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Abstract: Airborne fine particulates (PM2.5; particulate matter with diameter less than  

2.5 µm) are receiving increasing attention for their potential toxicities and roles in visibility 

and health. In this study, we interpreted the behavior of PM2.5 and its correlation with 

meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations 

of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two 

marked peaks during the morning and evening rush hour times, due to dense traffic. The 

study observed higher PM2.5 concentrations in winter when the northerly and northeasterly 

winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from 

the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 

were observed in rush hours on weekdays compared to weekends, suggesting the influence 

of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 

emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the 

built-up environment of Hong Kong, we utilized MODerate Resolution Imaging 

Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility 

data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical 

profiles. A Geographic Information Systems (GIS) prototype was developed to integrate 

atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in 

GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial 

information to air quality regulators and decision makers to comply with air quality 

standards and in devising control strategies. 
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1. Introduction  

Airborne Particulate Matter (PM) refers to particles suspended in the air in either liquid or solid 

form, which are highly heterogeneous in both time and space and are often observable as dust, smoke 

and haze. PM2.5 and PM10 are defined as particles with diameters of 2.5 μm or less, and 10 μm or less 

respectively, they are the standard concentrations used in the United States Environmental Protection 

Agency (EPA). Aerosol is defined as the total particles suspended in air with typical particle radius 

ranged from 0.05 to 15 μm [1]. Around 10% of the aerosols is produced by or is a result of human 

activities such as vehicular exhaust, burning of fossil fuel, construction, while the remaining 90% is 

produced by natural sources such as volcanic eruptions, sea spray and dust [2,3]. The scattering and 

absorption of light by the aerosol particles results in a degradation of visibility [4]. Satellite aerosol 

remote sensing provides Aerosol Optical Thickness (AOT) data, as a quantitative measurement of PM 

loadings in the atmosphere column [5]. To some extent, the AOT can be seen as an important indicator 

of air pollution and is the most readily recognized indication of the presence of particulate air pollution.  

Airborne particulates can be inhaled by the human lungs, where they are absorbed into blood, and 

consequently are responsible for harmful health effects. The significance of adverse effects on our 

health depends on the size and composition of particulates. For instance, particles less than 2.5 μm 

(PM2.5) can penetrate deeper into the air sacs of human lungs and therefore pose the greatest harm to 

human health [6]. Environmental epidemiological studies have found particulate matters affect 

pulmonary function and can thereby induce respiratory diseases and adverse effects on public health 

and even premature death [7–9].  

Elevated levels of PM2.5 over urban areas are often associated with both local sources of emissions 

and regional transport [10]. Although diesel vehicles are the main local sources of urban PM2.5  

loads [11], regional transport and secondary transformation also account for a significant portion of 

PM2.5 levels. Numerous studies have been conducted to link the behavior of PM2.5 to meteorological 

data e.g., wind speed, wind direction, temperature, humidity, mixing height, precipitation, pressure and 

cloud cover [12,13]. Jung et al. [14] studied the atmospheric transport of PM2.5 in Ohio, United States, 

and found high concentrations of PM2.5 were particularly detected when the wind speeds were lower 

than 8 mph and the temperature was higher than 70 °F. Hien et al. [15] revealed that the fine particles 

were governed mainly by wind speed and temperature. Chiang et al. [16] found wind direction and 

relative humidity are highly correlated to fine particulates in winter.  

Due to the temporal and spatial dependence of the pollutant, the characteristics of PM2.5 resolved in 

one region cannot be replicated to another region. Although there are some existing PM2.5 studies in 

Hong Kong [17–19], they are mainly focused on the chemical composition and only a few studies link 

pollutant characteristics to the meteorological parameters such as wind effects [20]. The extensive  

and comprehensive meteorology contribution to PM2.5 loadings is poorly understood in Hong Kong.  

Since understanding the pattern of pollutant and quantifying the relative contribution of different 

meteorological parameters are critical in developing control and mitigation strategies to safeguard 
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public health, a detailed analysis of the temporal pattern of PM2.5 and the related meteorological 

contribution is imperative in Hong Kong. Thus, the objective of this study is to assess temporal and 

spatial patterns of PM2.5 in Hong Kong. The temporal variations of PM2.5 over urban areas in Hong 

Kong will be analyzed using ground-based data (meteorological and PM2.5 data), while the spatial 

patterns of PM2.5 will be derived from remote sensing and GIS approaches.  

