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Abstract: Estimating crop yield using remote sensing techniques has proven to be
successful. However, sugarcane possesses unique characteristics; such as, a multi-year
cropping cycle and plant height-limiting for midseason fertilizer application timing. Our
study objective was to determine if sugarcane yield potential could be estimated using an
in-season estimation of normalized difference vegetative index (NDVI). Sensor readings
were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and
Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by
dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was
between 601-750 GDD. In-season estimated yield values improved the yield potential
(YP) model compared to using NDVI. Generally, INSEY value showed a positive
exponential relationship with yield (+° values 0.48 and 0.42 for cane tonnage and sugar
yield, respectively). When models were separated based on canopy structure there was an
increase the strength of the relationship for the erectophile varieties (+* 0.53 and 0.47 for
cane tonnage and sugar yield, respectively); however, the model for planophile varieties
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weakened slightly. Results of this study indicate using an INSEY value for predicting
sugarcane yield shows potential of being a valuable management tool for sugarcane
producers in Louisiana.

Keywords: sugarcane; nitrogen; NDVI; precision agriculture

1. Introduction

Sugarcane (Saccharum officinarum) is an integral part of Louisiana’s economy and culture, with an
annual economic value exceeding $US 2 billion [1]. In recent decades significant yield increases have
been attributed to the addition of N fertilizer beyond any other agricultural input [2]. Nitrogen (N) is
one of the most important crop growth factors, influencing both productivity and crop quality.
Therefore, utilizing methods that can more accurately determine N rate recommendations is essential
to maintain agronomic productivity [3].

Sugarcane is a semi-perennial crop, which can be harvested annually up to five years without
replanting; the first harvested crop is termed plant cane and stubble cane for each successive harvest.
In Louisiana, the sugarcane growth season is shorter, typically only nine months, compared to other
sugarcane growing regions, where it can be >12 months. The sugarcane growth season consists of
planting in August or September, the sugarcane crop is terminated during the winter months due to
freezing temperatures, growth is recommenced in late February to early March, and harvested the
following October through December. During this growth season the sugarcane crop undergoes four
distinct growth stages consisting of emergence, tillering, grand growth, and maturation, each of which
typically lasts 1 to 3 months. In Louisiana, a planting cycle typically last three to four growth seasons
prior to replanting. These long growth cycles combined with the shorter growth makes accurate N rate
recommendations that optimize yields and minimize environmental impacts difficult. Worldwide N
recommendations for sugarcane production are dependent on climate, crop age, length of growth cycle,
plant characteristics, and soil characteristics [3]. However, currently for Louisiana sugarcane
production N rate recommendations are dependent on crop age, either plant cane or stubble cane,
and soil type, generalized as light or heavy textured soils, while not accounting for other crop and
environmental characteristics such as crop growth conditions or crop N demand [1]. These N rate
recommendations are applied in a single application from the beginning of April to the beginning of
May. This N application timing provides sugarcane producers the flexibility to utilize further
management techniques to accurately estimate N rate recommendations in-season, which can account
for the spatio-temporal variability of sugarcane production system.

Historically, soil sampling has been a technique utilized for determining N rate recommendations.
However, the reliability of soil N tests is often questionable due to the challenges associated with the
dynamic nature of N in the soil, particularly in the humid alluvial soils of Louisiana [4]. Therefore,
crop yield monitoring has become an important aspect of many N management schemes. A common
method of incorporating crop yield into N rate recommendations is through the use of yield goals,
specifically in cereal crop production [5]. A yield goal is defined as yield per unit area we might expect
to achieve given adequate growing conditions and it is determined by taking a recent five year average
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plus 30% to account for potentially above average growing conditions. Johnson [6] and Schmitt [7]
reported the importance of yield goal for N recommendations in winter wheat (7riticum aestivum) and
corn (Zea mays), respectively. They indicated that 33 kg-N-ha ' for every 1 Mg of wheat and
20 kg'N-ha ' for every 1 Mg of corn would be required. However, setting yield goals at unrealistic
levels can lead to under-or over-estimation of N rate recommendations. This is envisaged especially
when N recommendations based on yield goals across large scale spatial variability do not take
into account temporal variability, due to environmental growing conditions, nor within field
spatial variability.

Due to limitations associated with utilizing yield goals, research in other crops such as wheat and
corn has focused on in-season crop monitoring as an approach to N management. However, limited
research is available for sugarcane production, particularly Louisiana sugarcane production. Additionally,
research that is available has produced negative or inconclusive results [8,9]. Wiedenfeld [9] reported
that chlorophyll meters were not a viable tool for predicting N recommendations for sugarcane grown
in the Lower Rio Grande Valley. This lack of viability is partially due to the chlorophyll meter relying
solely on plant tissue N concentrations and N accumulation in sugarcane occurred later in the season
compared to when measurements were taken.

