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Abstract: A simple and high sensitive method employing a hybrid long period grating 
(LPG)/chirped fiber Bragg grating (CFBG) for refractive index (RI) measurements is 
proposed and investigated experimentally. The wide wavelength range of backward 
cladding modes are excited through the coupling and recoupling between LPG and CFBG. 
Experimental results indicate that the recoupled cladding modes between LPG and CFBG 
and core mode are modulated by the surrounding RI and highly sensitive RI measurements 
can be achieved by simply measuring the reflected intensity changes of the recoupled 
cladding modes and core mode. 
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1. Introduction  

Cladding mode-based fiber optical refractometers have been widely studied as a promising solution 
for long term environment monitoring or chemical applications due to their high sensitivity to 
surrounding RI changes. So far various kinds of optical fiber grating-based RI sensors that employ 
LPG [1–3], FBG [4–11] or Tilted FBG [12–17] (TFBG) have been proposed. For most reported fiber 
grating RI sensors, their shortcomings lie in that usually an expensive and accurate spectrum analysis 
system is needed. Moreover, in many schemes, special fiber structures such as thinned or etched  
fibers [4,5], D-fibers [6] or microstructure fibers [7–9] are employed to enhance cladding mode 
coupling and recoupling efficiency and thus to improve the sensitivity of the refractometer. Recently, 
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some schemes that employ TFBG [18–23] have been reported for RI measurement in which a special 
fiber is employed for the recoupling of the cladding mode from cladding to fiber core. The RI can then 
be detected by measuring the reflected intensity of the recoupled cladding mode. Although it provides 
a comparatively simple method, the recoupling power of cladding modes is so weak that its sensitivity 
is seriously affected by the poor recoupling efficiency of cladding modes. Moreover, hybrid grating 
structures [20–23] have also been investigated for RI measurement, in which the cladding modes 
coupled by LPG can be recoupled into the fiber core through FBG. Its disadvantages, however, also lie 
in a limited sensitivity since only a small part of the cladding modes can be recoupled due to the 
narrow bandwidth of FBG. Additionally, the requirements for a highly accurate spectrum analyzer in 
these schemes also limit the applications of hybrid gratings for RI measurement. 

CFBG have been reported previously for sensing applications [24–26]. Like FBG, however, it is 
core mode based grating sensors that are intrinsically immune to outer RI changes. Therefore, so far no 
research has been conducted concerning the application of CFBG for RI measurements. In this paper, a 
simple but highly sensitive scheme employing a hybrid LPG/CFBG for cost-effective RI measurement 
is proposed for the first time. Strong reflected cladding modes with a wide wavelength range can be 
excited and recoupled into the fiber core with a high efficiency through the hybrid LPG/CFBG. By 
simply detecting the power of the enhanced cladding modes, highly sensitive RI measurements can be 
achieved through the proposed sensor structure. 

2. Sensing Principle  

The basic principle is the wide wavelength range cladding mode coupling and recoupling between 
LPG and CFBG as shown in Figure 1. Both LPG and CFBG are written on hydrogenated telecom SMF 
28 fiber using a 248 nm excimer laser. Two gratings are spliced together and the transmission fiber 
length between two gratings is about 1 cm. 

Figure 1. Schematic diagram of hybrid LPG/CFBG refractometer  

 

When light transmits to the LPG section, the wavelength that meets the LPG resonance condition is 
coupled into the cladding layer of fiber, forming the forward cladding mode. The cladding mode can 
propagate to the CFBG section with little loss because of the short transmission distance between LPG 
and CFBG. In the CFBG section, part of the cladding modes are recoupled into the fiber core. Because 
CFBG have a wide reflection spectrum range, all the recoupled cladding modes that meet the CFBG 
resonance condition are reflected as counter-propagation cladding modes. The coupling and recoupling 
mechanism of cladding modes between LPG and FBG has been introduced and analyzed in [20,22]. 
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For our proposed hybrid LPG/CFBG, it can be treated as an array of hybrid LPG/FBG pairs in which 
all of these hybrid grating pairs have a uniform LPG resonance, but sequentially different FBG 
resonances. The reflected spectrum of each hybrid grating pair consists of a FBG resonance peak and a 
series of recoupled cladding modes that correspond to the highly effective index cladding mode as a 
resonance of FBG period. As a result, the reflected LPG/CFBG spectrum is the overlap of a series of 
core modes and recoupled cladding modes that correspond to different LPG/FBG pairs. By this way, 
the recoupling coefficient of cladding modes from cladding layer to fiber core can be greatly improved. 
When the surrounding RI changes, the cladding modes are attenuated through the evanescence field 
between cladding and the outer medium. Because of the high cladding mode recoupling efficiency 
between LPG and CFBG, any RI changes can be sensitively detected by measuring the RI induced 
intensity change of the reflected cladding modes.  

