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Abstract: This paper presents a novel hardware architecture for principal component
analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because
of its simplicity and effectiveness. The architecture is separated into three portions: the
weight vector updating unit, the principal computation unit and the memory unit. In the
weight vector updating unit, the computation of different synaptic weight vectors shares the
same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture
classification system based on the proposed architecture is physically implemented by Field
Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip
(SOPC) platform for performance measurement. Experimental results show that the
proposed architecture is an efficient design for attaining both high speed performance and
low area costs.
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1. Introduction

Principal Component Analysis (PCA) [1] plays an important role in pattern recognition, classification,
computer vision and data compression [2,3]. It is an effective feature extraction technique capable
of finding a compact and accurate representation of the data that reduces or eliminates statistically
redundant components. Basic PCA implementation involves the Eigen-Value Decomposition (EVD) of
the covariance matrix. Long computation time and large storage size are usually required for the EVD.
The basic PCA therefore is not suited for online computation on the platforms with limited computation
capacity and storage size.

To compute the PCA with reduced computational complexity, a number of fast algorithms [2,4–6]
have been proposed. The algorithm presented in [4] is based on Expectation Maximization (EM).
The inverse matrix computation is required in the algorithm, which may be an expensive exercise.
Incremental and/or iterative algorithms for PCA computations are proposed in [2,5,6]. A common
drawback of these fast PCA methods is that the covariance matrix of training data should be involved.
The computation time and storage may still be expensive. Although hardware implementation of PCA
is possible, large storage size and complicated circuit control management are usually necessary. The
PCA hardware implementation therefore may be used only for data with small dimensions [7–9] when
limited hardware resource is available. Because of the difficulties for hardware implementation, many
PCA-based applications use software for the PCA computation. After the eigenvectors are obtained,
only the projection computation is implemented by hardware [10–12].

An alternative for the PCA implementation is to use the Generalized Hebbian Algorithm
(GHA) [13,14]. The GHA is based on an effective incremental updating scheme without the involvement
of covariance matrix. The storage requirement for the PCA implementation is then significantly reduced.
Nevertheless, slow convergence of the GHA is usually observed. A large number of iterations therefore
is required, resulting in long computational time. An effective approach to expedite the GHA training
is based on multithreading techniques, which take advantages of all the cores of multicore processors to
reduce the computational time. However, multicore processors usually consume large power [15], and
therefore may not be suited for applications requiring low power dissipation.

Analog hardware implementations of GHA [16,17] have been found to be a power efficient approach
for accelerating the computational speed. However, these architectures are difficult to be directly used for
digital devices. A number of digital hardware architectures [18,19] have been proposed for expediting
the GHA training process. The architecture in [18] separates the weight vector updating process of GHA
into a number of stages for data reuse. Although the architecture has fast computation time, its hardware
resource utilization grows linearly with the dimension of data and number of principal components.
Therefore, the architecture may not be well suited for data with high vector dimension and/or large
number of principal components.

A systolic array with low area costs is proposed in [19]. The systolic array is based on pixel-wise
operations so that the area costs for weight vector updating are independent of vector dimension.
Nevertheless, the latency of the architecture increases with the dimension of data. Moreover, similar to
the architecture in [18], the area costs of [19] grow with the number of principal components. Therefore,
the architecture may still have long latency and high area costs.
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In light of the facts stated above, a novel GHA implementation capable of performing fast PCA with
low power consumption is presented. The implementation is based on Field Programmable Gate Array
(FPGA) because it consumes lower power over its multicore counterparts [20,21]. As compared with
existing FPGA-based architectures for GHA, the proposed architecture has lower area cost and/or lower
latency. The proposed architecture can be divided into three parts: the Synaptic Weight Updating (SWU)
unit, the Principal Components Computing (PCC) unit, and the memory unit. The memory unit is the
on-chip memory storing training vectors and synaptic weight vectors. Based on the data stored in the
memory unit, the SWU and PCC units are then used to compute the principal components and update
the synaptic weight vectors, respectively.