Many plant indices based on canopy spectral reflectance have shown the ability to accurately
estimate crop physiological properties, including plant biomass and crop yield [10-12]. The NDVI
value, which is a vegetative index that compares reflectance at the red and near infrared region, has
also shown the ability to determine yield potential (YP) [13—15]. Yield potential differs from yield
goal because it is a function of the environmental conditions of the current growing season and is
defined as achievable yield with no additional N fertilizer [11]. Teal [14] reported that there was a
strong relationship between NDVI and grain yield in corn using an exponential model. Raun [13] and
Lukina [16] showed this relationship was improved when NDVI readings were adjusted using growing
degree days (GDD), where NDVI was divided by GDD accumulated from planting to sensing, to
create an in-season estimate of yield (INSEY). Raun [13] reported that six of nine sites over two years
showed a strong relationship between INSEY and grain yield at harvest (coefficient of determination
(** = 0.83, P < 0.01). However, Teal [14] found there was no significant increase or decrease in the
strength of this relationship when NDVI readings were adjusted by either GDD or days from planting
to sensing (DFP) when GDD was positive.

Several studies have suggested that growth stage, or time of sensing, were important in the ability to
predict yield [13,14,16]. Raun [13] and Lukina [16] reported that the strongest relationship between
NDVI and winter wheat grain yield was between Feekes 4 to 6, while Teal [14] found that the
optimum growth stage for predicting corn yield was at the eight leaf vegetative phase, or between
800—1,000 GDD. They found a weak relationship during early growth stages, which was attributed to
the yield potential not fully developed. Additionally, they explained the disappearance of this weaker
relationship later in the season was due to canopy closure, which resulted in the inability to detect
variability associated with differing N-rates. Several reports have shown that an estimate of yield alone
is poorly correlated with optimum N rate [17]. However, Raun [11] showed the potential of utilizing a
predicted YP as a component of N management scheme. This technology has shown the ability to
improve N management decisions in many cropping systems across USA, Canada, Mexico, and other
countries [18-20]. These reports suggest the potential of using yield prediction as an integral part of an
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N management decision tool to improve recommendations in crop production. Previous reports have
documented the ability of NDVI to estimate sugarcane yield potential, however, most of these reports
have been focused on satellite based platforms or passive sensors with few demonstrating the ability of
a active ground-based remote sensor to estimate sugarcane yield [21-25]. Therefore, the objectives of
this study were to: (1) determine the ability of an in-season estimation of NDVI to predict sugarcane
yield potential; and (2) determine optimum timing for predicting sugarcane in-season yield potential.

2. Experimental Section

Research was conducted in St. Gabriel (30°15'13"N 91°06'05"W) and Jeanerette (29°54'59"N
91°4021"W), Louisiana, on several N-rate field trials. Soils utilized for each experiment are as
follows: Commerce silt loam (Fine-silty, mixed, superactive, non-acid, thermic Fluvaquentic
Endoaquept) for Experiments 1, 2, 3, 4, and 9; Canciene silty clay loam (Fine-silty, mixed,
superactive, nonacid, hyperthermic Fluvaquentic Epiaquept) for Experiments 5, 6, 7, and 8; and
Baldwin silty clay loam (Fine, smectitic, hyperthermic, Chromic Vertic Epiaqualf) for Experiments 10
and 11. Average monthly temperature and precipitation for each location and year are provided in
Tables 1 and 2, respectively.

Table 1. Average monthly temperature (°C) observed in 2008-2011 for St. Gabriel and
Jeanerette, LA.

Month St. Gabriel, LA, USA Jeanerette, LA, USA

2008 2009 2010 2011 2008 2009 2010 2011

January 10.4 11.9 8.2 4.8 11.2 9.0 8.9 6.3

February 14.1 13.9 7.7 8.5 15.0 11.1 8.4 8.9
March 16.0 17.7 13.3 13.8 16.8 14.2 13.7 14.9
April 19.7 19.2 20.1 18.8 20.5 17.4 20.9 19.7
May 24.1 24.2 25.6 21.0 244 22.8 26.0 21.7
June 27.4 27.9 27.9 26.1 27.6 25.7 28.4 25.6
July 24.5 28.5 28.4 26.5 28.2 259 28.6 N/A §
August 27.2 27.2 28.5 26.7 27.6 25.3 28.9 N/A
September 24.7 26.0 26.1 21.8 25.2 23.4 26.8 N/A
October 18.9 20.1 19.9 14.0 20.0 19.0 20.7 N/A
November 14.1 14.3 154 12.6 15.3 11.2 16.6 N/A
December 13.2 10.4 10.6 12.2 13.8 10.9 10.9 N/A

1 Indicates the information is not available for this month due to malfunctioning weather sensors.

Table 2. Average monthly precipitation (cm) observed in 2008-2011 for St. Gabriel and
Jeanerette, LA.

St. Gabriel, LA, USA Jeanerette, LA, USA
Month 2008 2009 2010 2011 2008 2009 2010 2011
January 14.1 10.6 6.4 4.7 15.3 5.0 5.2 8.1

February 7.6 4.5 19.9 4.5 5.3 4.9 15.6 3.5
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Table 2. Cont.

