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Abstract: Target tracking is an important application of wireless sensor networks. The
networks’ ability to locate and track an object is directed linked to the nodes’ ability to
locate themselves. Consequently, localization systems are essential for target tracking
applications. In addition, sensor networks are often deployed in remote or hostile
environments. Therefore, density control algorithms are used to increase network lifetime
while maintaining its sensing capabilities. In this work, we analyze the impact of localization
algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target
tracking applications. We adapt the density control algorithms to address the k-coverage
problem. In addition, we analyze the impact of network density, residual integration with
density control, and k-coverage on both target tracking accuracy and network lifetime.
Our results show that DPE is a better choice for target tracking applications than RPE.
Moreover, among the evaluated density control algorithms, OGDC is the best option among
the three. Although the choice of the density control algorithm has little impact on the
tracking precision, OGDC outperforms GAF and A3 in terms of tracking time.
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1. Introduction

A Wireless Sensor Network (WSN) consists of a set of sensors distributed over an area of interest
and capable of collecting information from the environment. Therefore, the correct localization of these
events and the sensors themselves is necessary for a proper analysis of the gathered data [1]. The position
of the sensors cannot be determined beforehand. Only a fraction of these sensors can determine their
location; these nodes are called beacons. The remainder nodes are known as free nodes. The beacon
nodes assist free nodes to estimate their unknown positions.

The sensors also have limited service life; they use batteries as the only energy supply and recharging
them is often impossible [2]. Therefore, battery usage directly impacts the network lifetime. Density
control algorithms can be used to save energy by keeping only a fraction of the nodes enabled while
leaving the rest in stand-by mode and maintaining sensing coverage of the area of interest.

These two problems, namely localization and density control, play fundamental roles in target
tracking applications, which is an important application of WSNs. For example, the SAUIM project
aims at tracking an endangered species of monkeys in the jungle. The continuous and long-term tracking
can help us to protect these animals, since it allows a thorough study of their habits. The success of that
project depends on the network’s ability to operate for as long as possible and on the tracking accuracy.

Although these problems are important, they are usually solved separately. However, deploying
a sensor network demands to integrate different solutions for different layers, such as application,
routing, medium access, density control, synchronization, and localization. In this integrated approach,
Souza et al. [3] show how localization algorithms impact on target tracking; Oliveira et al. [4] offer a
similar evaluation considering geographical routing and localization algorithms; and Siqueira et al. [5]
integrate routing and density control algorithms and show the benefit of such an integration.

A major contribution of this work is the adaptation of the density control algorithms (GAF, OGDC
and A3) for the more general k-coverage problem (every point in the sensor field is covered by at least k
sensors). A second contribution is the use of a localization-error estimation metric to select which nodes
should be turned off. Given these contributions, we assess the target tracking performance of a wireless
sensor network when density control is applied and localization errors exist. As a proof-of-concept,
we evaluate how different combinations of localization algorithms (RPE and DPE) and density control
algorithms (OGDC, GAF and A3) impact target tracking (the modified algorithms are used). To the best
of our knowledge, there is no work in the literature that combines localization, density control and target
tracking into the same scenario.

The remainder of this paper is organized as follows. In Section 2, we present the related work.
Section 3 presents the theory behind the localization and density control algorithms. Section 4
discusses modifications on the density control algorithms that we propose. A detailed discussion of
our methodology and results is presented in Section 5. Finally, Section 6 brings our lessons learned
and recommendations.
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2. Related Work

The localization problem has been widely discussed in WSN. Niculescu and Nath [6] propose the
Ad Hoc Positioning System (APS). In APS, the free nodes use the number of hops to the beacons to
estimate the distance between them; this technique is known as DV-Hop. The algorithm works with
a low number of beacons and low density. However, its applicability is questionable due to its high
localization errors and communications costs [7]. Boukerche et al. [7] propose an algorithm called
DV-Loc. This algorithm also uses DV-Hop to estimate distances between beacons and free nodes. The
difference is that the scope of the flooding is constrained to cells of a Voronoi Diagram. As a result, the
algorithm is more scalable and precise than APS. Albowicz and Zhang [8] present a recursive solution
for the problem called Recursive Position Estimation (RPE). This is a common baseline for localization
algorithms, and it is further discussed in Section 3.1. Oliveira et al. [9] present a variation of RPE, called
Directed Position Estimation. A major difference is that DPE needs only four beacon nodes organized in
a predefined structure. Due to its consistent improvements, we also evaluate the DPE algorithm, which
is described in Section 3.1.