In the SWU and PCC units, the input training vectors and synaptic weight vectors are separated into
a number of non-overlapping blocks for principal component computation and synaptic weight vector
updating. Both the SWU and PCC units operate one block at a time. In each unit, the operations of
different blocks share the same circuit for reducing the area costs. Moreover, in the SWU unit, the
results of precedent weight vectors will be used for the computation of subsequent weight vectors for
reducing training time.

To demonstrate the effectiveness of the proposed architecture, a texture classification system on a
System-On-Programmable-Chip (SOPC) platform is constructed. The system consists of the proposed
architecture, a softcore NIOS II processor [22], a DMA controller, and a SDRAM. The proposed
architecture is adopted for finding the PCA transform by the GHA training, where the training vectors
are stored in the SDRAM. The DMA controller is used for the DMA delivery of the training vectors.
The softcore processor is only used for coordinating the SOPC system. It does not participate the GHA
training process. As compared with its multithreaded software counterpart running on Intel multicore
processors, our system has lower computational time and lower power consumption for large training
set. All these facts demonstrate the effectiveness of the proposed architecture.

2. Preliminaries

Figure 1 shows the neural model for GHA, where x(n) = [x1(n), . . . , xm(n)]
T , and y(n) =

[y1(n), . . . , yp(n)]
T are the input and output vectors to the GHA model, respectively. In addition, m and

p are the vector dimension and the number of Principal Components (PCs) for the GHA, respectively.
The output vector y(n) is related to the input vector x(n) by

yj(n) =
m∑
i=1

wji(n)xi(n) (1)

where the wji(n) stands for the weight from the i-th synapse to the j-th neuron at iteration n.
Let

wj(n) = [wj1(n), . . . , wjm(n)]
T , j = 1, . . . , p (2)

be the j-th synaptic weight vector. Each synaptic weight vector wj(n) is adapted by the Hebbian
learning rule:

wji(n+ 1) = wji(n) + η[yj(n)xi(n)− yj(n)

j∑
k=1

wki(n)yk(n)] (3)
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where η denotes the learning rate. After a large number of iterative computation and adaptation,
wj(n) will asymptotically approach to the eigenvector associated with the j-th eigenvalue λj of the
covariance matrix of input vectors, where λ1 > λ2 > · · · > λp. To reduce the complexity of computing
implementation, Equation (3) can be rewritten as

wji(n+ 1) = wji(n) + ηyj(n)[xi(n)−
j∑

k=1

wki(n)yk(n)] (4)

A more detailed discussion of GHA can be found in [13,14]

Figure 1. The neural model for the GHA.

3. The Proposed GHA Architecture

As shown in Figure 2, the proposed GHA architecture consists of three functional units: the memory
unit, the Synaptic Weight Updating (SWU) unit, and the Principal Components Computing (PCC) unit.
The memory unit is used for storing the current synaptic weight vectors and input vectors. Assume the
current synaptic weight vectors wj(n), j = 1, . . . , p, are now stored in the memory unit. In addition,
the input vector x(n) is available. Based on x(n) and wj(n), j = 1, . . . , p, the goal of PCC unit is to
compute output vector y(n). Using x(n), y(n) and wj(n), j = 1, . . . , p, the SWU unit produces the new
synaptic weight vectors wj(n+ 1), j = 1, . . . , p. It can be observed from Figure 2 that the new synaptic
weight vectors will be stored back to the memory unit for subsequent training.

Figure 2. The proposed GHA architecture.
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3.1. SWU Unit

The design of SWU unit is based on Equation (4). Although the direct implementation of Equation (4)
is possible, it will consume large hardware resources. To further elaborate this fact, we first see from
Equation (4) that the computation of wji(n+1) and wri(n+1) shares the same term

∑r
k=1wki(n)yk(n)

when r ≤ j. Consequently, independent implementation of wji(n+1) and wri(n+1) by hardware using
Equation (4) will result in large hardware resource overhead.