Month St. Gabriel, LA, USA Jeanerette, LA, USA

2008 2009 2010 2011 2008 2009 2010 2011

March 2.6 18.4 6.2 9.4 5.1 23.7 4.3 7.0

April 2.2 6.8 2.3 3.2 6.0 11.4 3.0 1.2

May 13.5 2.4 15.3 0.6 13.1 9.4 8.8 1.0
June 4.4 0.7 27.1 13.0 1.9 3.5 18.2 N/A
July 5.7 7.9 10.9 13.2 32 9.5 38.1 N/A
August 23.7 9.0 24.9 N/A 8.8 11.3 17.8 N/A
September 9.9 11.7 2.7 N/A 31.1 25.3 7.0 N/A
October 0.9 314 1.7 0.8 0.6 35.1 43 N/A
November 3.5 2.6 16.4 N/A 5.6 3.4 16.8 N/A
December 13.8 41.2 6.7 2.3 7.1 46.9 7.2 N/A

1 Indicates the information is not available for this month due to malfunctioning weather sensors.

Detailed descriptions for all experiments are provided in Table 3, as well as varieties used presented
in Table 3. Experiments were planted on beds in a three-row plot, measuring approximately 2 m wide.
The row length of most experiments was 15 m long with the exception of Experiment 7 (13.3 m long),
6 (11.6 m long), and 9 (8 m long). Excluding Experiment 6, all experiments were planted by hand
using whole stalks where open furrows where filled with stalks that were placed with an overlap of
8 cm or two matured internodes of the adjacent stalk. Experiment 6 was billet planted, using 50 cm
segments of sugarcane (billets), planted at the rate of 6 billets wide within an open furrow. These
billets were then planted in 50 cm sections down the planning furrow. Following planting, all rows
were covered with approximately 6 cm of soil and packed firmly using a custom roller packer.
Nitrogen fertilizer was knifed in the shoulder of the bed as urea-ammonium nitrate (UAN; 32-0-0) to
all trials at the rate of 0, 45, 90, and 135 kg-N-ha™', with the exception of Trial 2, 3, 5 (2008), and 8
which received the following N-rate: Experiment 2, received 0 and 135 kg-N-ha_l; Experiment 3, received
0, 45, 90 kg-N-ha_l; Experiment 5; received 0, 17, 67, 135, and 201 kg-N-ha_l; Experiment 8, received
0, 45, 90, 135, and 180 kg~N-ha71. Following application of fertilizer, knife furrows were covered.
Weed management was carried out according to current Louisiana State University AgCenter
herbicide recommendations which included application of metribuzin (4-amino-6-fert-butyl-4,5-
dihydro-3-methylthio-1,2,4-triazin-5-one) in early spring prior to emergence of the sugarcane crop and
atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was applied when beds were rebuilt
in-season (lay-by), approximately in the middle of May. Sensor readings were taken with the
GreenSeeker®, an active ground-based handheld sensor (Trimble Navigation, Ltd., Sunnyvale, CA,
USA), which measures canopy reflectance at the red region (670 £ 10 nm) and the NIR region
(780 = 10 nm) and NDVI was determined based on equation (1):

NDVI = [(pNiR—PRed)/(PNIRTPRed)] (1)

where:
pnir = reflectance at the near infrared (NIR)
Pred = reflectance at the red
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Table 3. Agronomic practices for all experiments established at St. Gabriel and Jeanerette, LA, USA from 2008 through 2011.

Experiment No. Year Crop Description Location Planting Date Spring Fertilization Date Harvest Date

1 2008 2" Stubble } Foliar fertilization x N rate St. Gabriel, LA, August 2006 15 April 2008 27 October 2008

2 2008 2" Stubble N Response Study St. Gabriel, LA August 2006 15 April 2008 27 October 2008
3 2008 1* Stubble Foliar fertilization % N rate St. Gabriel, LA August 2007 15 April 2008 4 November 2008
2009 2" Stubble Foliar fertilization X N rate St. Gabriel, LA August 2007 15 April 2009 4 November 2009

4 2008 1** Stubble Variety x N rate St. Gabriel, LA August 2006 17 April 2008 5 November 2008
2009 2" Stubble Variety x N rate St. Gabriel, LA August 2006 29 April 2009 4 November 2009
5 2008 Plant Cane Variety x N rate St. Gabriel, LA September 2007 14 April 2008 17 November 2008
2009 1* Stubble Variety x N rate St. Gabriel, LA September 2007 6 April 2009 18 November 2009

67 2010 Plant Cane N rate x N timing St. Gabriel, LA September 2009 15 April 2010 8 December 2010
2010 Plant Cane N rate x N timing St. Gabriel, LA September 2009 29 April 2010 8 December 2010

