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Abstract: In this paper, a variable threshold voice activity detector (VAD) is developed to 
control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits 
the reference input of the ANC from containing some strength of actual speech signal 
during adaptation periods. The novelty of this approach resides in using the residual output 
from the noise canceller to control the decisions made by the VAD. Thresholds of  
full-band energy and zero-crossing features are adjusted according to the residual output of 
the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of 
signal to noise ratio improvements as well mean square error (MSE) convergence of the 
ANC. The new approach showed an improved noise cancellation performance when tested 
under several types of environmental noise. Furthermore, the computational power of the 
adaptive process is reduced since the output of the adaptive filter is efficiently calculated 
only during non-speech periods.  
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1. Introduction 

For many speech related applications such as hands-free telephony, hearing aids, video or 
teleconferencing, speaker identification and speech-controlled devices, recovering clean speech in 
noisy acoustical environment has been a difficult task for many years now. These applications require 
clean speech to function efficiently. In the past few decades, various algorithms have emerged aimed at 
reducing the background noise from the acquired speech signal. These algorithms can be single or 
multi-sensor methods. The idea behind most popular algorithms is to use an adaptive filter to reduce 
the interference signal [1]. 

In the adaptive noise cancellation (ANC) technique, a two-sensor model is often used for speech 
enhancement with the arrangement shown in Figure 1. This structure is largely used for applications 
where the speech signal is isolated from the reference signal, and the noise signals are correlated in 
both channels. It is often assumed that the two sensors, in this case microphones, are physically 
separated and isolated from each other, so that no substantial speech leakage into the reference input 
occurs, otherwise intelligibility of the speech signal will be degraded by the adaptive process. In 
practice, the two microphones should be located within few centimeters [2]. In the past, directional 
microphones and acoustic barriers are used to prevent speech leakage into the reference input [2]. Voice 
activity detectors VADs are offered in more advanced systems nowadays [3–6]. The primary function 
of a voice activity detector is to provide an indication of speech presence, in order to facilitate speech 
processing as well as providing indications for the beginning and end of a speech segment. The 
intention of the present work is to develop a voice activity detection (VAD) system to control the 
operation of a two-sensor adaptive noise canceller. The use of VAD in this context has a two-fold 
advantage, first, the convergence behavior of the adaptive filter can be improved since the reference 
input will be highly correlated with the noise components in the primary input, and second, the 
computation power is reduced since the output of the adaptive filter will be calculated only during  
non-speech periods. This power saving is of great importance in many applications such as hands-free 
communications, where processing power must be kept as low as possible, due to size and  
weight limitations. 

Figure 1. The two-microphone adaptive noise canceller. 
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property can be used as an advantage to improve the performance of the noise canceller, as well as 
reducing the computational costs, hence the power consumption of the system. 

In the absence of speech, the primary input of the adaptive filter could be used as a reference signal 
for the present noise signal to adapt the filter coefficients using any type of adaptive algorithms. In this 
context, the least mean squares (LMS) system is commonly used for its robustness and simplicity. The 
LMS is a gradient search algorithm that seeks an optimum on quadratic surface. Detailed discussion 
and derivation of the LMS algorithm can be found in many references (e.g., [7]). The noise in the 
reference microphone of the ANC of Figure 1 should be a very close estimate of the noise component 
in the speech signal. If a speech signal is then detected, the VAD switches the reference input back to 
the reference sensor. The adaptive filter in the LMS system should now have the same characteristics 
as the noise path so that the noise is reduced to a minimum. Furthermore, the VAD freezes the filter 
adaptation when speech is present so that the target speech is not reduced. In the literature, several 
VAD schemes have been introduced, each providing a solution to a certain aspect of the problem. The 
main issues of VADs are threshold control [8], computational complexity [9] and robustness [10]. In 
the current work, a VAD and an adaptive noise canceller are made to have a mutual control so that an 
improved noise cancellation performance is obtained. The paper is organized as follows. In addition to 
this introductory section, Section 2 presents a review of VAD techniques, Section 3 gives a general 
description of the proposed VAD algorithm, Section 4 gives details of the features used in the 
proposed voice activity detector. In Section 5, the mutual control between the VAD and the adaptive 
noise canceller is explained. Section 6 gives a description of the adaptive noise canceller used in this 
work. Section 7 presents a performance evaluation with a discussion of the results of the developed 
noise cancellation system, and Section 8 concludes the paper with the main aspects of the research. 