To reduce the resource consumption, we first define a vector zji(n) as

zji(n) = xi(n)−
j∑

k=1

wki(n)yk(n), j = 1, . . . , p (5)

and zj(n) = [zj1(n), . . . , zjm(n)]
T . Integrating Equation (4) and (5), we obtain

wji(n+ 1) = wji(n) + ηyj(n)zji(n) (6)

where zji(n) can be obtained from z(j−1)i(n) by

zji(n) = z(j−1)i(n)− wji(n)yj(n), j = 2, . . . , p (7)

When j = 1, from Equations (5) and (7), it follows that

z0i(n) = xi(n) (8)

Figure 3 depicts the hardware implementation of Equations (6) and (7). As shown in the figure, the
SWU unit produces one synaptic weight vector at a time. The computation of wj(n+1), the j-th weight
vector at the iteration n+1, requires the zj−1(n), y(n) and wj(n) as inputs. In addition to wj(n+1), the
SWU unit also produces zj(n), which will then be used for the computation of wj+1(n + 1). Hardware
resource consumption can then be effectively reduced.

Figure 3. The hardware implementation of Equations (6) and (7).
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One way to implement the SWU unit is to produce wj(n + 1) and zj(n) in one shot. However, m
identical modules, individually shown in Figure 4, may be required because the dimension of vectors is
m. The area costs of the SWU unit then grow linearly with m. To further reduce the area costs, each of
the output vectors wj(n+1) and zj(n) is separated into b blocks, where each block contains q elements.
The SWU unit only computes one block of wj(n+1) and zj(n) at a time. Therefore, it will take b clock
cycles to produce complete wj(n+ 1) and zj(n).

Let

ŵj,k(n) = [wj,(k−1)q+1(n), . . . , wj,(k−1)q+q(n)]
T , k = 1, . . . , b (9)

and

ẑj,k(n) = [zj,(k−1)q+1(n), . . . , zj,(k−1)q+q(n)]
T , k = 1, . . . , b (10)

be the k-th block of wj(n) and zj(n), respectively. The computation wj(n + 1) and zj(n) take b clock
cycles. At the k-th clock cycle, k = 1, . . . , b, the SWU unit computes ŵj,k(n+ 1) and ẑj,k(n). Because
each of ŵj,k(n+ 1) and ẑj,k(n) contains only q elements, the SWU unit consists of q identical modules.
The architecture of each module is also shown in Figure 4. The SWU unit can be used for GHA with
different vector dimension m. As m increases, the area costs therefore remain the same at the expense
of a larger number of clock cycles b for the computation of ŵj,k(n+ 1) and ẑj,k(n).

Figure 4. The architecture of each module in the SWU unit.

Based on Equation (8), the input vector z0(n) is actually the training vector x(n), which is also
separated into b blocks, where the k-th block is given by

ẑ0,k(n) = [x(k−1)q+1(n), . . . , x(k−1)q+q(n)]
T , k = 1, . . . , b (11)
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The ẑ0,k(n) and ŵ1,k(n), k = 1, . . . , b, are used as the input vectors for the computation of ẑ1,k(n)
and ŵ1,k(n + 1), k = 1, . . . , b. The z1(n) and w1(n + 1) become available when all the ẑ1,k(n) and
ŵ1,k(n + 1), k = 1, . . . , b, are obtained. Figure 5 shows the computation of ẑ1,1(n) and ŵ1,1(n + 1)

based on ẑ0,1(n) and ŵ1,1(n).

Figure 5. The SWU unit operation for computing the first segment of w1(n+ 1).

After the computation of w1(n + 1) and z1(n) are completed, the vector z1(n) is then used for the
computation of z2(n) and w2(n + 1). The vector z2(n) is then used for the computation of w3(n + 1).
The weight vector updating process at the iteration n + 1 will not be completed until the SWU unit
produces the weight vector wp(n+ 1).