As far as the density control problem goes, Ye et al. [10] propose Probing Environment and Adaptive
Sleeping (PEAS). This algorithm consists in waking up each node periodically to determine if its
neighbor must be replaced; its limitation is the premise that the “node density must be much higher
or even orders of magnitude higher than the minimum number of nodes needed for normal operation”.
Cerpa and Estrin [11] propose Adaptive Self-Configuring sEnsor Network Topologies (ASCENT), where
each node decides whether or not it participates on the topology according its connectivity level with
the network. Xu et al. [12] propose the Geography-informed energy conservation for Ad Hoc routing
(GAF) algorithm, a pioneer solution for density control. Together with the Optimal Geographical
Density Control (OGDC) [13], GAF is a key baseline for comparing density control algorithms based on
localization data. The A3 [14] does not depend on localization data, which represents another class of
density control algorithms. Due to their importance, GAF, OGDC and A3 are evaluated (and described
in Section 3.2).

Target tracking is one of the most importation applications of WSN. Schmitt et al. [15] use maximum
a posteriori (MAP) to allow a team of robots to estimate their collective localization in a known
environment and track moving objects. Yang et al. [16] proposes the use of moving averages to reduce
the tracking error. Doǧançay and Hashemi-Sakhtsari [17] apply a technique based on the Least-Squares
method to reduce the tracking error. According to Sorenson [18], this technique evolved and eventually
turned into the Kalman Filter (KF) [19]. Gordon et al. [20] brought a new approach when he introduced
the Particle Filter (PF). Currently, the KF and PF are the most popular techniques for target tracking
in WSN.

The original Kalman Filter works well with linear models when the error can be modeled as Gaussian
noise [21]. To overcome such a limitation, extensions like the Extended Kalman Filter (EKF) [22] and the
Unscented Kalman Filter (UKF) [23] have been introduced. According to Nordlund and Gustafsson [24],
if the system is not linear or the noise is not Gaussian, the Particle Filter is more appropriate. For
instance, Aslam et al. [25] propose a solution that combines binary proximity sensors and a particle filter
for target tracking.
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Taking a broader approach, Gui and Mohaptra [26] analyze the impact of different density control
algorithms in target tracking applications; the work focuses on keeping the original coverage while
maximizing the network lifetime. Souza et al. [3] compare the tracking errors from KF and PF when
the localization errors resulting from RPE and DPE are taken into consideration. Oliveira et al. [4]
investigate the effects of localization errors on geographical algorithms like routing and density control.
However, we still need to investigate the impact of density control on routing algorithms that do not
depend on localization [27–30].

In this work, to provide an integrated evaluation, we adapt density control algorithms for the more
general k-coverage problem. We also propose the use of a localization-error estimation metric to select
the active nodes. Then, we show how target tracking algorithms are affected by density control and
localization errors. As a proof-of-concept, we assess different combinations of localization algorithms
(RPE and DPE) and density control algorithms (OGDC, GAF and, A3). The localization algorithms
and the density control algorithms were carefully chosen. Those are reference baselines for most of the
current solutions, hence, they allow us to define a common reference for the sake of comparison. In
addition, the proposed modifications should be easily extended to other algorithms.

3. Background

3.1. Localization

In some applications, the nodes of a WSN must estimate their own positions. However, it is not
always possible to equip all sensors with a GPS. Therefore, only a fraction of the nodes are equipped
with such capability; these nodes are called beacons. Through the combination of the positions from the
beacons and localization algorithms, the other nodes (called free nodes) are capable of estimating their
positions. This process can be divided into three steps [1]: distance estimation, position computation,
and localization.

The distance estimation can be done through Received Signal Strength Indicator (RSSI) or some
variation of Time of Arrival (ToA) [1]. RSSI consists in estimating the distance based on the power of
the received signal. Although it is sensitive to interference and physical obstacles between the nodes,
this method is cheap in terms of hardware and energy consumption. ToA consists in measuring the time
a message takes to travel from node A to node B, which requires synchronization between the sensors
and thus increases costs.