2010 Plant Cane N rate X N timing St. Gabriel, LA September 2009 13 May 2010 8 December 2010

2010 Plant Cane N rate x N timing St. Gabriel, LA September 2009 27 May 2010 8 December 2010

2011 1** Stubble N rate x N timing St. Gabriel, LA September 2009 13 April 2011 8 December 2011

2011 1* Stubble N rate X N timing St. Gabriel, LA September 2009 23 April 2011 8 December 2011

2011 1** Stubble N rate X N timing St. Gabriel, LA September 2009 11 May 2011 8 December 2011

2011 1** Stubble N rate x N timing St. Gabriel, LA September 2009 25 May 2011 8 December 2011
7 2010 Plant Cane Variety x N rate St. Gabriel, LA September 2009 22 April 2010 22 November 2010
2011 1** Stubble Variety x N rate St. Gabriel, LA September 2009 13 April 2011 3 November 2011

8T 2011 2" Stubble N rate x N timing St. Gabriel, LA September 2007 13 April 2011 13 October 2011

2011 2" Stubble N rate X N timing St. Gabriel, LA September 2007 23 April 2011 13 October 2011

2011 2" Stubble N rate x N timing St. Gabriel, LA September 2007 11 May 2011 13 October 2011

2011 2" Stubble N rate x N timing St. Gabriel, LA September 2007 25 May 2011 13 October 2011

9 2011 Plant Cane Variety x N rate St. Gabriel, LA September 2010 13 April 2011 1 December 2011
10 2008 2" Stubble Variety x N rate Jeanerette, LA August. 2006 25 April 2008 13 November 2008
11 2010 Plant Cane Variety x N rate Jeanerette, LA November 2009 23 April 2010 17 November 2010

2011 1* Stubble Variety x N rate Jeanerette, LA November 2009 11 April 2011 18 October 2011

1 Four values are for the different spring N fertilization times, which yield was calculated separately for each timing; § Stubble crop indicates the crop grown after the first

year’s harvest.



Sensors 2012, 12 7535

Table 4. Varieties used in all experiments, canopy designation, and source of canopy
designation from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA.

Experiment No. Variety Canopy Structure Reference

1 Ho 95-988 Erect Tew [26]
2 L 97-128 Droopy Gravois [27]
3 L 97-128 Droopy Gravois [27]
4 L 99-226 Droopy Bischoff [28]
L 99-233 Droopy Gravois [29]
5 L 99-226 Droopy Bischoff [28]
LCP 85-384 Erect Milligan [30]

HoCP 96-540 Erect Tew [31]
6 L 01-283 Erect Gravois [32]
7 L 99-226 Droopy Bischoff [28]
L 01-283 Erect Gravois [32]

HoCP 96-540 Erect Tew [31]
8 L 97-128 Droopy Gravois [27]
9 L 99-226 Droopy Bischoft [28]
L 01-283 Erect Gravois [32]

HoCP 96-540 Erect Tew [31]

10 Ho 95-988 Erect Tew [26]
11 L 99-226 Droopy Bischoff [28]
L 01-283 Erect Gravois [32]

HoCP 96-540 Erect Tew [31]

The GreenSeeker® sensor takes eight readings per second. For this study, the average number of
readings taken per plot was between 90 and 110. Additionally, the sensor’s field of view is
approximately 60 cm with optimum height above the crop canopy being 80 to 110 cm. Sensor readings
were taken weekly for eight weeks beginning approximately the middle to late April with 17th April
being the earliest sensing date until early June with 12th June being the latest sensing date. For
Experiment 6 and 8, sensor readings were taken for five consecutive weeks starting one week after
fertilization, with fertilizers being applied from the middle of April until the end of May.

Plots were harvested with a Cameco C2500 chopper harvester (Cameco Industries, Thibodaux, LA,
USA) and total harvested cane tonnage was determined using a weigh wagon fitted with load cells.
Ten randomly selected sub-sample stalks were collected from the middle row, leaves were removed
from the stalk, and each stalk was cut approximately 10 to 12 cm below the apical meristem. After
weight determination, the sub-samples were analyzed for sugarcane quality parameters using a
Spectracane Near Infrared System (Bruker Coporation, Billerica, MA, USA).

Prior to analysis, data were grouped by sensing date and cumulative growing degree days (CGDD)
at time of sensing. Normalized difference vegetative index values were adjusted by two different
methods to create an INSEY. The first normalization (INSEY-DFY) was calculated similar to [11],
based on Equation (2):

In-season estimate of yield-day of year = NDVI/DFY (2)

where DFY = all days from the beginning of the year where GDD > 0.
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Teal [14] implemented a similar index in corn by dividing NDVI values by the number of days
from planting to sensing. However, since sugarcane is a semi-perennial crop and senesces during the
winter, the beginning of the calendar year was used. In the second method, the plant index was
determined by comparing NDVI values to the CGDD from the beginning of the year (INSEY-GDD),
based on Equation (3):

In-season estimate of yield-cumulative growing degree days = NDVI/CGDD 3)

where:
CGDD = the cumulative growing degree days from the beginning of the calendar year.
Growing degree days were determined by the optimum day method [33], based on Equation (4):

Cumulative growing degree days = ((Temp.max—Temp.min)/2)-base temperature 4)

where:

Tempmax = maximum daily temperature;

Temppin = minimum daily temperature;

Base temperature = 18 °C for sugarcane production.