Figure 2. A typical one end telephone speech. 

 

2. A Review of Voice Activity Detection Techniques 

The process of detecting the presence of speech/non-speech is not a fully resolved problem in 
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telecommunication systems are affected by such a process [14,15]. The detection of speech/non-speech 
is not an easy task as it may look. Most VAD algorithms fail to function properly when the level of 
background noise becomes severely high. During the last decade, many researchers have developed 
different techniques such as those found in [16–18] for detecting speech on a noisy signal. In these 
techniques, they have evaluated the influence of the VAD on the performance of speech processing 
systems, and most of them have focused on the development of robust algorithms with a special 
attention being given to the derivation and study of noise robust features and decision rules [19–21]. 
The different VAD methods include those based on energy thresholds [19], pitch detection [22], 
spectrum analysis [21], zero-crossing rate [23], periodicity measure [24], higher order statistics in the 
LPC residual domain [25] or combinations of different features [26,27]. Voice activity detection 
techniques relying on artificial intelligence and soft computing have emerged in recent years to 
surmount the problem of VAD. These techniques include the use of support vector machine [28], 
neural networks [29], and fuzzy logic [30]. These classification strategies practically fail to solve the 
problem due to the non-stationary nature of both the speech and the background noise.  

In speech processing systems, it is important to determine the presence of speech periods in a given 
signal. This task can be viewed as a statistical problem with a purpose of determining to which class a 
given signal belongs. The decision is based on an observation vector, usually called a feature vector, 
which serves as the input to a decision rule that assigns a sample vector to one of the given classes. 
The classification task is often quite difficult due to the increasing level of background noise, which 
degrades the classifier effectiveness, thus leading to detection errors. The choice of an adequate feature 
vector for signal detection followed by a robust decision rule is a challenging problem for VADs 
operating in noisy environments. Many VAD algorithms are effective in a large number of 
applications, however, they fail to detect properly, mainly because of the loss of discriminating power 
of the decision rule when the signal to noise ratio (SNR) is severely low [23,26]. For instance, a simple 
energy level detector can work effectively in high SNR levels, but would fail significantly when the SNR 
becomes low. In non-stationary noise environments, the use of VAD is more critical since it is needed to 
update the continuously varying noise statistics which have a direct impact on the system performance 
due to possible misclassification errors. Desirable aspects of VAD algorithms include the following. 

- A good decision rule: A physical property of speech that can be exploited to give consistent and 
accurate judgment in classifying segments of the signal into silence or otherwise. 

- Adaptability to background noise: Adapting to non-stationary background noise improves 
robustness, especially in wireless telephony where the user is moving. 

- Low computational complexity: Therefore the complexity of any VAD algorithm must be low to 
suit real-time implementation. 

3. Description of the VAD Algorithm 

The general operation of the VAD algorithm used here is depicted by the flow chart shown in  
Figure 3. The aim of using VAD is to discriminate between active and inactive speech. As mentioned 
in the previous section, this problem can be solved using classification techniques such as those found 
in [28–31]. However, the non-stationary nature of both the speech and the background noise makes 
this problem hard to solve in practice. Therefore, it is common to use a set of parameters describing the 
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behavior of the signal. The choice of a particular parameter is determined by the contribution of each 
parameter to the solution and its robustness. The parameters used for the classification have to be 
selected and a discriminating function has to be devised. Many standard signal parameters can be used 
to control the decision of a VAD such as those recommended by ITU-T [23]. The VAD model 
developed in this paper is based on two features: full-band energy measurement and zero crossing rate 
calculation. These choices were dictated by the contribution of each parameter to the final 
classification solution and its robustness. An instantaneous parameter set is computed on frame basis. 
Another set of parameters similar to the instantaneous set is used to describe the noise statistics. The 
intermediate decisions from the individual features are used to excite a logic circuit. The output of this 
circuit is used to decide if speech is present or not, thus controlling the adaptive process in  
ANC system. 