After estimating the distance to a minimum set of beacons, a free node is capable of calculating its
position. Methods like trilateration or multilateration can be used. Trilateration is essentially a geometry
problem: estimate the position of the free node based on the coordinates of three references and the
distances from these references to the free node. Although it is intuitive, trilateration does not work in
practice due to the imprecision on the distance estimations. Multilateration, on the other hand, uses a
larger number of reference nodes to create an overdetermined system of equations; this system is solved
with optimization methods, such as Least Squares.

The last stage of the localization system is to use a localization algorithm; this work evaluates two
of these algorithms: the Recursive Position Estimation (RPE) [8] and the Directed Position Estimation
(DPE) [9].
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3.1.1. Recursive Position Estimation

RPE is divided into four stages, as depicted in Figure 1. In stage one, the free node establishes
its reference nodes. After that, the node estimates its distance to the beacons using RSSI or ToA.
Subsequently, the node estimates its own position through multilateration. Finally, if the node has enough
confidence on its position estimation, it behaves like a beacon and helps other nodes on the localization
process. The localization confidence is estimated through a parameter called residual, as follows:

residual(x, y) =
∑

i ∈ references

(√
(xi − x)2 + (yi, y)2 − di

)2

(1)

where (xi, yi) is the position of the ith reference node and di is the average distance measured (using
RSSI or ToA, for example).

Figure 1. Stages of Recursive Position Estimation. (a) Beacon Selection; (b) Distance
Estimation; (c) Position Estimation; (d) New Beacon.
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RPE makes the number of reference nodes grow rapidly; this is its main strength. However, there is
a side effect: the localization errors are also propagated quickly [4]. Experiments show that RPE needs
at least 5% of the nodes to be beacons; the algorithm is capable of localizing 90% of the nodes with an
error up to 3% of the distance between the nodes [8].

3.1.2. Directed Position Estimation

DPE is a variation of RPE. The main difference is that DPE uses only 4 beacons, arranged in a
cross-like structure. The use of such structure guarantees that the recursion has only one origin, as
depicted in Figure 2(a); that means the direction of the propagation of the recursion is known (it goes
from the center of the cross-like structure towards the edges of the sensing area).

For the sake of our argument, let us consider that the distance estimation is perfect, which would
allow us to use trilateration. To use trilateration, a node must know its distance to three reference nodes.
If a circle is drawn from the node to each beacon (where the radius is the distance between them), the
three circles will intersect at the node’ location. Now let us consider the case where we use only two
reference nodes. In this case we would have two intersection points for the circles, where one is the right
position of the node and the other is not. Since we know the direction of the recursion (a DPE feature),
the correct intersection is the farther from the recursion origin, as depicted in Figure 2(b).
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Figure 2. Stages of the Directed Position Estimation. (a) DPE Overview; (b) Trilateration
with DPE.

Origin

Beacons Localized  nodes

Free nodes Direction of recursion

(a)

Origin

P

(b)

3.2. Density Control

Density control consists in turning off as much sensors as possible for as much time as possible
while keeping the network’s functionality. This work evaluates Optimal Geographical Density Control
(OGDC) [13], Geography-informed Energy Conservation for Ad Hoc Routing (GAF) [12], and A3 [14].

3.2.1. Optimal Geographical Density Control

The idea behind this algorithm is that minimizing the intersection between the sensing areas of all
sensors in the network implies optimal use of energy. This algorithm assumes that each sensor knows its
position. In a nutshell, the algorithm is based on the mathematical proof that the minimal coverage disk
intersection of three sensors is achieved when they are arranged as an equilateral triangle of sides

√
3r,

where r is the sensing radius. It is impractical to have a network so dense that a sensor can always be
found at an optimal position. Therefore, the sensors closer to the optimal points are used.

A topology is periodically created. Any node can start the algorithm (the choice is based on
the remaining energy level). The algorithm starts with a node A selecting a random direction and
broadcasting a message. A node B located on that direction and at a distance

√
3r from A joins the

network (as shown in Figure 3). To cover one of the intersection points between the sensing disks of A
and B, a third node C closer to the point where A, B and C form an equilateral triangle joins the network.
This process repeats until all nodes are either enabled or standing by. The sensors remain enabled for
a predetermined time. After that, the whole process restarts and other nodes have the opportunity to
participate on the network.