Statistical analysis was performed using SAS software [34]. For Experiments 1 and 3, no significant
effect of foliar fertilization was found; therefore, further analysis was carried out across foliar
treatments. In addition, for Experiments 4, 5, 7, 9, 10, and 11 the variety by N-rate effect was not
significant and analysis was carried out across varieties. Linear and non-linear regression analyses
were performed in SAS to determine the relationship between NDVI, INSEY-DFY, INSEY-CGDD,
and sugarcane yield components using Procedure Reg (linear regression) and NLIN (non-linear
regression). Coefficient of determination () values obtained from Proc Reg and NLIN were used to
evaluate the models.

3. Results and Discussion
3.1. Sugarcane Yield Summary

Cane tonnage and sugar yield varied across sites and years (Table 5). Sugarcane yields in Louisiana,
as well as soil properties, have been previously found to show similar variability based on crop age and
growth conditions [35]. The average yield across all 12 site years was 65 Mg-ha™' for cane tonnage and
ranged from 31 Mgha ' to 100 Mg-ha™'; additionally sugar yield averaged 7.8 Mg-ha ' and ranged
from 2.2 to 12.1 Mg-ha™'. Yield achieved by Experiment 11 in 2011 achieved the highest cane tonnage
with 100 Mg-ha™' and Experiment 7 in 2010 achieved the highest sugar yield with 12.1 Mg-ha'. The
higher yields were potentially associated initiation of rapid biomass accumulation, at which time water
consumption is highest [36]. Experiment 8 in 2011 yielded the lowest cane tonnage with 31 Mg-ha '
and Experiment 5 in 2009 with 2.2 Mg-ha ' for sugar yield. The lowered production for both cane
tonnage and sugar yields can be attributed to the increased crop age, both being 2nd stubble sugarcane
crops. Johnson [35] reported that sugarcane yield typically decreased with increasing age. In addition,
the lowered cane tonnage for 2011 could be attributed to a high lodging rate due to winds associated
with tropical storm Lee, which made landfall during maturation on 9th September 2011. This high
lodging rate can attribute to low harvest efficiency.
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3.2. Optimum Timing for Prediction of Sugarcane Yield Potential Using NDVI

Timing of sensing is an important factor in determining the feasibility of integrating predicted YP
into N management schemes. GreenSeeker® sensor readings were obtained from early April until the
first of June; further sensing dates were not investigated due to the potential of physically damaging
the sugarcane crop with the equipment crossing the field. Sensing dates that do not fully coincide with
the existing narrow timeframe associated with in-season fertilization of sugarcane in Louisiana
(1st April through 30th April) were investigated due to limited research currently available for the
effects of later fertilization timings.

Sugarcane grown in Louisiana goes through four growth stages: emergence, tillering, grand growth,
and maturation, each lasting from one to three months. Therefore, identifying sensing ranges based
on growth stage, as proposed by several other studies, may not be feasible [11,14,16]. Overall,
using DFY in which the CGDD > 0 as a measure of time of sensing resulted in weak exponential or
non-significant relationships (Table 6). These weak relationships can be attributed to rapid
accumulation of days in the beginning of the season, even when the weather is cooler and growth is
minimal. For example, if the average daily temperature was 19 °C there would be no difference in the
number of days accumulated compared to the average daily temperature of 32 °C, the latter being
within optimum temperature range for sugarcane growth.

However, when CGDD was used as a measure of time, stronger exponential relationships were
achieved (Table 6). All spectral reflectance measurements showed a no significant or a weak
relationship for both cane tonnage and sugar yield from 150 to 600 CGDD (Table 6). Begue [23]
explained variability in NDVI readings using SPOT images from early season growth. They attributed
the variability to factors such as cane residues and weed development which could be highly influential
at low stand densities early in the growth season.

Additionally, this weak relationship could be potentially due to lowered N uptake and YP not being
fully developed at early growth. Kwong [37] reported that fertilizer N accumulation in sugarcane was
low prior to a period of rapid N uptake, approximately 140 to 150 days after previous harvest. Thus
differentiation in N uptake between high N rate plots and lower N rate plots would not be evident until
later in the growing season. The strongest relationship occurred between 601 to 751 CGDD (Table 6).
This timeframe corresponded to the last week in May to the first week in June for all years. The
relationship between spectral reflectance values and sugarcane yield after 751 CGDD substantially
decreased. Several reports have shown a similar trends, where the relationship between NDVI and
yield increased as the crop developed [22—-25]. However, a majority of these reports found higher rela
tionships later in the growing season toward maturity, which this study did not investigate. One such
reported was Rao et al. [25] which indicated the correlation between NDVI and sugarcane yield
increased throughout rapid growth until the end of the grand growth stage. For this study, the grand
growth phonological stage resulted from the accumulation of approximately 751 CGDD. During this
stage of growth the sugarcane crop began to rapidly accumulate biomass. This increased biomass
production resulted in canopy closure, decreasing the ability of NDVI to distinguish variation and
therefore yield [14].
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Table 5. Average sugarcane yield at different nitrogen fertilization rates achieved from 2008—2011 from St. Gabriel and Jeanerette, LA, USA.