3.2. PCC Unit

The PCC operations are based on Equation (1). Therefore, the PCC unit of the proposed architecture
contains adders and multipliers. Because the number of multipliers grows with the vector dimension m,
the direct implementation using Equation (1) may consume large hardware resources when m becomes
large. Similar to the SWU unit, the block based computation is used for reducing the area costs. Based
on Equations (9) and (11), the Equation (1) can be rewritten as

yj(n) =
b∑

k=1

q∑
i=1

wj,(k−1)q+i(n)x(k−1)q+i(n),=
b∑

k=1

ŵT
j,k(n)ẑ0,k(n) (12)

The implementation of Equation (12) needs only q multipliers, a q-input adder, an accumulator, and
a p-entry buffer, as shown in Figure 6. The multipliers and the q-input adder are organized as a s-stage
pipeline for enhancing the throughput of the circuit.
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Figure 6. The PCC unit architecture.

The blocks ŵj,k(n) and ẑ0,k(n) are the inputs to the PCC unit. Figure 6 also shows the operation of
PCC unit when the input vectors are ŵj,1(n) and ẑ0,1(n). Note that the output of the accumulator in the
circuit becomes yj(n) only after all the blocks ŵj,k(n) and ẑ0,k(n), k = 1, . . . , b, have been fetched from
the memory unit. The computation of each yj(n) therefore takes b + s cycles. After the computation of
yj(n) is completed, yj(n) will be stored in the j-th entry of the buffer for the subsequent computation of
wj(n+ 1) in the SWU unit.

3.3. Memory Unit

The memory unit contains three buffers: Buffer A, Buffer B and Buffer C. Buffer A fetches and stores
training vector x(n) from the main memory. Buffer B contains zj(n) for the computation in PCC and
SWU units. The synaptic weight vectors wj(n) are stored in Buffer C. All the buffers are shift registers.

To fetch training vector x(n) from main memory, them elements in the training vector are interleaved
and separated into q segments. Each segment contains b elements. Therefore, Buffer A is a q-stage shift
register, where each stage contains b cells, as shown in Figure 7. Upon all the q segments are received,
they are copied to Buffer B as z0(n).

The architecture of Buffer B is depicted in Figure 8. It holds the values of zj(n) for the computation in
PCC and SWU units. The data in Buffer B is initialized by Buffer A. That is, the initial content of Buffer
B is x(n) (i.e., z0(n)). As shown in Figure 9, Buffer B then provides b blocks ẑ0,k(n), k = 1, . . . , b,

sequentially to PCC unit for the computation of yj(n). Because z0(n) are used for the operations in PCC
and SWU units, all the data output to PCC unit is also rotated back to Buffer B.
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Figure 7. The Buffer A architecture in memory unit.

Figure 8. The Buffer B architecture in memory unit.
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Figure 9. The Buffer B operation for the PCC unit.

After the PCC computation is completed, the Buffer B then delivers data for SWU unit. Starting
from z0(n), the Buffer B provides zj(n) to SWU unit, and then receives zj+1(n) from SWU unit for
j = 0, . . . , p − 1. The delivery of zj(n) and collection of zj+1(n) are on a block-by-block basis, as
depicted in Figure 10.

Figure 10. The Buffer B operation for the SWU unit.
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The Buffer C contains the synaptic weight vectors wj(n), j = 1, . . . , p. In addition to providing
and storing data for the computation in PCC and SWU units, it also holds the final results after GHA
training. Figure 11 shows the architecture of Buffer C. Similar to Buffer B, each synaptic weight vectors
wj(n) is divided into b blocks. They are delivered to PCC unit sequentially for the computation of yj(n).
Moreover, since wj(n) is also needed for the computation of wj(n + 1) in the SWU unit, the b blocks
delivered to the PCC unit should also be rotated back to Buffer C. Figure 12 shows the operation of
Buffer C for computation in PCC unit.

Figure 11. The Buffer C architecture.

Figure 12. The Buffer C operation for the PCC unit.

To support the computation in SWU unit, the Buffer C delivers wj(n) to SWU unit,and then receives
wj(n+1) from the unit. The delivery of wj(n) and collection of wj(n+1) are also on a block-by-block
basis, as depicted in Figure 13.
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Figure 13. The Buffer C operation for the SWU unit.

