities of all states are estimated, the filter solution is given by the state 

with the maximum probability. 

In the tests described in the following section, we applied magnetometer readings via map-matching 

instead of using the heading directly obtained from a magnetometer since the magnetic disturbances 

are numerous, particularly in indoor environments. With the heading input from the magnetometer and 

current position estimate, matched direction is derived from the segment vector in the topological 

network of the fingerprint database. In addition, the cumulative travel distance over the duration 

without WLAN positioning is used as an observation in the HMM grid-based filter for determining the 

position. 

6. Test Results 

To verify the solution proposed in this paper, some field tests were carried out in the Finnish 

Geodetic Institute (FGI) office building, which has three floors. A smartphone application was 

developed for collecting sensor data, labeling the motion state, and locating the smartphone position. 

Five persons collected the data for motion recognition in one day. Each person performed eight motion 
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states respectively. Testers made marks at the beginning and end of the motion to separate the samples 

of motion states. All the collected data were divided into two groups. One was selected as a training 

data set. The other was utilized as a testing data set. The training data sets were used for learning the 

parameters of the classification algorithm. The testing data sets were used for validating the 

recognition rate of a classifier. 

In order to evaluate the performance of LS-SVM classifier for motion recognition, the same data 

sets are also applied in four other classification algorithms for comparison: Bayesian Network using 

the Gaussian Mixture Model (BN-GMM), Decision Tree (DT), Linear Discriminant Analysis (LDA) 

and Quadratic Discriminant Analysis (QDA). Table 3 illustrates the recognition rates for the five 

classifiers with varying feature combinations. The bold and italic number indicates the best recognition 

rate in each feature combination in five classifiers. The bold and underlined number stands for the best 

recognition rate in each classifier.  

Table 3. Classifier vs. Recognition Rate vs. Features. 

Classifier 
Recognition Rate 

LS-SVM BN-GMM DT LDA QDA 

Feature 4 87.15*
1
 67.04 77.66 75.98 74.30 

Feature 5 86.03 53.07 56.43 62.01 63.13 

Feature 4,5 95.53 73.74 83.80 86.59 86.03 

Feature 4,5,22 92.17 79.33 88.83*
2 87.15 86.03 

Feature 4,5,22,23 92.18 86.59 88.83 84.36 83.24 

Feature 4,5,24,25 91.62 64.80 85.48 73.74 null*3 

Feature 4,5,22,24 92.18 75.98 88.83 74.86 null 

Feature 4,5,26 92.74 73.18 85.48 73.18 87.71 

Feature 4,5,27 92.74 78.21 83.80 83.24 88.25 

Feature 4,5,26,27 94.97 77.10 85.48 77.10 null 

Feature 4,5,19,20,21 88.27 68.72 86.03 83.24 null 

Feature 4,5,19,21 87.71 74.86 82.12 84.92 null 

Feature 4,5,21 88.23 77.10 83.24 87.15*
4 80.45 

Feature 4,5,21,27 93.86 81.01 84.92 86.03 null 

Feature 1,2,3 90.50 67.60 65.36 null null 

Feature 1,2,3,4,5 92.74 76.54 82.68 null null 

Feature 5,6,7,8,9 88.27 72.07 82.12 null null 

Feature 13,14 83.80 47.49 76.54 64.25 64.80 

Feature 17,18 93.30 48.04 70.39 59.78 68.72 

Feature 10-18 80.45 51.40 82.12 null null 

Feature 18 85.48 42.46 53.07 52.51 58.10 

All Features 53.63 68.16 64.25 null null 

*
1: The bold and italic number indicates the best recognition rate in each feature combination. 

*
2: The bold and underlined number indicates the best recognition rate in each classifier. 

*
3: The null value is caused by the features which do not satisfy the requirements of the classifier. 

*
4: The recognition rates of combination feature 4, 5, 21 and feature 4, 5, 22 are the equally best in 

LDA classifier. 
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The test results indicate that: 

 LS-SVM classifier has the best performance in different feature combinations. 

 Including all features does not help the recognition rate. 

 Feature 4 and 5 are the most efficient features for the tested motion recognition. 

Another test was carried out by a tester who travelled around in the FGI office building for 20 min. 

As shown in Figure 9, eight motion states, including DS, SS, ST, US, UT, WF, WH, and WS, were 

performed in order. The confusion matrix for the motion recognition from the LS-SVM classifier is 

listed in Table 4. In the results for this test, 18.75% of ST motions and 22.22% of US motions are 

mistaken for UT using LS-SVM. The W-series motion states achieve a perfect success rate in this test. 