Cane Tonnage Sugar Yield
Experiment No. Year ON ¥ 45 90 135 0N 45 90 135
Mg-ha™'

1 2008 68 71 73 71 8.53 8.76 9.06 8.68
27 2008 39 - - 68 5.21 - - 7.54
3% 2008 71 74 77 - 8.72 8.94 9.20 -

2009 54 53 55 - 6.15 6.07 6.36 -
4 2008 56 62 63 61 6.87 7.34 7.35 7.17
2009 51 69 76 75 5.13 7.13 7.65 7.49
5§ 2008 83 75 85 83 10.53 9.46 10.49 10.25
2009 49 54 48 53 2.25 2.52 2.82 3.16
69 2010 97 88 89 91 12.45 11.43 11.40 11.66
2011 58 66 70 68 10.09 8.69 9.04 8.82
7 2010 83 90 85 91 10.20 11.95 12.87 13.27
2011 46 62 79 77 5.64 7.82 10.00 9.68

8 2011 39 43 41 41 4.41 4.62 4.40 4.34

9 2011 81 83 86 90 10.20 10.50 10.80 11.40
10 # 2008 31 51 53 44 4.19 6.79 7.35 6.00
11 2010 66 68 70 65 8.26 8.38 8.98 7.86

2011 83 92 85 100 10.83 11.22 10.61 11.37

1 Indicate applied N rates in kg-N-ha'; 1 Data points were not available due to particular plots did not receive designated N rates; § N rates used were 0,
17, 67, 135, and 201 kg-N-ha'. Yield values for the 45 and 90 kg'N-ha™' columns were plots which received 17 and 67 kg'N-ha ', respectively.
Additionally 201 kg'N-ha™' yielded 83 MT ha™' and 10463 kg-ha ' for cane tonnage and sugar yield, respectively; 9 Indicate a significant response
(P < 0.05); however, the highest significant yield was the check plot; # Additionally 180 kg'N-ha™' yielded 64 Mg-ha ' and 8.8 Mg-ha' for cane tonnage

and sugar yield, respectively.

7538
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Table 6. Exponential relationship between spectral reflectance measurements and
sugarcane crop yield component as a function of time in St. Gabriel and Jeanerette,
Louisiana from 2008 through 2011, using cumulative growing degree days (CGDD) and
day from the beginning of the year (DFY) when growing degree days > 0.

Coefficient of Determination ()

Cane Tonnage Sugar Yield
Gsrowth NDVI INSESW{- INSEY; NDVI INSEY- INSEY-
tage DFY CGDD DFY CGDD
CGDD
150-300 NS § NS NS NS NS NS
301450 NS NS NS 0.30 NS 0.25
451-600 0.24 NS 0.24 0.22 NS NS
601-750 0.20 0.23 0.46 0.21 0.33 0.42
>751 NS 0.19 0.31 0.15 0.19 0.22
DFY
116123 NS NS NS NS NS 0.10
124-131 NS NS NS NS NS NS
132-139 0.07 NS NS 0.11 NS NS
140-147 NS NS 0.21 0.11 0.15 0.34
148-155 NS 0.05 0.21 NS NS 0.15
156163 NS 0.25 0.31 NS 0.28 0.34

" NDVI measurement adjusted for days from beginning of year (DFY) where the growing degree
days are >0; * NDVI measurement adjusted for cumulative growing degree days (CGDD);
§Indicates the relationship was not significant at a 0.05 level.

Flowers [38] reported that the application of N fertilizer when the crop is responsive, i.e., during
rapid accumulation, can increase crop yield and decrease loss. According to Teboh (unpublished data)
the initiation of rapid N uptake was approximately 5th June for sugarcane production in Louisiana.
However, N fertilization for sugarcane production in Louisiana is between 1st April and 30th April,
which is approximately 100 to 275 CGDD during a normal site year (Figure 1) [1]. However, limited
research has been conducted to determine the effects of delaying fertilization later into May
(approximately 250 to 650 CGDD, Figure 1). Even though the effects of delaying N fertilization are
unknown, these effects are influenced by environmental conditions that control natural N additions and
crop response. This research indicates that delaying N fertilization is essential to integrate an in-season
yield potential into sugarcane N management schemes. However, the benefits of delaying sugarcane N
fertilization to coincide with optimum time for sugarcane yield prediction may not outweigh the risks
involved with delayed fertilization in late May, such as yield losses from physical damage to the
sugarcane by the fertilizer applicator.
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Figure 1. Total accumulation of growing degree days (CGDD) as a function of day of the
year from the beginning of January until mid-June.
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3.3. Adjusting NDVI Readings Using DFY and CGDD