Zhang and Hou [13] show that OGDC can use less than half of the nodes needed by a GAF variation
while keeping the same sensing coverage.
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Figure 3. Overview of OGDC. (a) Algorithm starts; (b) Neighbor in random direction;
(c) Equilateral triangle; (d) Process repeats; (e) Nodes cover sensing area; (f) Algorithm
completed.
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(d) (e) (f)

3.2.2. Geography-Informed Energy Conservation for Ad Hoc Routing

GAF consists in creating a virtual grid on the sensing area. Once a free node starts to know its
position, it can determine its cell on the virtual grid. Nodes in the same cell are considered equivalent.
The cell size is dimensioned such that any nodes in two adjacent cells can communicate. Therefore, the
radio range must be greater than or equal to R in Figure 4. In other words, the cell size must be smaller
than Rc√

5
.

Figure 4. Geography-informed Energy Conservation for Ad Hoc Routing.

R

Nodes in stand-by Active nodes
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Nodes can operate in three modes: active, discovery and sleeping. All nodes start in discovery mode,
which means that they are looking for equivalent nodes. Once the equivalent nodes have been identified,
they follow an application-dependent protocol to decide which nodes will sleep and which node will
stay active. After some time, sleeping nodes return to the discovery mode and the active node gives the
opportunity to another node.

Xu et al. [12] show that GAF reduces the energy consumption by 40% to 60, compared to a network
without density control. In addition, they show that the network lifetime increases with node density.

3.2.3. A3

A3 uses an approximated solution of the Minimal Connected Dominating Set (CDS) problem, which
is NP-Hard. This algorithm does not require the nodes to know their positions; it uses only the
RSSI-based distance estimations to create a sub-optimal CDS tree. Any node can start A3 through a
Hello Message; that makes the neighbors see it as a parent node through a Parent Recognition Message.
Then, the parent node creates a list of its children and sorts the list by distance in descending order. This
list is transmitted to the children; each child waits for a time proportional to its position on the list. If a
child receives a Sleeping Message from another node in the list, it enters stand-by mode. In other words,
if a node A can communicate with node B and both communicate with a parent P , the one closer to P

will enter sleeping mode. After that, nodes that did not receive a sleeping message start the process as
parents.

Figure 5. Overview of A3. (a) Nodes 1 and 2 are candidates; (b) Node 1 sleeps, 2 is chosen;
(c) Node 2 acts as a parent; (d) Nodes 3 and 6 sleep, node 5 is chosen; (e) CDS tree nodes
are defined.
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Wightman and Labrador [14] show that A3 only needs 6% of the nodes to be active when the network
density is high (e.g., >0.2 sensors/m2). In low densities (e.g., <0.05 sensors/m2), it needs around 41% of
active nodes. In addition, the number of messages sent is shown to increase linearly with network density.

4. Adaptation on the Density Control Algorithms

4.1. Sensing Coverage

Among the density control algorithms that we evaluated, only OGDC aims to keep the sensing
coverage of the network; both GAF and A3 attempt to build a topology that ensures communication
coverage. Given that we are interested in target tracking applications, we suggest a few modifications
on GAF and A3 such that they build a network capable of sensing the entire area of interest. For both
algorithms the adjustments are merely computational and do not result in higher costs.

4.1.1. GAF

If we use a cell size of rc√
5
, as suggested by the GAF authors, we could have a hole in sensing coverage,

as shown in Figure 6. To avoid that, we can make the cells as wide as rs√
5
. Consequently, we guarantee

that all neighbors detect the same target. For instance, a target located at cell (i, j) will be detected by
sensors located at cells (i, j), (i−1, j), (i+1, j), (i, j−1), and (i, j+1). Intuitively, we could argue that
this implies 5-coverage. In fact, the neighbors located at cells (i− 1, j− 1), (i− 1, j+1), (i+1, j− 1),
and (i+1, j+1) detect the target, depending on the targets position. In this case we would actually have
7-coverage, as discussed in Section 4.2.

Figure 6. Sensing coverage with the original version of GAF.