Figure 3. Flow chart of the VAD algorithm using background noise information. 
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4. Parameter Extraction 

Speech signals have high energy contents in their voiced part, thus measuring the energy level is a 
very basic and efficient way of detecting silence gaps. However, in noisy uncontrolled environments, 
such as those encountered in mobile and portable communication systems, the measure of energy level 
itself in the input signal does not give a perfect solution for speech classification. The speech 
production system produces a set of formants determined primarily by vocal tract and nasal tract 
characteristics. The first formant frequencies for voiced sounds are located below 1 kHz, and more 
energy is located at the first formant than any other [32]. However, the majority of unvoiced sounds 
show strong spectral concentration in higher frequency range [33]. Background noises display uniform 
spectral distribution. It is possible to distinguish between active speech and background noise by 
examining the energy distribution along the frequencies.  

Detecting the zero crossing rates from the offset-free speech samples is an efficient method to 
discriminate unvoiced sounds from voiced sounds and silence. The zero crossing rate of a speech 
signal is detected in the time domain by multiplying the sign values of adjacent speech samples. In this 
work, two important features are extracted from the input signal at each frame. In the following 
subsections, formulations as well as possible realizations of these features are given.  

4.1. The Full Band Energy Calculation 

The full band energy Ef is calculated as the logarithm of the normalized first autocorrelation 
coefficient A(0) which can be determined by the following [23]:  

⎟
⎠
⎞

⎜
⎝
⎛×= )0(
10
1log10 10 AE f  (1)

Figure 4. Implementation of the full-band energy algorithm. 
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where Te is an initial noise threshold. The full-band energy algorithm is implemented as shown in 
Figure 4. The energy of the total signal in the presence of speech is assumed to be sufficiently larger 
than that of the background noise, and therefore the voice-active regions could be detected. The preset 
threshold value for a varying noise level is re-calculated for each analysis window. 

4.2. Initial Value of Threshold 

The VAD algorithm is trained for a small period by a prerecorded sample that contains only 
background noise. The initial threshold level for various parameters is computed from these samples. 
For example, the initial energy threshold is obtained by taking the mean of the energies of each sample 
Em as in: 

∑
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=
V

m
me E

V
T

0

1  (3)

where Te is the threshold estimate, V is the number of frames in prerecorded sample. The number of 
frames taken is a prerecorded sample of 20 frames. 

4.3. Zero Crossing Rate Calculation 

The zero-crossing rate Zx is a measure of how often a signal crosses the zero value in a given time. 
Zero crossing of an input signal can be calculated in the time domain by comparing the sign of adjacent 
signal samples. The zero crossing Zs of a sampled speech S(n) is defined as [23]: 
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where N is the analysis window size, sgn(s) is 1 for s > 0, −1 for s < 0. Two flags fz-vce and fz-unv stand for 
voiced and unvoiced signal respectively are set according to the following: 
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where Tz1 and Tz2 are thresholds for the voiced and unvoiced signal, respectively. These two thresholds 
are initially determined using an empirical procedure. For white background noise, the zero-crossing 
rate is found to be constant. However, if speech is present then Zs decreases. This was verified 
experimentally with white noise as the background noise. Figure 5 shows the zero crossing algorithm 
implementation and Figure 4 depicts the output of the zero crossing detector for a speech signal 
corrupted with white noise. It can be seen from Figure 6, that the crossings per time frame decreases if 
speech is present. The zero crossings rate for each analysis window is calculated and compared with 
the preset threshold value. The zero crossings rate of noise is assumed to be larger than that of the 
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speech signal. This assumption is accurate at high SNR values. However, it has problems at low  
SNRs [34].  

Figure 5. Zero crossing rate calculation. 