Overall, the exponential relationship measured from 601 through 750 CGDD between NDVI and
sugarcane yield was low (Table 6) compared to similar models for both corn and winter wheat [14,16].
One potential factor for weaker relationship between NDVI readings and sugarcane yield was the
variability of NDVI readings associated with different growing conditions between locations and
years. Normalization methods have been implemented previously in an attempt to standardize the
variability associated with different growing conditions [14]. Two adjustment methods were evaluated
in this study, both the INSEY-DFY and INSEY-CGDD. Both adjusted methods responded similarly to
NDVI as a function of time in which CGDD of 601 through 750 being the optimum time for both
methods (Table 6). Table 7 reports the relationship between sugarcane yield and both adjustment
methods, as well as NDVI, at the 601 to 750 CGDD stage across all varieties. The INSEY-DFY only
slightly improved YP estimation compared to the unadjusted NDVI for cane tonnage (% = 0.23
compared to 0.2 for unadjusted NDVI); however, INSEY-DFY strengthened the relationship with
sugar yield compared to the unadjusted NDVI value (#* = 0.33 compared to 0.21 for unadjusted
NDVI). The INSEY-CGDD adjustment improved the relationship between cane tonnage and sugar
yield compared to both unadjusted and INSEY-DFY (+* = 0.48 and 0.42 for cane tonnage and sugar
yield, respectively).
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Table 7. Coefficient of determination (+°), equation, and P-value for relationship between
NDVI, INSEY-DFY, and INSEY-CGDD with sugarcane yield component fit with an
exponential relationship at 650 through 750 CGDD.

Plant ind Cane tonnage Sugar yield
ant mdex I Equation p-value + ¥ Equation p-value
NDVI 020  y=25.2¢"™ 0.014 0.21 y=29¢"™ 0.025
INSEY-DFY 023  y=39.5¢"* <0.001 033  y=3.6e"" <0.001
INSEY-CGDD 046  y=18.9¢""* <0.001 042 y=2.1e""™ <0.001

+ p-values are for overall models.

It has been documented that temperature significantly affects canopy development in sugarcane
production [39-42]. Inman-Bamber [39] reported that moisture did not significantly impact early
canopy development and only influenced the number of green leaves per stalk and final leaf area under
water stressed conditions. Although INSEY-DFY was found to improve the YP estimation, especially
for sugar yield, INSEY-CGDD obtained more consistent improvement across different growing
conditions for both cane tonnage and sugar yield. This is because CGDD is a measure of cumulative
temperature across the growing season and NDVI is a measure of crop greenness and biomass.
Therefore, in highly variable conditions associated with sugarcane production in the mid-South,
INSEY-CGDD adjustment would increase the stability of sugarcane yield prediction models utilized
across different locations and years.

3.4. Separating Prediction Models Based on Canopy Structure

The canopy structure of sugarcane has been shown to be highly variable, particularly between the
different varieties [43—45]. Galvao [43] further reported that spectral reflectance can be used as a tool
for distinguishing different sugarcane varieties, due to difference in canopy architecture. Therefore, the
accuracy of a yield prediction model based on canopy reflectance created across varieties could be
lowered due to the variability associated with differing canopy structures. While having a separate YP
equation for each variety would provide the most accuracy, the feasibility of creating multiple models
for in-season management decision for sugarcane production would be challenging. However, a model
which grouped varieties based on canopy structure would decrease the variability associated with
different architectures.

For this study, varieties were grouped as either erectophile (erect) or planophile (droopy) based on
varietal registration reports (Table 4). Figures 2 through 5 illustrate the relationship between
INSEY-CGDD and sugarcane yield when varieties were separated as either droopy (Figures 2 and 3)
or erect (Figures 4 and 5) when measurements were taken between 601 to 750 CGDD. The model that
contained solely the erect varieties improved the YP model, with * values of 0.53 for cane tonnage
and 0.47 for sugar yield compared to 0.46 and 0.42 for cane tonnage and sugar yield, respectively of
all varieties. Conversely, there was a slight reduction in the exponential relationship with models
that contained only the droopy varieties, with 7 values of 0.45 and 0.40 for cane tonnage and sugar
yield, respectively.
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Figure 2. Relationship between cumulative growing degree days adjusted NDVI
(INSEY-CGDD) and cane tonnage for droopy varieties (L 97-128, L 99-226, L 99-233) for
all locations between 601 through 750 CGDD from 2008 to 2011 in Louisiana, USA.
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Figure 3. Relationship between cumulative growing degree days adjusted NDVI
(INSEY-CGDD) and sugar yield for droopy varieties (L 97-128, L 99-226, L 99-233) for
all location between 601 and 750 CGDD from 2008 to 2011 in Louisiana, USA.