The corresponding spectrum of annealed LPG and CFBG before and after splicing is observed 
through an MS 9740C optical spectrum analyzer (OSA) as illustrated in Figure 2. The grating length of 
both LPG and CFBG are around 2 cm. The central wavelength and 3 dB bandwidth of LPG is about 
1,565 nm and 16 nm respectively. The period of LPG is around 450 �m.  

Figure 2. Spectra of LPG and CFBG before and after splicing.

 

The CFBG has the fundamental Bragg resonance at 1,570 nm and a bandwidth of 20 nm at 3 dB. 
Both the dip transmission loss of LPG and the average reflectivity of CFBG are around 90%. Light 
emitted from a broadband amplified spontaneous emission (ASE) source is launched into the hybrid 
LPG/CFBG through a three-port fiber circulator. The reflected light is measured through OSA with a 
wavelength resolution of 0.03 nm. As shown in Figure 2, strong cladding modes with a wide 
wavelength range from 1,550 nm to 1,585 nm are excited. Compared with the initial spectrum of 
CFBG, its short wavelength side range is broadened to 1,550 nm, increasing about 5 nm due to the 
highly effective index cladding mode as a resonance of the chirped grating period. It can also be seen 
in Figure 2 that the reflected intensity of the hybrid LPG/CFBG (right side vertical axes) is greatly 
weakened compared with that of CFBG (left side vertical axes) before splicing with the LPG. As we 

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-60

-50

-40

-30

-20

-10

0

1540 1560 1580 1600

Intensity /dB
m

In
te

ns
ity

 /d
B

m

Wavelength /nm

CFBG Resonance

LPG Resonance

Cladding modes



Sensors 2012, 12 7321 
 

 

described above, the CFBG can be treated as a series of FBG with different resonance conditions, 
which means that the low order cladding modes of shorter wavelength FBG are overlapped with the 
high order cladding modes that correspond to the longer wavelength FBG resonance, so the whole 
reflected spectrum of cladding modes is continuous with irregular fluctuation and the order of cladding 
modes can hardly be distinguished due to the superimposition of cladding modes that correspond to 
different FBG resonances. Additionally, the reflected spectrum of the hybrid grating also includes a 
weak core mode due to the reflection of CFGB, which is overlapped with the cladding modes. 

3. Experimental Results and Discussion  

Experiment is carried on to test the performance of the hybrid LPG/CFBG for RI measurement as 
shown in Figure 3. The whole fiber sensor structure is kept straight with small pre-strain to avoid any 
bending-induced spectrum changes. The pre-strain is less than 100 ��, which is so small that the 
corresponding spectrum change of the hybrid gratings can be neglected. 

Figure 3. Experimental setup of hybrid LPG/CFBG for RI measurement. 

 

Ten percent of light emitted from the ASE source is used as reference light through a 1:9 coupler to 
compensate the light source fluctuation and another 90% is used as sensing light. Both a power-meter 
with a 1 nW resolution and the OSA are employed to measure the corresponding power and spectra 
changes of the cladding modes. The sensor is immersed from air (RI = 1.00) into liquids with different 
RI alues ranging from 1.33 to 1.43 in sequence and the corresponding response of the hybrid 
LPG/CFBG is measured and shown in Figure 4. During the experiment, the room temperature is kept 
at 24 °C to avoid any temperature change induced spectrum change of hybrid grating. 