 

Figure 6. Zero crossing detection of a noisy signal 
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where − , +, * denote the logic operators (NOT, OR, AND) respectively. A decision circuit is 
constructed according to Equation (7) as shown Figure 7. The output of this circuit is used to control 
the operation of the adaptive filter in the noise cancellation system. The adaptation process stops on 
reception of logic zero, and it continues when receiving logic one. 
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Figure 7. Decision Module. 
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15 ms; therefore, frames of 32 ms are used. In order to make the VAD more robust to impulsive noise, 
an overlap of 16 ms between adjacent frames is allowed. Frames of data are passed through feature 
generators as explained earlier in Section 4.  

Figure 8. Thresholds adjustment using residual output information. 

 
The residual noise r is calculated on a frame basis as the difference between the noisy input Pi, and 
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where M is the number of samples over which the average power is calculated. The threshold Te in 
Equation (2) is calculated as follows: 

maxeT E R= −  (9)

where Emax is the maximum possible input power of the desired signal. The maximum possible power 
Emax is taken to be 75 dB, this choice is based on the data found in [36]. It is worth mentioning here 
that the choice of 75 dB also complies with the maximum possible power on a telephone line for an  
A-law signal. The threshold is then compared to the average energy of each frame of the input signal 
Ef, and the result is used to make a decision. If the result is negative, the input signal to the adaptive 
filter contains speech and logic “low” is sent to the adaptive filter to deactivate the adaptation process. 
If the result of comparison is positive, then the input signals contains no speech and therefore logic 
“high” is sent to the adaptive filter to activate the adaptation process. This process continues until the 
filter reaches a steady state.  
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In a further reinforcement to the decision made by the VAD, the residual output r of the noise 
canceller is passed through a zero crossing rate calculation algorithm so as to adjust the zero crossing 
threshold Tz2 as follows: 
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where sgn(r) is 1 for r > 0, −1 for r < 0 and m is an arbitrary time index. Based on frame basis, the zero 
crossing of the residual output Zr is compared to the zero crossing of the input signal, and the unvoiced 
flag in equation (7) is set as follows: 
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6. Description of the Adaptive Noise Canceller ANC 

The adaptive noise canceller used in this work is as illustrated in Figure 1. A signal s is transmitted 
to a sensor that receives the signal plus uncorrelated noise x̂ . The combined signal and the noise, xs ˆ+ , 
form the “primary input” to the canceller. A second sensor receives a noise x which is uncorrelated with 
the signal s but correlated with the noise x̂ . This sensor provides the “reference input” to the canceller. 
The primary sensor receives the noise x after being transmitted over unknown channel. The noise x is 
filtered to produce an output y that is a close replica of x̂ . This output of the adaptive filter is then 
subtracted from the primary input d to produce the system output e = d − y. 

In noise cancellation systems, the practical objective is to produce a system output, ŝ  that is a best fit 
in the least-square sense to the signal, s. This objective is accomplished by feeding the system output 
back to the adaptive filter, and adjusting the filter through an adaptive algorithm, to minimize the total 
system output power. In an adaptive noise canceling system, the system output serves as the error signal 
for the adaptive process. The error is the difference between some desired response d and the actual 
filter output y. The mean square value of this resulting error signal when minimized is often referred to 
as the mean square error (MSE) [37], and it is used here as a measure of performance of the  
noise canceller. 

The core of the adaptive noise canceller used in this work is the NLMS algorithm. This algorithm 
can be viewed as a modification of the original LMS algorithm that gives it a time-varying step-size 
parameter. The weight update equations of the NLMS algorithm are given by the following: 

)(..ˆˆˆ 1 nennn xww μ−=+  (12)

)()()(e nyndn −=  (13)

ˆy( ) T
n nn = x w  (14)

with xn is a column vector of length L representing the input noise, nŵ  is the adaptive filter weights at 
time n, and μ̂  is the adaptation step-size, which  is given by: 

       ) || x||+( / µ ( ˆ 2
nαμ  =  (15)
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where μ is the step-size gain factor, α is a small constant (greater than zero) used to avoid possible 
division by zero, and || xn || is the norm or power of the input vector xn. The value of μ is between 0 and 
2 [37]. Compared to the basic LMS algorithm μ has to be divided by the energy of the input data 
vector, thus providing a variable step size algorithm. For speech and audio applications considered in 
this paper, the normalized version of the LMS algorithm is used for its robustness and simplicity. 