4.1.2. A3

In the original algorithm [14], the sensor that initiates the algorithm sorts its neighbors in descending
order by distance. Our modification consists in changing the sorting criteria; we use the distance to the
sensing perimeter. That way, sensors located rs away from their parents are ranked higher than the ones
located rs ± ϵ away.
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4.2. Adding k as a Parameter

It is necessary to modify the density control algorithms such that it is possible to specify the minimum
number of sensors that must cover all points of the area of interest (k-coverage). Our work assumes
that 3-coverage is required for target tracking. In addition, we evaluate scenarios with 6-coverage and
9-coverage.

4.2.1. OGDC

The modifications that needed to have k as a parameter in OGDC are discussed in the literature [13].
The modification consists of changing how a node verifies if its neighbors completely cover its sensing
area. The mechanism utilized for that is not illustrated by the authors [13]. Intuitively, we could create
a virtual grid centered on the sensor of interest. In the original algorithm, if all points of the grid are
located at a distance less than or equal to rs from the center are also located at a distance less or equal to
rs from any other sensor, we consider that the sensing disk of that node is covered by its neighbors (and
that sensors can be turned off). In other words, we have 1-coverage.

For k-coverage, we need to guarantee (if possible) that every point in the sensor field is covered by at
least k sensors. Thus, a node can only be turned off if its coverage area is overlapped by k sensors already.
This modification on the algorithm has no computational or communication penalty in comparison to the
original algorithm.

4.2.2. GAF

To tune GAF to accept k as a parameter, it is necessary to modify the cell size. To determine an
equation for k in function of the ratio between the cell size and sensing radius, we performed a series of
simulations. After assembling 10,000 networks mimicking GAF with different cell sizes, we obtained
the model:

k = f(x) = 41.486× e−4.4713x + 1.3738 (2)

in which x is the ratio between the cell size and the sensing radius.
Rewriting the equation in function of k we have

g(k) =
1

4.4713
ln

(
k − 1.3738

41.486

)
(3)

in which g(k) is the ratio between cell size and sensing radius. This function is an exponential
approximation of the data we gathered (see Figure 7); we used the Least Squares Method for that
approximation. For instance, if we consider the scenario discussed in Section 4, where the cell size
is rs/

√
5 = 0.447rs, by setting x = 0.447 in Equation (2), we obtain k ≈ 7. For k = 3, g(3) = 0.7244;

i.e., for 3-coverage, the cell size should be 0.7244rs. This modification is purely numerical and does not
represent any difference in terms of computational and communication costs.
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Figure 7. Determining GAF cell size with respect to k.
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4.2.3. A3

In the original algorithm, the time a node sleeps after receiving a child recognition message is
proportional to its position on the list, which is sorted in descending order by distance. Our first
modification discussed in Section 4 changes this criteria to the distance to the sensing perimeter. To
make k a parameter for the algorithm, we need to make another modification to A3. Now, the time a node
sleeps is given by the integer division of its position on the list by k. In other words, the k nodes closer to
the sensing perimeter will become parent nodes. This modification does not imply higher computational
costs. However, the communication costs go from O(dv) to O(dkv), where d is the number of density
control rounds, v is the average number of neighbors and k is the number of sensors that must be able to
detect the target (related to k-coverage).

4.3. Density Control with Residual

4.3.1. OGDC

In OGDC, the sleeping time is proportional to the distance between the sensor’s position and the
ideal position. The mechanism we use for adding the residual is adding a period of time proportional
to the residual to the time the sensor waits. Consequently, sensors with lower residual behave like in
the original version of the algorithm. However, a sensor with high residual (i.e., greater than 10) waits
longer than in the original version, even when its estimated position is close to the ideal position. This
modification has no impact on the communication and processing costs of the algorithm.
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4.3.2. GAF

The time a sensor must sleep now depends on the inverse of the residual. Thus, a sensor with a smaller
residual value sleeps for less time and has a higher probability to participate in the network. In addition,
the tie-breaker criteria for sensors in the same cell becomes the residual (instead of the node ID in the
original version). Again, these modifications have no impact on the communication and processing costs
of the algorithm.

4.3.3. A3

The A3 Algorithm assembles a topology where the enabled nodes are the ones farther away from
the parents. The modification presented in Section 4 suggests that the distance from the children to the
parents’ sensing perimeters can be used as the sorting criterion. To use the residual error in this process,
we suggest a radical conceptual change (but computationally simple). The idea is to create a topology
that minimizes the residual; the sorting criterion is the residual of each node. In other words, each
sensor that starts the process essentially selects its k neighbors with smaller residuals to participate in
the network (where k is also a parameter, as discussed in Section 4). This set of modifications incur no
penalty on the computational or communication costs.