Based on the operations of the memory unit, Figure 14 shows the timing diagram of the proposed
architecture. It can be observed from the figure that the Buffer A is operated concurrently with Buffers
B and C. That is, while the proposed architecture is fetching the training vector x(n+ 1) to Buffer A, it
is also computing yj(n) and wj(n+1) based on x(n) and w(n). Fetching training vectors may be a time
consuming process as vector dimension grows. Therefore, parallel operations of training vector fetching
and weight vector computation are beneficial for increasing the GHA training speed.

3.4. SOPC-Based GHA Training System

The proposed architecture is used as a custom user logic in a SOPC system consisting of softcore
NIOS CPU [22], DMA controller and SDRAM, as depicted in Figure 15. All training vectors are
stored in the SDRAM and then transported to the proposed circuit via the Avalon bus. The DMA-based
training data delivery is performed so that the memory access overhead can be minimized. The softcore
NIOS CPU runs on a simple software to support the proposed circuit for GHA training. The software
is used only for coordinating different components in the SOPC platform. It does not involve GHA
computations. As the delivery of the training vectors is completed, the softcore CPU then retrieves the
training results from proposed architecture for subsequent classification operations.
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Figure 14. The timing diagram for the operations of the proposed architecture: (a) q >
2bp+ s; (b) q < 2bp+ s.

(a)

(b)
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Figure 15. The SOPC system for implementing GHA.

Figure 16 depicts the interface of the proposed architecture to the SOPC system. The interface consists
of an interface buffer for transferring data between the proposed GHA architecture and the SOPC system.
The proposed GHA architecture contains a simple controller for accessing the interface. Figure 17
depicts the operations of the controller. As shown in Figure 17, the proposed circuit fetches the training
vectors from the interface buffer to Buffer A for subsequent processing. In addition, after the completion
of training, the synaptic weight vectors in Buffer C are delivered to the interface buffer so that they can
be accessed by the NIOS CPU.

Figure 16. The interface of the proposed architecture to the SOPC system.
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Figure 17. The operation of the controller of the proposed architecture.
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4. Performance Analysis and Experimental Results

The area complexities and latency are the major performances considered in this study. Because
adders, multipliers and registers are the basic building blocks of the GHA architecture, the area
complexities are separated into three categories: the number of adders, the number of multipliers and the
number of registers. Given the current synaptic weight vectors wj(n), j = 1, . . . , p, the latency of the
proposed GHA architecture is defined as the time required to produce the new synaptic weight vectors
wj(n+ 1), j = 1, . . . , p.

Table 1 shows the area complexities and latency of various architectures for GHA training. It can
be observed from the table that the number of adders and multipliers of the proposed architecture are
independent of the vector dimension m and the number of principal components p. By contrast, the area
costs of [18] grow with both m and p. We can also see from the table that the latency of [19] increases
with both m and p. Based on the timing diagram shown in Figure 14, the latency of the proposed
architecture is max(q, 2bp + s). Therefore, it is independent of vector dimension m. The proposed
architecture is then well suited for applications requiring large vector dimension m.

Table 1. Performance analysis of various architectures for GHA training.

Architectures Adders Multipliers Registers Latency

proposed
Architecture

O(q) O(q) O(mp) max(q, 2bp+ s)

[18] O(mp) O(mp) O(mp) max(q + 1, p+ 1)

[19] O(p) O(p) O(mp) 3m+ p− 1

Next we consider the physical implementation of the proposed architecture. The design platform
is Altera Quartus II with SOPC Builder [23] and NIOS II IDE. Table 2 show the hardware resource
consumption of the proposed architecture for vector dimensions m = 16 × 16 and m = 32 × 32,
respectively. The hardware resource utilization of the entire SOPC systems is revealed in Table 3. In
order to maintain low area cost, we use fixed-point format to represent data. The length of the format
is signed 8 bits. The target FPGA device is Altera Cyclone IV EP4CGX150DF31C7. The number of
modules q is 64 for all the implementations shown in the tables.