2. Data Collection 

2.1. PM2.5 and Meteorological Measurements 

To characterize and analyze the PM2.5 concentrations in Hong Kong, the PM2.5 concentrations and 

meteorological data were acquired from the Hong Kong Environment Protection Department (HKEPD) 

and the Hong Kong Observatory (HKO) respectively. In this study, PM2.5 data recorded by Central 

station (22°16′54″, 114°09′29″) equipped with a TEOM Series 1400a monitor [21] are selected to 

represent PM2.5 concentrations over urban areas in Hong Kong. These data are represented for the 

pollution in Central Business District and are considered to have higher values than suburban and  

rural areas. Temperature, relative humidity, pressure, and precipitation were collected from the HKO 

(22°18′07″, 114°10′27″), which were used to represent the meteorological conditions for Central 

station (Figure 1). The wind speed and wind direction were collected from Central Pier monitoring 

station (22°17′20″, 114°09′21″) for representing the wind conditions for Central station as 

geographical proximity. These data are co-located in both space and time, which serve as the basis for 

statistical analysis. 

Figure 1. The locations of PM2.5 Central station, Central Pier and Hong Kong Observatory. 

 

2.2. MODIS AOT 500 m Image 

The MODerate Resolution Imaging Spectroradiometer (MODIS) is a sensor aboard the TERRA and 

AQUA Earth observation system satellites. It is a multispectral (36 spectral wavebands span over the 

visible light, near infrared and infrared portion of the spectrum), multi-resolution (1 km, 500 m, 250 m) 
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sensor dedicated to the observation of the Earth. However the coarse spatial resolution (10 × 10 km) of 

MODIS Aerosol Optical Thickness (AOT), namely MOD04 aerosol product [22] cannot provide 

detailed spatial variation for local/urban scale aerosol monitoring and is inaccurate over bright urban 

surfaces [23], Wong et al. [23,24] developed a modified Minimum Reflectance Technique (MRT) to 

derive AOT over both bright and dark surfaces (e.g., urban and vegetated areas) at the relatively high 

resolution of 500 m, for Hong Kong and the Pearl River Delta regions. 

3. Methodology 

3.1. Analyzing PM2.5 with Meteorological Data 

In order to understand the interrelationship between PM2.5 and meteorological parameters, the 

correlations between them were first calculated. The diurnal patterns of PM2.5 concentration and 

meteorological data were also studied to understand their influences during summer and winter time. 

In addition, seasonal variations of PM2.5 as well as meteorological parameters were studied. The daily 

concentrations (24 hour average) of PM2.5 and meteorological parameters of 2007 and 2008 were 

calculated from the hourly data and then grouped into each season such as spring (March–May), 

summer (June–August), autumn (September–November) and winter (December–February). 

3.2. Modeling PM2.5 Data with AOT Data 

In contrast to ground level PM2.5 measurement, satellite remote sensing provides aerosol optical 

thickness to study urban air pollution with broad spatial coverage [25]. AOT is found to be dominated 

by near-surface emission except for long range dust events [26]. Recent studies have established 

quantitative relationships between MODIS derived AOT and PM2.5 using linear regression models. 

Wang and Christopher [27] achieved a correlation coefficient of 0.7 between satellite-derived AOT at 

550 nm and PM2.5 measured at seven locations in Alabama, United States. Wong et al. [28] showed a 

good correlation between MODIS derived 500 m AOT and PM2.5 (r
2
 = 0.67), which demonstrated 

great potential for MODIS derived 500 m AOT as a good surrogate for PM2.5 monitoring. In this study, 

we attempted to model the 2D (image) and vertical distributions of PM2.5 which has not been done in 

any other study. The resulting 3D database of PM2.5 concentrations can be used for daily air quality 

monitoring in environmental authority. First, the aerosol extinction profile (σa(z)) was modeled and the 

columnar AOT was divided into AOT∆z at different elevations [29,30]. Then by utilizing the equation  

(PM2.5 = 63.66 × AOT + 26.56) developed by Wong et al. [28], the PM2.5∆z at different elevations can 

be derived. 