5. Performance Evaluation

5.1. Methodology

Figure 8 depicts our experiments. At first, sensors are uniformly randomly distributed over the area of
interest. After that, a localization algorithm is applied, followed by a density control algorithm (steps 3
and 4). Subsequently, the enabled nodes start to sense the target and send tracking messages to the sink
node (steps 5 and 6). The process periodically goes back to step 3 so that other sensors can participate
in the network; this period is application-dependent.

The experiments are performed in the Sinalgo simulator [31], which is a Java-based network
simulator. Tools like NS-2 simulate the transport, MAC and physical layers of the network. Sinalgo,
on the other hand, focuses on validating network algorithms; it abstracts the complexity of the deeper
layers of the network. Its learning curve and its platform independence were the decisive factors for
its adoption.

Time is discrete in Sinalgo and is based on rounds. We use the approximation that a round is
equivalent to 10 ms. The duration of one simulation can go up to 100,000 rounds (or 1000 s). The
simulation terminates if that limit is reached or if the 3-coverage remains below 60% for a time larger
than a density control round. A density control round is the time it takes for a density control algorithm
to execute again. We set this time to be 7500 rounds (or 75 s) in our experiments.

The imprecision on the distance estimation between two sensors A and B is simulated with a Gaussian
noise of mean 0 and variance 0.01d, where d is the Euclidean distance between A and B. The energy
consumption model we used is similar to the one used by Xu et al. [12]: if the energy needed to keep
a sensor active for one round is 1.0 J, then the node needs 1.6 J to send one message and 0.0025 J to be
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in stand-by mode. All nodes receive enough energy to remain active without sending any messages for
25,000 rounds.

Figure 8. Methodology.
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Random walk [32] is often used as a mobility model in simulations. However, it is a stateless model;
the motion shows sudden changes in both direction and acceleration. Therefore, we chose to use a
mobility model called Correlated Random Walk (CRW) [33]. In this model there is a correlation between
successive steps of the target’s motion. Our implementation of the model uses a correlation parameter
of 0.999 and distance scaling parameter of 0.08. As a result, the target simulates an animal moving at
3.9 m/s.

In the results discussion, we consider the following metrics:
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• k-coverage measures the percentage of the area of interest that is covered by at least k-sensors.
If k = 3 and some location is covered by only 2 sensors, that particular location does not count
towards the 3-coverage;

• Tracking Time Mean Percentage (also referred to as Mean Tracking Time) is the mean
percentage of the total time in which the network can track the target (i.e., the target can be sensed
by at least three sensors and those sensors can send messages towards the sink);

• Mean Tracking Error is the average tracking error (i.e., the Euclidean distance between the
target’s real and estimated positions); and

• Residual is the measure for the localization confidence, as discussed in Section 3.1.

5.2. Simulation Results

5.2.1. Impact of Localization and Density Control Algorithms on 3-Coverage

Both OGDC and A3 run in rounds that we define as density control rounds (not to be confused with
simulation rounds). In the context of density control algorithms, a round is the time interval between two
executions of the algorithm. In the end of each round, all nodes return to a state where a new topology can
be created. As a consequence, we observe a periodic drop on 3-coverage for OGDC and A3. That does
not happen with GAF because each node sends periodic messages to the sensors in the cell to determine
if there is a node responsible for that cell. The result is that GAF shows smaller discontinuities, as shown
in Figure 9.

Figure 9. Localization, Density Control and 3-Coverage. (a) DPE; n = 256; (b) DPE;
n = 512; (c) DPE; n = 1024.
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Our results show that OGDC is the algorithm that performs best at maintaining 3-coverage, no matter
what localization mechanism is used. Figure 9 shows its superiority when DPE is used; the same
behavior is observed with RPE.

To determine which localization algorithm leads to a better 3-coverage with OGDC, we compare their
behaviors. Figure 10 shows that OGDC gives better 3-coverage when used with the actual localization.
Since perfect (actual) localization is infeasible and serves only as a baseline, we conclude that the
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combination DPE-OGDC is the most suited for maintaining the 3-coverage of a network, among the
algorithms evaluated.