Three different area resources are considered in the tables: Logic Elements (LEs), embedded memory
bits, and embedded multipliers. The LEs are used for the implementation of adders, multipliers and
registers in the proposed GHA architecture. Both the LEs and embedded memory bits are also used
for the implementation of NIOS CPU of the SOPC system. The embedded multipliers are used for the
implementation of the multipliers of the proposed GHA architecture.

It can be observed from Tables 2 and 3 that the consumption of embedded multiplier of the proposed
architecture is independent of the vector dimension m and number of principal components p. Because
the embedded multipliers are used only for the implementation of multiplier in the proposed architecture,
they are dependent only on q. In the experiment, all the implementations in Tables 2 and 3 have the same
q. Therefore, all the implementations utilize the same number of embedded multipliers.
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Table 2. Hardware resource consumption of the proposed GHA architecture for vector
dimensions m = 16× 16 and m = 32× 32.

Proposed GHA with m = 16 × 16 Proposed GHA with m = 32 × 32

p
LEs Memory Bits

Embedded
Multipliers

LEs Memory Bits
Embedded
Multipliers

3 35, 386/149, 760 0/6, 635, 520 704/720 85, 271/149, 760 7, 168/6, 635, 520 704/720

4 37, 731/149, 760 0/6, 635, 520 704/720 94, 244/149, 760 7, 168/6, 635, 520 704/720

5 40, 043/149, 760 7, 168/6, 635, 520 704/720 103, 394/149, 760 7, 168/6, 635, 520 704/720

6 42, 404/149, 760 7, 168/6, 635, 520 704/720 112, 679/149, 760 7, 168/6, 635, 520 704/720

7 44, 737/149, 760 7, 168/6, 635, 520 704/720 121, 940/149, 760 7, 168/6, 635, 520 704/720

Table 3. Hardware resource consumption of the SOPC system using proposed GHA
architecture as hardware accelerator for vector dimensions m = 16× 16 and m = 32× 32.

Proposed SOPC with m = 16 × 16 Proposed SOPC with m = 32 × 32

p
LEs Memory Bits

Embedded
Multipliers

LEs Memory Bits
Embedded
Multipliers

3 44, 377/149, 760 446, 824/6, 635, 520 708/720 94, 736/149, 760 453, 992/6, 635, 520 708/720

4 46, 786/149, 760 446, 824/6, 635, 520 708/720 103, 968/149, 760 453, 992/6, 635, 520 708/720

5 49, 096/149, 760 453, 992/6, 635, 520 708/720 113, 207/149, 760 453, 992/6, 635, 520 708/720

6 51, 449/149, 760 453, 992/6, 635, 520 708/720 122, 537/149, 760 453, 992/6, 635, 520 708/720

7 54, 055/149, 760 453, 992/6, 635, 520 708/720 131, 779/149, 760 453, 992/6, 635, 520 708/720

Because the embedded memory bits are mainly used only for the realization of NIOS CPU, the
consumption of embedded memory bits are also independent of m and p, as shown in Tables 2 and 3. It
can be observed from the tables that the consumption of LEs grows with m and p. It is not surprising
because the LEs are used to design the registers. Moreover, the number of registers increases with m
and p, as shown in Table 1. Therefore, the numerical results shown in Tables 2 and 3 are consistent with
the analytical results in Table 1.

Figures 18 and 19 show the Classification Success Rate (CSR) distribution of the proposed
architecture for the textures shown in Figures 20 and 21, respectively. The CSR is defined as the number
of test vectors which are successfully classified divided by the total number of test vectors. The number
of principal components is p = 4. The vector dimensions are m = 16× 16 and 32× 32. The distribution
for each vector dimension is based on 20 independent GHA training processes. The CSR distribution of
the architecture presented in [18] with the same p is also included for comparison purpose. The vector
dimension for [18] is m = 4× 4.
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Figure 18. The CSR distributions of the proposed architecture for the texture set shown in
Figure 20.

Figure 19. The CSR distributions of the proposed architecture for the texture set shown in
Figure 21.
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Figure 20. The set of textures for CSR measurements in Figure 18.

Figure 21. The set of textures for CSR measurements in Figure 19.