7. Performance Evaluation and Discussion 

In the literature, the performance of standard VAD algorithms such as G.729, AMR and AFE [23] 
is normally quoted in terms of hit rates in speech recognition systems. This type of comparison is not 
appropriate for our adaptive noise cancellation purpose. As it is emphasized in Section 1, the aim of 
the current arrangement is to improve the performance of adaptive noise cancellers in non-stationary 
background noise. Therefore, in this section, we evaluate the performance of the threshold controlled 
ANC and compare it with an equivalent system that uses a constant threshold VAD algorithm. The 
former model is called the controlled ANC while the latter is named as the uncontrolled ANC. 

As it was mentioned in Section 6, the adaptive filter adopted here is a normalized least mean square 
NLMS type algorithm which controls the weight coefficients of a finite impulse response FIR filter 
with 127 taps. This is equivalent to the total number of weights used in the noise path. The noise path 
used here is an approximation of a small room modeled by a finite impulse response FIR processor. 
The step-size gain factor value μ is set as 0.02. This parameter is deduced empirically as shown in 
Figure 9, and it is kept the same throughout the experiments. 

Figure 9. Deducing the best value for step-size gain factor μ.  
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Initially, the ANC structure is trained with a small section of the interference signal. The quality of 
the output signal is jugged by the signal to noise ratio SNR of the output, and it is calculated as: 

1010 logo

Power of processed speech
SNR

Output Noise Power

⎛ ⎞
⎜ ⎟= ×
⎜ ⎟
⎝ ⎠

 (16)

To measure the improvement in SNR, the signal to noise ratio at the output is compared with that of 
the input. The SNR of the input is calculated at the primary microphone as: 

10

Pr
10 logi

imary input power
SNR

Input Noise Power

⎛ ⎞
⎜ ⎟= ×
⎜ ⎟
⎝ ⎠

 (17)

The primary microphone power consists of speech power plus background noise power. Several 
experiments were conducted by varying the level of the noise signal. The experimental set up is as 
follows. A noisy speech signal (nspeech.wav) was applied to the primary input of the ANC and the 
VAD simultaneously. This signal was generated by adding noise to a clean speech. The speech 
contains a Malay utterance “kosong-satu-dua-tiga” with variable pauses. The speech was recorded in 
the lab for a female speaker in a noise free environment. Several types of noise signals were used to 
corrupt this speech. These types of noise consist of white noise, voice babble, factory noise and pink 
noise [38]. Different noise types have different impact on the performance of the adaptive 
noise canceller. Clean and noisy situations are shown in Figures 10(a) and 10(b), respectively. In 
Figure 10(b), white noise is used for the noisy case. 

The output of the VAD shows a high value if no speech is detected and a low value if speech is 
present. In the normal situation, when the speech signal contains high noise levels, the VAD may not 
be capable of measuring in an accurate way if speech is present or not, if the implemented threshold is 
constant. The noise measurement system implemented here is to adapt threshold values for the  
full-band energy and zero crossing features so as to cope with high noise situation. The VAD results 
and the recovered speech are shown in Figure 10(c,d). 

Different levels of SNRs at the primary input of the noise canceller were used in these tests.  
Figure 11 shows a comparison of the input SNR verses output SNR for white noise environment. The 
output signal from the uncontrolled NLMS ANC structure showed only a small improvement in SNR 
of about 5 dB. On the other hand, the threshold controlled noise canceller structure showed an 
improvement in SNR from 5 to 10 dB in most cases and in it reaches around 15 dB in one particular 
case. This experiment was repeated with different SNRs at the primary input for voice babble 
interference, and the results are shown in Figure 12. Under babble noise interference, the improvement in 
signal noise ratio tends to be less than that of the white noise case. In most SNR levels used in the babble 
noise test, the improvement lies between 4 to 8 dB. This reduction in performance can be traced back to 
the nature of the NLMS algorithm which normally has reduced performances under colored input  
signals [37]. 
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Figure 10. (a) Original speech, (b) noisy speech, (c) VAD result and (d) Filtered speech. 
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Figure 11. Comparison of SNR performance between threshold controlled and uncontrolled 
ANCs under white background noise. 