Figure 10. Localization and 3-Coverage of OGDC. (a) OGDC; n = 256; (b) OGDC;
n = 512; (c) OGDC; n = 1024.
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5.2.2. Impact of Localization and Density Control Algorithms on Target Tracking

Localization: our results show that the choice of the localization algorithm impacts on the quality
of target tracking, which is independent of the density control algorithm, as shown in Figure 11. DPE
results in smaller average tracking error than RPE (actual localization is once again used as a baseline).
The difference between the two algorithms in terms of tracking time is not statistically relevant; we work
with 99% confidence intervals.

Figure 11. Choosing the Localization Algorithm. (a) Mean Tracking Time (OGDC);
(b) Mean Tracking Error (OGDC); (c) Mean Tracking Time (GAF); (d) Mean Tracking
Error (GAF); (e) Mean Tracking Time (A3); (f) Mean Tracking Error (A3).
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Figure 11. Cont.
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Density Control: the choice for the density control algorithm depends in fact on the network density.
In low densities (e.g., 0.05 sensors/m2), OGDC and A3 have similar performance; there is an overlap of
the confidence intervals of both mean tracking error and mean tracking time, as shown in Figure 12(c)
and 12(d). When we increase the node density to 0.1 sensors/m2, OGDC is clearly superior in terms of
tracking time while the three algorithms show equivalent results when it comes to tracking error. Finally,
as the density gets even higher (e.g., 0.2 sensors/m2), compared to OGDC, GAF gives smaller tracking
errors and similar tracking time.

Figure 12 is actually misleading; it seems that GAF can track a target for longer than OGDC in
high density networks. However, in such high density scenarios, all density control algorithms maintain
3-coverage above 60% for more than 100,000 rounds, which is our simulation time. Since GAF does not
turn off all nodes periodically like OGDC and A3, it seems to outperform OGDC’s tracking time when
n = 1024. However, the GAF network will eventually run out of battery faster than OGDC, and the
latter will be able to track the target for a longer time, just like we observe with n = 256 and n = 512.

Figure 12. Choosing the Density Control Algorithm. (a) Mean Tracking Time (Real);
(b) Mean Tracking Error (Real); (c) Mean Tracking Time (DPE); (d) Mean Tracking Error
(DPE); (e) Mean Tracking Time (RPE); (f) Mean Tracking Error (RPE).
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Our results show that A3 is not a scalable solution for target tracking; it only performs well (in
comparison to OGDC and GAF) in low density networks. Therefore, we do not recommend its use for
target tracking applications. When used with DPE, GAF results in slightly smaller mean tracking error
than OGDC and is equivalent to A3. However, it is outperformed by OGDC in terms of mean tracking
time. Given that the difference on tracking error between GAF and OGDC is small (about 0.5 m) and
OGDC keeps the network alive for longer than GAF, we conclude that OGDC is the best choice for
target tracking applications among the three algorithms.

5.2.3. Impact of the Residual on Density Control and Target Tracking

The results in Table 1 indicate that incorporating the residual into GAF has a negative impact on
tracking performance (mean tracking time and mean tracking error). Therefore, we do not recommend
such practice with GAF.

Our version of A3 that considers the residual while creating the network topology performs better
than the original version. With RPE, our modification yields greater mean tracking time and smaller
mean tracking error. However, that advantage applies only to the tracking time when DPE is the
localization algorithm; the modified algorithm produces statistically equivalent results in comparison
to the residual-unaware version.

Adapting OGDC to use the residual does not result in significant difference; we observe overlap of
the confidence intervals for both tracking error and tracking time, with both localization algorithms.
Consequently, we cannot confirm nor deny the hypothesis that incorporating the residual into OGDC
results in better tracking performance.

Figure 13 shows the distribution of tracking error over time when the residual is considered in OGDC.
In the beginning of the simulation, the tracking error is smaller because the first few topologies are based
on the nodes with smallest residuals. However, as time goes by, the network keeps reorganizing itself
until nodes with higher residual start to participate in the network. As a consequence, tracking error
increases. Although Figure 13 gives the impression that it is a good idea to incorporate the residual into
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OGDC, the difference between OGDC with residual and OGDC without residual in terms of tracking
performance is not statistically significant, as shown in Table 1.

Figure 13. Distribution of Tracking Error Over Time with OGDC.
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Table 1. Use of Residual in Density Control.