Figure 9. LS-SVM Motion state predictions (Motion state 1: ST, 2: SS, 3: WH, 4: WS,  

5: WF, 6: UT, 7: US, 8: DS). 

 

Table 4. Confusion Matrix for the motion recognition from LS-SVM classifier (Unit: %). 

Labelled  

Motion State 

Recognized Motion State 

ST SS WH WS WF UT US DS 

ST 81.25 0 0 0 0 18.75 0 0 

SS 0 100 0 0 0 0 0 0 

WH 0 0 100 0 0 0 0 0 

WS 0 0 0 100 0 0 0 0 

WF 0 0 0 0 100 0 0 0 

UT 0 0 0 0 0 100 0 0 

US 0 0 0 0 0 22.22 77.78 0 

DS 0 0 0 0 0 0 0 100 

 

To prove the advantage of wireless positioning combined with motion recognition, two positioning 

tests were conducted in the FGI building. A WLAN fingerprint database covers three floors of FGI 

was beforehand generated and used in the following tests. The first test, called a ―Static Test,‖ was 
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carried out in a static state—a user stood on a reference point while holding the phone in hand (ST) for 

ten minutes. The results are summarized in Table 5, where the average error is 3.43 m when the 

Maximum Likelihood (ML) algorithm was applied in wireless positioning. The mean error is reduced 

to 1.22 m when applying a motion-awareness assisted HMM algorithm. Furthermore, compared to the 

ML algorithm, the RMSE (Root Mean Square Error) and maximum error are all significantly 

decreased when using motion recognition assisted HMM algorithm.  

Table 5. Static Test (Unit: m). 

Static Test ML HMM (Motion-assisted) 

Mean 3.43 1.22 

RMSE 5.98 2.55 

MaxErr 21 9 

MinErr 0 0 

 

The second test is called the ―Stop-Go Test‖. In the FGI office building, a tester stopped at each 

reference point to obtain the wireless positioning estimation, then moved to another reference point 

while randomly performing varying motion states between two stops. Table 6 compares the 

positioning results derived from ML and motion recognition assisted HMM algorithm. Some 

improvements can be found in motion recognition assisted HMM algorithm compared to the ML 

algorithm. Meanwhile, the motion recognition also raises the floor detection rate from 89.93% to 

95.95%. The details are shown in Tables 7 and 8.  

Table 6. Stop-Go Test (Unit: m). 

Stop-Go Test ML HMM (Motion- assisted) 

Mean 4.38 3.53 

RMSE 6.02 4.55 

MaxErr 18 9 

MinErr 0 0 

Table 7. Confusion matrix for floor detection using ML wireless positioning (Unit: %). 

Estimated Floor 
Labelled Floor 

1
st
 2

nd
 3

rd
 

1
st
 93.94 6.06 0 

2
nd

 4.00 92.00 4.00 

3
rd

 0 17.95 82.05 

Table 8. Confusion matrix for floor detection using motion-assisted HMM wireless 

positioning (Unit: %). 

Estimated Floor 
Labelled Floor 

1
st
 2

nd
 3

rd
 

1
st
 96.97 3.03 0 

2
nd

 4.00 96.00 0 

3
rd

 0 5.13 94.87 
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7. Conclusions and Future Work 

In this paper, the motion recognition assisted wireless positioning method is presented. The raw 

data from the accelerometer and magnetometer on a smartphone are processed into twenty-seven 

features. Then eight motion states are predicted by separately applying the LS-SVM, BN-GMM, DT, 

LDA and QDA classifiers. The test results indicate that the LS-SVM classifier has an efficient 

performance of motion recognition rate compared with the other four classifiers. The recognition rates 

of T-series and V-series motions are lower than those of S-series and W-series motions. Furthermore, 

both positioning accuracy and floor detection rate are significantly improved by applying motion 

recognition in the wireless positioning algorithms.  

Despite the fact that the motion recognition solution proposed in this paper provides correct motion 

recognition for up to 95.53% of the test cases, the motion behavior varies from person to person. In the 

future we will involve more persons for testing the motion recognition algorithms and determine the 

most useful features for classification. In addition, more motion states will be considered for indoor 

navigation. For instance, we currently only consider the ―using-stairs‖ motion in the V-series motions. 

Other V-series motions such as ―using-elevator‖ will be studied in the future. Lastly, the T-series 

motions introduce much more confusion because it is possible to combine them with the other motions 

simultaneously. Therefore, more efforts will be concentrated on the T-series motions in the future. For 

instance, we are currently studying the use of gyroscopes inside smartphones, which provide heading 

change rate.  
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