The size of each texture in Figures 20 and 21 is 576×576. In the experiment, the Principal Component
based k Nearest Neighbor (PC-kNN) rule is adopted for texture classification. Two steps are involved in
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the PC-kNN rule. In the first step, the GHA is applied to the input vectors to transform m dimensional
data into p principal components. The synaptic weight vectors after the convergence of GHA training
are adopted to span the linear transformation matrix. In the second step, the kNN method is applied to
the principal subspace for texture classification.

It can be observed from Figures 18 and 19 that the proposed architecture has better CSR. This
is because the vector dimensions of the proposed architecture are higher than those in [18]. Spatial
information of textures therefore can be effectively exploited. The proposed architecture is able to
implement the hardware GHA training with vector dimension up to m = 32 × 32. The hardware
realization form = 32×32 is possible because the area costs of the SWU and PCC units in the proposed
architecture are independent of vector dimension. By contrast, the area costs of the SWU and PCC units
in [18] grow with the vector dimension. Therefore, only smaller vector dimension (i.e., m = 4× 4) can
be implemented.

Although the proposed architecture is based on signed 8-bit fixed point format, the degradation in
CSR is small as compared with the GHA without truncation. Figure 22 reveals the truncation effects
of the proposed architecture. The GHA implementation without truncation is implemented by software
with floating-point format. The training images for this experiment is shown in Figure 20. The vector
dimension is 32 × 32. The distribution for each format is based on 20 independent GHA training
processes. It can be observed from Figure 22 that only a slight decrease in CSR is observed for the
fixed-point format. In fact, the average CSR degradation is only 3.44% (from average CSR 95.53% for
floating-point format to 92.09% for fixed point format).

Figure 22. The CSR distribution of GHA with fixed and floating point format.
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Another advantage of the proposed architecture is its superior computational capacity for GHA
training. Figure 23 shows the CPU time of the NIOS-based SOPC system using the proposed architecture
as a hardware accelerator for various numbers of training iterations with m = 16 × 16 and p = 7. The
NIOS CPU clock rate in the system is 50 MHz. The target FPGA for the implementation is Cyclone III
EP3C120F780C8. The CPU time of the software counterparts running on the general purpose 1.6 GHz
Intel i5 and 2.8 GHz Intel i7 processors also are depicted in the Figure 23 for comparison purpose. The
software implementations are multithreaded to take advantages of all the cores in the processors. There
are 16 threads in the codes: 8 threads for synaptic weight updating, and 8 threads for the principal
component computation and others. An optimizing compiler (offered by Visual Studio) is used to
further enhance the computational speed. It can be clearly observed from Figure 23 that the proposed
architecture attains high speed up over its software counterparts. In particular, when the number of
training iterations reaches 1000, the CPU time of the proposed SOPC system is 733.14 ms. By contrast,
the CPU time of Intel i7 is 1,0125.37 ms. The speedup of proposed architecture over the software
counterpart is therefore 13.81.

Figure 23. The CPU time of the NIOS-based SOPC system using the proposed architecture
as the hardware accelerator for various numbers of training iterations with m = 16× 16 and
p = 7.

The proposed architecture has superior speed performance over its software counterparts because
there are limitations for exploiting the thread level parallelism. The GHA is an incremental training
algorithm. Therefore, it is difficult to exploit parallelism among the computations for different training
vectors. The inherent data dependency among different GHA stages (e.g., between principal component
computation and weight vector updating) may slow down the computation speed due to costly data
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forwarding via shared memory. Moreover, the inputs (i.e., x(n) and wj(n), j = 1, . . . , p) and outputs
(i.e., y(n), wj(n + 1), j = 1, . . . , p) of the algorithms are all vectors with large dimension. Large
number of memory accesses required by GHA is another limiting factor for performance enhancement
of software implementations. By contrast, the proposed architecture is able to perform data forwarding
and memory accesses in an efficient manner. The employment of Buffers A, B and C allows the parallel
operations of training vector fetching and weight vector computation. The latency for memory access
can then be concealed. Moreover, the Buffers B and C are also designed for fast data forwarding
between principal computation and weight vector updating without complicated memory management
and external memory accesses.