By integrating the extinction coefficient profile on two different elevations z1 and z2, AOT∆z 

between two elevations (∆z) can be computed [31] (note: ∆z = z2 − z1): 

AOT∆z = 
2

1

Z

Z
σa(z)dz (1) 

The aerosol scaling height z0 is defined as the height of an exponential profile at which the value is 

decreased by 1/e from the ground level value σa(z0). It describes the decreasing rate of AOT with 

altitude and can be calculated using Equation (2) [32,33]: 
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z0 = AOT550nm/σa(z0) (2) 

where the surface extinction coefficient σa(z0) can be derived from the visibility (Equation (3)) [34]: 

σa(z0) = 3.912/Vis (km) (3) 

Given the surface extinction coefficient σa(z0), and insignificances of the aerosol hygroscopic 

growth effect when relative humidity is less than 70% [35,36], the vertical extinction profile can  

be estimated: 

σa (z) = σa(z0) × exp(−z/z0) (4) 

The whole columnar AOT can be divided to AOT∆z by assigning any two given heights (∆z) in 

Equation (1): 

AOT∆z = 
2

1

Z

Z
σa(z)dz = AOT × [exp(−z1/z0) − exp(−z2/z0)] (5) 

In a similar way, visibility at any height Visz can be calculated from the extinction coefficient by 

inverting the Koschmeider equation (Equation (3)). 

Visz = 3.912/σa(z) (6) 

Finally, PM2.5∆z concentrations at different elevations can be estimated by applying the linear 

regression equation (PM2.5 = 63.66 × AOT + 26.56) developed by Wong et al. [28]: 

PM2.5∆z = 63.66 × AOT∆z + 26.56 (7) 

A program code in Matlab has been developed for data matching and converting AOT to PM2.5∆z. 

Another program written in ArcEngine helps to display and visualize the data in 3D. The work flow of 

these programs is shown in Figure 2. 

Figure 2. The schematic flow chart of the programs. 
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4. Results 

4.1. Correlation between PM2.5 Data with Meteorological Data 

Table 1 shows the interrelationship between PM2.5 and meteorological parameters over Hong Kong 

on a daily average basis. Moderate correlations were observed between PM2.5 and temperature 

(TEMP), relative humidity (RH), and mean sea level pressure (MSLP), and fair correlations were 

observed from the other two parameters: wind speed (WS), wind direction (WD). 

Table 1. Correlation coefficient of PM2.5 and meteorological factors for 2007 and 2008. 

Correlation (r) PM2.5 WD WS TEMP RH MSLP 

PM2.5 1.000 −0.101 0.095 −0.478 −0.366 0.504 

WD −0.101 1.000 −0.683 0.291 −0.052 −0.342 

WS 0.095 −0.683 1.000 −0.220 0.011 0.222 

TEMP −0.478 0.291 −0.220 1.000 0.083 −0.866 

RH −0.366 −0.052 0.011 0.083 1.000 −0.338 

MSLP 0.504 −0.342 0.222 −0.866 −0.338 1.000 

4.2. Diurnal Trend of PM2.5 Concentration and Meteorological Data 

Figure 3 showed the diurnal trends of PM2.5 and meteorological parameters. PM2.5 showed a 

distinctive diurnal pattern while low values observed during night time (01:00–05:00). During the 

daytime, PM2.5 exhibited a bimodal pattern with two marked peaks, during morning rush hours  

(08:00–10:00) and evening rush hours (18:00–20:00), typically when high traffic density occur. 

Similar observations and implications were reported by Chan and Kwok [37].  

Figure 3. Diurnal trend of PM2.5 concentrations and meteorological parameters. 

 

Wind direction does not show a clear diurnal pattern. Mean sea level pressure has a similar pattern 

to that of PM2.5 in spite of the time lag, which displayed two clear maxima around 10:00 and 23:00. In 

contrast, temperature and wind speed exhibit a unimodal pattern characterized by midday maxima 

around 13:00. Relative humidity, however, exhibits an inverse unimodal pattern with stable overnight 
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maximum values, which suggests the negative association with nocturnal PM2.5 concentrations. A high 

relative humidity can depress the absorption of gas phase organic species into particle surface [38]  

and accelerate the removal of particle by dry deposition, this mechanism enhanced for hygroscopic  

particle [39]. Thus, PM2.5 keeps constant at minimum values between 02:00 and 05:00. Another reason 

is due to less influence of anthropogenic activities on fine particulate levels during nighttime.  