Following with the increasing of RI, the intensity of reflected cladding modes degrades 
monotonically attenuating through the evanescent field between cladding and surrounding medium 
according to Figure 4. In fact, the increasing RI affects the reflected spectrum of the hybrid 
LPG/CFBG in two aspects. Firstly, the LPG resonance shifts toward the shorter wavelength side. 
Secondly, cladding modes are attenuated through the evanescence field between cladding and RI 
liquid. If we take the unevenness of the CFBG spectrum into consideration, the reflected intensity of 
the hybrid grating should increase following with the blue shift of the LPG because the CBFG has a 
higher reflectivity on the longer wavelength side, as shown in Figure 2. If the unevenness of the CFBG 
is neglected, the reflected intensity should remain unchanged. When the RI changes from 1.00–1.43, 
the LPG resonance is still within the spectrum range of the CFBG, which shifts around 5 nm according 
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to our previous experimental results, so theoretically the whole reflected power modulated by the shift 
of LPG resonance should change little or increase slightly. Moreover, if the shift of LPG is responsible 
for the observed effect, the intensity of reflected spectrum at longer wavelength side should increase 
greatly following with the increasing of RI due to the blue shift of LPG resonance. But it can be seen 
in Figure 4 that the intensity increasing of reflected spectrum at longer wavelength side is so small that 
can be neglected. Therefore, according to the experimental results, we can get the conclusion that the 
modulation effect of outer RI to recoupled cladding modes through the evanescence field between 
cladding and outer medium is dominate. Following with the increasing of RI, the cladding modes 
within the full bandwidth of reflected spectrum are attenuated and only very weak core mode is 
immune from RI. 

Figure 4. Reflected spectrum changes of hybrid LPG/CFBG at different RI. 

 

The corresponding response of reflected cladding modes power to RI as shown in Figure 5 can be 
divided into two sections. When RI increases gradually from 1.00 to 1.36, the reflected power of 
cladding modes decreases from 33 �W to 22.4 �W, that corresponding to a sensitivity of 29 �W/RIU 
(Refractive Index Unit). With the RI increase further, the intensity of cladding modes is attenuated 
drastically, which corresponding to a power decreasing from 22.4 �W to 10 �W when RI increase 
gradually from 1.36 to 1.43. In this response section, a higher sensitivity about 177 �W/RIU can be 
achieved. This nonlinear sensitivity is primarily caused by the different sensitivities of lower order 
cladding modes and high order cladding modes to RI. For hybrid grating structure, low order cladding 
modes are dominate, while the intensity of high order cladding mode are comparatively weak. High 
order cladding modes are more sensitive to low RI change. So when RI is lower than 1.40, only high 
order cladding modes are modulated and the corresponding RI sensitivity is comparatively low. When 
RI exceed 1.40, more and more low order cladding modes are affected by RI through the evanescence 
field between cladding and outer medium. Therefore, the sensitivity of hybrid LPG/CFBG within this 
RI range is greatly enhanced. 

Considering that 1 nW power resolution can be easily achieved through power-meter, the principal 
highest RI resolution for proposed hybrid LPG/CFBG is about 5.6 × 10�6 RIU within the RI range 
from 1.36 to 1.43. Even at the RI of 1.00–1.36, the sensitivity can reach 3.4 × 10�5 RIU. In [18], a 
TFBG-based RI sensor, in which the reflected cladding modes of TFBG can be recoupled from 
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cladding to fiber core through a misaligned fiber structure has been proposed. The sensitivity they  
have obtained, which is only 1.1 �W /RIU, was serious affected due to the limited cladding mode 
recoupling efficiency. By employing the proposed hybrid LPG/CFBG structure, the recoupling 
efficiency of cladding modes within a wide wavelength range can be greatly enhanced as we have 
shown. Experimental results also confirm that the corresponding sensitivity of our scheme is about 
thirty times higher than that previously reported in [18]. 

In many practical applications, usually the RI is around 1.33, that is, close to the RI of water. For 
our proposed hybrid LPG/FBG sensors, the sensitivity is comparatively low. This indicates that an 
optimal design is needed to enhance the recoupling coefficiency of high order cladding modes for the 
sensitivity improvement of the hybrid LPG/CFBG refractometer at the low RI range. Theoretically, it 
can be achieved through optimal chirped designs such as tilted or thinned LPG/CFBG structures and 
further experiment about these is ongoing.  

Figure 5. Reflected power of hybrid LPG/CFBG versus RI. 

 

4. Conclusions 

In conclusion, a simple and high sensitive refractometer based on a hybrid LPG/CFBG is described 
and investigated. Due to the high cladding mode coupling and recoupling efficiency between LPG and 
CFBG, strong cladding modes with a wide wavelength range can be effectively excited and observed 
by employing the proposed hybrid LPG/CFBG structure. By measuring the RI-induced reflected 
intensity changes of the cladding modes, highly sensitive RI measurements can be achieved while the 
need for complex and costly spectrum interrogation systems is effectively avoided. 
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