In addition to having superior computational speed, the proposed architecture consumes lower power.
Table 4 shows the power consumption of various GHA implementations. For the power estimation
of GHA software implementations, the tool Joulemeter (developed by Microsoft Research) [24] is
used. The tool is able to estimate the power consumed by CPU for a specific application. The power
consumption of other parts of a computer such as main memory and monitor therefore can be excluded
for comparisons. The power consumed by the proposed architecture is estimated by the PowerPlay Power
Analyzer Tool [25] provided by Altera. From Table 4, it can be observed that the power consumption
of the proposed architecture is only 0.4% of that of Intel I7 processor for GHA training (i.e., 0.129 W
versus 31.656 W). As compared with the low power multicore processor Intel i5 for laptop computers,
the proposed architecture also has significantly lower power dissipation (i.e., 0.129 Wversus 1.292 W).

Table 4. Power Consumption of Various GHA Implementations.

GHA Proposed Multithreaded Multithreaded
Implementations Architecture Software (16 threads) Software (16 threads)

Multicore Processor Intel i7 Intel i5
FPGA Device Altera Cyclone III

EP3C120F780C8
Clock rate 50 MHz 2.8 GHz 1.6 GHz
Estimated Power 0.129 W 31.656 W 1.292 W

Table 5 compares the computation speed of various GHA architectures implemented by FPGA.
Similar to Figure 23, the computation time of the proposed architecture is measured as the CPU time
of the NIOS processor using the proposed architecture as the hardware accelerator. The clock rate of
NIOS CPU in the system is 100 MHz. The vector dimension and the number of principal components
associated with the proposed architecture are m = 16 × 16 and p = 16, respectively. The computation
time of architectures in [18,19] with different m and/or p values are also included in the table.
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Table 5. Computation Time of Various GHA Architectures.

Architectures Proposed Architecture [18] [19]

Vector Dimension m 16× 16 4× 4 16× 8

# of Principal Components p 16 4 16
FPGA Device Altera Cyclone III Altera Cyclone III Xilinx Virtex 4

EP3C120F780C8 EP3C120F780C8 XC4VFX12
Clock Rate 100 MHz 75 MHz 136.243 MHz
Iteration Numbers 100 100 100
# of Training Vectors per Iteration 888× 8 888× 8 888× 8

Computation Time 1.369 s 86.58 ms 2.09 s

Note that direct comparisons of these architectures may be difficult because the speed of these
architectures are measured on different FPGA devices with differentm, p and/or clock rates. To show the
superiority of the proposed architecture, the comparisons are based on the same training size (i.e., number
of training vectors per iteration) and number of iterations. With larger vector dimension (i.e., 16 × 16

versus 16×8), slower clock rate (i.e., 100 MHz versus 136.243 M Hz), and the same number of principal
components (i.e., p = 16), it can be observed from Table 5 that the proposed architecture still has faster
computation speed as compared with the architecture in [19]. Although the architecture in [18] has
fastest computation time, the architecture is suitable only for small vector dimension (i.e., m = 4 × 4)
and small number of principal components (i.e., p = 4). All these facts demonstrate the effectiveness of
the proposed architecture.

5. Concluding Remarks

Experimental results reveal that the proposed GHA architecture has superior speed performance
over its software counterparts and other GHA architectures. With lower clock rate and higher vector
dimension, the proposed architecture still has faster computation speed over the architecture in [19].
In addition, the architecture is able to attain higher CSR for texture classification as compared with
other GHA architectures. In fact, all the CSRs are above 90% for all the experiments considered in
this paper. The proposed architecture also has low area costs for fast PCA analysis with high vector
dimension up to m = 32 × 32. The utilization of memory bits and embedded multipliers for FPGA
implementation are independent of the vector dimension and the number of principal components. The
proposed architecture therefore is an effective alternative for on-chip learning applications requiring low
area costs, high classification success rate and high speed computation.
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