Despite a similar pattern observed in Figure 4 (left), summer diurnal PM2.5 concentrations is found 

to be lower than in winter. On the other hand, the peak values in Figure 4 (right) are higher on 

weekdays compared with weekends, which may be caused by more anthropogenic activities.  

Figure 4. Diurnal trends of PM2.5 concentrations (left) during summer and winter; and 

(right) during weekend and weekday. 

 

4.3. Monthly and Seasonal Trends of PM2.5 Concentration and Meteorological Data  

Seasonal variations of PM2.5 were obvious (Figure 5). The concentrations are higher in winter and 

autumn and lower in spring and summer seasons. Previous studies of roadside suspended particulates 

at heavily trafficked urban areas in Hong Kong conducted in 2000 [37] and 2005 [40] showed similar 

seasonal patterns. The mean sea level pressure exhibits a similar pattern as PM2.5 characterized. 

Figure 5. Seasonal variations of PM2.5 concentrations and meteorological parameters. 
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4.4. 3D PM2.5 Visualization and Query Prototype  

In order to understand the spatial pattern of PM2.5 concentrations in the context of the built-up 

environment of Hong Kong, a Geographic Information Systems (GIS) prototype was developed in this 

study to integrate atmospheric PM2.5 vertical profiles with 3D GIS data which are provided by the 

Hong Kong Lands Department. This prototype utilized ESRI ArcGIS Scene Control component to 

present the landscape objects including the terrain model, building polygons, AOT∆z and PM2.5∆z grid 

data in 3D space. The functionality of this system provides scene rendering using perspective view. 

The 3D PM2.5∆z atmospheric layers corresponding to 500 m pixel columns were rendered using a 

transparent color scheme overlaid with the 3D building polygons. Since the system is aimed at the built 

environment within the city, only seven PM2.5∆z atmospheric layers, each has 75 m elevation, were 

created. In this GIS prototype, each building is corresponding with its cadastral footprint polygon, 

which owns attributes including building height, number of floors and height of each floor (e.g., 

building height/number of floors). The PM2.5Δz data can be related with each building by tabular 

linkage through the polygon-in-polygon function of the Hawths extension [41]. Therefore, any floor of 

a building can be related to the PM2.5Δz concentrations and useful for direct query. The interface of this 

GIS prototype is shown in Figure 6 (left). Figure 6 (right) shows the query results of the PM2.5∆z 

concentrations of the International Commerce Centre on 1 February 2007 (local time 10:50). 

Figure 6. Screenshot of (left) user interface, visualizing Hong Kong with the extruded 

building in 3D; and (right) example of PM2.5 query (adopted from [30]). 

 

5. Discussion and Conclusions 

The paper presents a comprehensive study of characteristics, behavior and trends of PM2.5, as well 

as its correlation with different meteorological parameters and the state-of-the-art technique for 

modeling and visualizing of atmospheric PM2.5Δz vertical profiles. In this study, the hourly based 

dataset, e.g., PM2.5 concentrations and five meteorological parameters e.g., wind direction, wind speed, 

temperature, relative humidity, and pressure were analyzed to explore their diurnal and seasonal 

variations and interrelations.  
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PM2.5 showed a distinctive bimodal pattern with two marked peaks: morning rush hours  

(08:00–10:00) and evening rush hours (18:00–20:00), which are mostly influenced by the dense traffic. 

The lower PM2.5 concentrations observed in summer than in winter may be caused by the wind 

direction. Northerly and northeasterly winds bring pollutants from the Chinese mainland in winter, 

whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, the 

higher concentrations of PM2.5 in rush hours on weekdays compared to those in weekends suggest the 

significance of anthropogenic activities e.g., traffic-related local PM2.5 emissions. 

The PM2.5Δz values for different atmospheric heights were linked to a GIS-based 3D urban model to 

provide near-real time visualization. The resulting 3D database of PM2.5Δz concentrations provides 

crucial information to air quality regulators and decision makers to comply with air quality standards 

and in devising control strategies. This prototype will be integrated with web-interface system in the 

near future. 
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