18 -

bkt
Lo S A
|

—

Sugar yield (Mg ha!)

y = 1.7e1553x o
r’=0.40
P<0.001

@O N 2w o
|

0004

0.0006 0.0008 0.001 0.0012 0.0014

INSEY-CGDD

Figure 4. Relationship between cumulative growing degree days adjusted NDVI
(INSEY-CGDD) and cane tonnage for erect varies (L 01-283, LCP 85-384, HoCP 96-540,
Ho 95-988) for all locations between 601 through 750 CGDD from 2008 to 2011 in

Louisiana, USA.
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Figure 5. Relationship between cumulative growing degree days adjusted NDVI
(INSEY-CGDD) and sugar yield for erect varies (L 01-283, LCP 85-384, HoCP 96-540,
Ho 95-988) for all locations between 601 through 750 CGDD from 2008 to 2011 in
Louisiana, USA.
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This decreased exponential relationship can be attributed to droopy varieties canopy spreading wider
than erect leaf canopy structure leading to canopy closure earlier in the season. Therefore, the sensor’s
field of view tends to be occupied more with green biomass and only limited soil background [46]. In
such conditions the sensor loses its sensitivity. This situation is not the case for erect leaf-canopy
structure. Separating YP models based on canopy structure increased the accuracy at which the erect
varieties could be predicted; however, it decreased the YP estimation of the droopy varieties.

An N management scheme that utilizes predicted YP would allow sugarcane producers to adjust
in-season N recommendations based on expected yield. Since YP is the yield expected to be achieved
with no additional N fertilizer, it cannot be used independently to determine N rate recommendations.
However, YP has been successfully integrated into an N management scheme which incorporates YP
and a response index value to successfully estimate in-season N rate recommendations in other
crops [14,47,48]. Lofton [49] reported that an in-season response index value could be successfully
used to predict sugarcane yield response to applied N. To incorporate an N management decision tool
that utilizes in-season estimation of YP, N fertilization would need to be delayed to coincide with the
optimum timeframe for estimating YP, 601 to 750 CGDD, based on the findings of this study. The
decision to delay N fertilization to coincide with in-season estimate of YP would need to be carefully
evaluated on a field by field basis due to risks associated with N fertilization later in the season,
including physical damage to the sugarcane by mechanically passing through the field. Additionally,
due to chemical and physical factors that could influence the accuracy of YP estimations, YP should be
determined separately for each management zone across the field. By using an N management scheme
which takes into account YP, sugarcane producers can take advantage of years in which N demand
may be higher or lower due to other yield limiting or enhancing factors.

4. Conclusions

This study demonstrated that NDVI readings can be used to estimate in-season sugarcane YP. The use
of DFY did not provide positive results as a measure of time because of rapid accumulation of days early

in the growing season when growth is minimal. The optimum timeframe for estimating sugarcane YP
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was determined to be from 601 through 750 CGDD. Because this timeframe is outside the current
recommendations for N fertilization, sugarcane producers would need to delay in-season N fertilization
by one month in order to integrate yield potential into an N management scheme. The risks and benefits
of adopting this N management scheme would need to be evaluated on a producer basis.

Adjusting NDVI readings using CGDD and DFY increased the accuracy of YP estimation models
but only CGDD adjustment increased the relationship between NDVI and cane tonnage. The CGDD
adjustment provided a better prediction of sugarcane YP because it provided a better estimation of
temperature throughout the growing season compared to DFY. Additionally, separating varieties based
on canopy structure increased the * value of the YP model with the varieties that were classified as
erect; however, it had a slightly negative effect on the relationship between canopy reflectance and
sugarcane yield for the droopy varieties. This was due to increased canopy closure early in the growing
season of the droopy varieties. This increased green vegetation and decreased soil background
diminished the sensitivity of the sensor to detect canopy variability associated with different N
treatments. Therefore, when an N management system which integrates in-season predicted yield
potential is implemented, sugarcane producers need to be aware of both the CGDD throughout the
growing season, because this is utilized as a time-frame for when to collect NDVI readings and an
adjustment method for NDVI values, and sugarcane variety, due to differences between varieties
associated with different canopy structures. An important concept to realize is the scale of this
technology is much finer that those discussed in previously literature which have been based on
satellite platforms. This finer scale allows for the detection of variability within or between
management zones; however, limits its use on a regional scale, compared those satellite platforms.

Further research is needed to develop specific guidelines for distinguishing different canopy
structures. In this study, the authors utilized variety reports to determine differences in canopy
structure; however, numerical guidelines that take into account physiological characteristics of each
variety, such as leaf angle or length of leaf to the first bend, would provide a more precise method of
separating sugarcane varieties. Additionally, continued updates will be essential to increase the
robustness of this sugarcane YP model. These updates will need to incorporate new commercially
available varieties as they become available and additional diverse growing conditions. Also, due to
limitations associated with NDVI, additional plant indices evaluation would be beneficial, this is
especially true for those indices that are less prone to saturation at high biomass situations, such as
with the droopy varieties.
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