 

Figure 12. Comparison of SNR performance between threshold controlled and uncontrolled 
ANCs with noise babble as background interference. 
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cancellation system. Figure 13 shows a convergence comparison between the MSE plot of the 
controlled noise canceller and that of an uncontrolled system using white noise as background 
interference. It is evident that the controlled NC converges well faster than the uncontrolled NC. While 
the uncontrolled system is converging slowly with noticeable misadjustment and high level of excess 
mean square error, the controlled system exhibits a smoother convergence with better noise cancellation 
performance. The steady-state MSE of the controlled noise canceller is lower than that of the 
uncontrolled equivalent. This improvement can be justified by the correct timing of adapt/stop 
adaptation command from the VAD. The correct prompt from the VAD provides a good isolation 
between the primary and the reference inputs of the noise canceller. Furthermore, halting the adaptation 
process during speech periods would result in a reduction in the computational burden of the LMS 
adaptive algorithm. In actual fact, the rate of convergence of the LMS algorithm does depend on the 
number of operations executed by the adaptive filter every iteration, hence the computational 
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complexity. However, this is not the only parameter that affects the convergence rate of the LMS 
algorithm. Other parameters such the step-size of the algorithm and the nature of the input data can also 
affect convergence speed considerably [37].  

Figure 13. Mean square error convergence of controlled and uncontrolled noise cancellers. 

 

It is clear that improvement as well as computational savings can be obtained if adaptive filtering is 
correctly controlled so that reduction of noise takes place only during pauses and unvoiced intervals. 
This improvement is targeted for limited resources digital signal processors, and it can be very useful in 
applications such as audio and hearing aids where power consumption and physical size are constrained 
to a minimum.  

It is explained in this paper that adaptive process will take place only during non-speech intervals. 
During speech periods the adaptive filter halts its operation until it receives an interrupt from the VAD 
to resume its adaptation. When the interrupt is shorter than the time require for producing one iteration 
process, then the adaptive filter will not change the output until it receives a new interrupt. Such a 
situation would rarely occur, since real life speech pauses normally take a large amount of time 
compared to the time require to process an iteration by the adaptive filter. This matter also depends on 
the processing speed of the available digital signal processor. 

Table 1. Comparison of controlled ANC and uncontrolled noise canceller with various 
background noise signals. 

Noise Type Input SNR (dB)
Output SNR (dB) 

Uncontrolled ANC Threshold controlled ANC 
White 15.42 23.74 30.65 
Pink 10.33 20.54 24.23 

Voice babble 13.60 16.46 21.63 
Factory 8.3 14.35 20.56 

Finally, Table 1 shows comparisons of input and output signal to noise ratios for both controlled 
and uncontrolled noise cancellation structures for variety of noise signals. It is evident from these 
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results that the threshold controlled ANC structure outperforms the uncontrolled model by up to 6 dB 
for different type of interference signals and at different signal to noise ratio levels at the primary input 
of the noise canceller. The performance of the current system can be further improved by including 
more features of the VAD. Features such as the ratio of low-band energy to full-band energy, and 
long-term minimum energy [39] can be calculated and included for more robustness. 

8. Conclusions and Suggestion for Future Development 

A variable threshold voice activity detector VAD is proposed to control the operation of a  
two-sensor adaptive noise canceller in variable background noise conditions. Residual output from the 
adaptive filter is used to adjust the threshold values of full-band energy and zero-crossing features. 
Results showed that an improvement in the output SNR can be obtained compared to a constant 
threshold model. Improved convergence behavior as well as reduced computational power can be 
achieved with this method. Further development can made to the current system by including more 
signal features for the voice activity detection operation. Features such as the ratio of low-band energy 
to full-band energy, and long-term minimum energy [39] can be calculated and included for more 
robustness. Also, the impact of difference parameters such as spectral distortion, and the effect of the 
analysis window size on parameter extraction can be investigated. 
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