Combination Res. Mean Error (m) Mean Time (%)

DPE-OGDC no 5.6083± 0.2305 0.6347± 0.0098

DPE-OGDC yes 5.5105± 0.2157 0.6491± 0.0137

RPE-OGDC no 6.0508± 0.3209 0.5630± 0.0136

RPE-OGDC yes 5.6463± 0.2207 0.5770± 0.0252

DPE-GAF no 5.3350± 0.2343 0.5535± 0.0111

DPE-GAF yes 5.2835± 0.2290 0.3538± 0.0149

RPE-GAF no 6.8673± 0.4966 0.4943± 0.0204

RPE-GAF yes 8.0791± 0.4672 0.2332± 0.0130

DPE-A3 no 5.5008± 0.2736 0.4436± 0.0067

DPE-A3 yes 5.4096± 0.2507 0.4837± 0.0144

RPE-A3 no 8.1320± 0.8846 0.4078± 0.0131

RPE-A3 yes 6.5698± 0.4677 0.4580± 0.0033

5.2.4. Impact of k-Coverage

Our results show that increasing the number of sensors capable of sensing the target does not increase
tracking precision. In addition, increasing k forces the density control algorithms to turn off less nodes,
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resulting in shorter tracking time. Figure 14 shows the effect of increasing k when DPE is used; we
observe same behavior for actual localization and RPE. Therefore, we conclude that increasing k is
not recommended.

Figure 14. Impact of k on Target Tracking. (a) Mean Tracking Time (DPE); (b) Mean
Tracking Error (DPE).
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Figure 14 also shows how the network behaves without density control; we do not observe higher
tracking precision and the tracking time becomes even smaller than when k = 9. The graph shows a
lower bound for tracking time as we increase k.

6. Final Remarks

This work provides an empirical foundation to determine which combination of localization and
density control algorithms should be used in a target tracking application. We have made extensive
simulation of several combinations of such algorithms and we firmly believe our contribution is an
important one.

We started by evaluating the combined impact of localization algorithms (DPE and RPE) and
density control algorithms (OGDC, GAF, and A3) on the maintenance of 3-coverage of a network.
In such scenario, the network can be used for target tracking applications. We also evaluated how the
combinations of those algorithms affect both tracking error and tracking time. Finally, we investigated if
tuning the density control algorithms with parameters like k-coverage and residual usage has a positive
impact on target tracking applications.

Previous results show that DPE is better than RPE for target tracking applications [3]. Our results
show that this conclusion also applies to scenarios where a density control algorithm is used to increase
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the network lifetime. The choice of such algorithm has little impact on the tracking error, but significantly
influences the tracking time.

A3 performed well in sparse networks and poorly in dense networks. Since it has a serious scalability
issue, A3 is not recommend for target tracking applications. GAF’s advantage is that it does not turn
off the whole network from time to time, as opposed to OGDC and A3. As a result, while most sensors
still have energy and when the network density is high, GAF manages to track the target more often
than OGDC. However, as time goes by and the sensors start to run out of battery, OGDC is better at
keeping the 3-coverage and consequently manages to track the target for longer time. Therefore, we
conclude that among the density control algorithms we evaluated, OGDC is the most suited for target
tracking applications.

We also investigated whether modifying the density control algorithms to be residual-aware increases
the tracking performance. The impact is negative on GAF, positive on A3 and neutral on OGDC. Since
we do not recommend A3 for target tracking applications and incorporating the residual into OGDC and
GAF yields no gain in performance, we do not recommend such practice for density control algorithms
in target tracking applications.

Finally, we observed how increasing k-coverage impacts on target tracking. Our results do not show
considerable gain in tracking accuracy. However, increasing k significantly decreases the mean tracking
time. As a result, we do not recommend using k > 3 for target tracking.

Current work leads to some interesting future directions. Our results are based exclusively on
simulations; it is necessary to validate them with actual sensors. All the scenarios we evaluated had a
single target and fixed sensors. It is important to evaluate the tracking performance with mobile sensors
and multiple targets. Finally, our analysis considers that 3-coverage is necessary for target tracking.
However, there are less precise tracking methods that do not require so. It is interesting to extend our
analysis to such methods. We are also working on defining the theoretical performance bounds when
such algorithm combinations are integrated.
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