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Abstract: This paper presents a novel approach to localize an underwater mobile robot
based on scan matching using a Mechanically Scanned Imaging Sonar (MSIS). When used
to perform scan matching, this sensor presents some problems such as significant uncertainty
in the measurements or large scan times, which lead to a motion induced distortion. This
paper presents the uspIC, which deals with these problems by adopting a probabilistic
scan matching strategy and by defining a method to strongly alleviate the motion induced
distortion. Experimental results evaluating our approach and comparing it to previously
existing methods are provided.
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1. Introduction

Thanks to recent technological advances, the sub-aquatic world is more accessible for exploration,
scientific research and industrial activity. When the tasks involved in missions are repetitive, hazardous
or too long to be carried out by divers or human guided vehicles, the use of unmanned vehicles becomes
more suitable.

At present, Remotely Operated Vehicles (ROVs) are commonly used in a variety of applications such
as surveying, scientific sampling, rescue operations or infrastructure inspection and maintenance. Trying
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to overcome some of the intrinsic limitations of ROVs, such as their limited operative range or the need
of a support vessel, Autonomous Underwater Vehicles (AUVs) are progressively being introduced.

1.1. Underwater Sensing

Improving the sensorial capabilities of underwater vehicles is a key point to increase the variety and
the feasibility of missions that can be carried out by ROVs and AUVs. Optical sensors, such as laser
range finders or cameras, can provide dense information updated at high speed and they are commonly
used in many terrestrial and aerial robotic applications [1–4]. However, due to the interaction between
water and electromagnetic waves, optical systems are very problematic in the underwater domain. Light
attenuation and scattering, non-uniform lighting and shadows, colour filtering or suspended particles are
frequent difficulties when using optical sensors underwater [5].

To the contrary, acoustic sensors have interesting properties in these scenarios. For example, sound
propagates faster in water than in air, and it is able to travel larger distances than light in this media.
Because of that, acoustic sensors such as sonars are the most common choice for AUVs [6–9].

There are several types of sonars that can be used in underwater robotics [10], ranging from simple
and inexpensive echo sounders that provide single range measurements, to complex and expensive
multi-beam imaging sonars and side-scan sonars, which provide echo intensity or range profiles at high
frequencies.

Somewhere in between lies the Mechanically Scanned Imaging Sonar (MSIS). This device has a
transducer which emits fan-shaped beams, being able to perform, in most configurations, 360◦ scans by
means of a mechanical rotation. They provide echo intensity profiles and can be placed to scan the AUV
horizontal plane. The mechanical rotation leads to a large scan time, which is said to be one of the most
important drawbacks of these sensors, especially when they are mounted on AUVs.

In spite of these drawbacks, MSIS sensors have interesting properties when used in AUVs. On the
one hand, these sensors are cheaper than multi-beam or side-scan devices. On the other hand, they can
be easily mounted on the vehicle in different configurations. For example, they can be easily used to
scan the horizontal or the vertical AUV plane.

1.2. Underwater Scan Matching

Nearly all underwater robotic tasks require some knowledge of the robot location in the environment.
For example, in power or communications cable inspection [11], the robot has to estimate its own pose in
order to track the cable and properly keep records of damaged areas. Also in sampling tasks [12], either
biological, archaeological or geological, the knowledge of the robot pose is required to properly map the
sampling area. Of course, survey and mapping missions also require accurate robot pose information.
The problem of estimating the robot pose is known as localization.

The literature approaches the problem of localization from different perspectives, ranging from simple
dead reckoning to methods relying on complex representations of the environment. As a matter of fact,
the simultaneous estimation of the robot pose and the environment map has been one of the most active
research areas in the past years and is still the focus of several studies. It is the so-called Simultaneous
Localization and Mapping (SLAM) [13,14]. Although a wide variety of sensors has been used to perform
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localization, most of the research has been traditionally conducted using accurate laser scanners. Recent
trends focus on the use of cameras, both monocular and stereo, as well as other novel optical sensors.

As stated previously, optical sensors are not a good choice in underwater robotics and acoustic sensors
are preferred. Unfortunately only a few studies on localization deal with these sensors in the underwater
domain. Additionally, underwater environments pose several difficulties to localization. For example,
GPS signal is not available. Also, most underwater environments are unstructured, making it unfeasible
to use conventional feature-based or line-based approaches.

Scan matching approaches to localization are based on matching range scans neither making any
assumption about their shape nor searching features [15]. In other words, scan matching approaches
rely on the raw data provided by range sensors. First attempts to perform mobile robot localization by
matching successive range scans were inspired by the computer vision community. A standard approach
to image registration is the Iterative Closest Point (ICP). Although the name ICP was firstly introduced by
Besl and McKay [16], very similar ideas were presented by other authors such as Chen and Medioni [17]
or Zhang [18].

The ICP concepts were introduced in the mobile robot localization context by Lu and Milios [19].
These authors proposed some changes to the original algorithm to make it more suitable for robotic
applications. As a matter of fact, due to the great success of this approach, many other scan matching
algorithms rely on the same basic structure, defining the ICP-based family of algorithms. Algorithms
such as the Iterative Dual Correspondence (IDC), also proposed by Lu and Milios, the Metric-Based
ICP (MbICP) [20], the probabilistic Iterative Correspondence (pIC) [21], the Polar Scan Matching
(PSM) [3], the Point to Line ICP (PLICP) [22] or the proposal by Pfister et al. [23] constitute well
known examples of ICP-based algorithms.

Additionally, different researchers have proposed alternative approaches to scan matching not
relying on the ICP concepts. The Normal Distributions Transform (NDT) [24], the probabilistic scan
registration [25], the scan correlation [26] and the Likelihood Field with Sum of Gaussians (LF/SoG) [27]
are good examples of these alternatives to ICP-based.

In general, scan matching algorithms require dense sets of accurate range readings to obtain reliable
motion estimates. That is why laser sensors are often used in the context of terrestrial scan matching.
Besides, when sonar sensors are used in the context of scan matching, some difficulties arise. In
particular, performing scan matching with an MSIS poses two important problems. Firstly, this sensor
does not provide range measurements but echo intensity profiles. Accordingly, the sensor information
has to be processed before being used in the scan matching context [28]. Secondly, the scan time of an
MSIS is not negligible. Because of this, it can not be assumed that the robot remains static while the
scan is being obtained.

A few studies exist dealing with these problems. For example, [29,30] propose partial solutions.
The former takes into account the MSIS characteristics, but it performs feature based SLAM instead
of scan matching. The latter performs sonar scan matching and deals with problems similar to the
aforementioned ones, but using an array of terrestrial Polaroid sonar instead of an underwater MSIS.
Moreover, some recent studies [31–33] show the feasibility of underwater scan matching using an MSIS.

Our goal is to provide self-localization capabilities to an AUV. To this end, this paper proposes
a framework to perform scan matching in underwater environments using an MSIS. This framework
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includes processes to deal with the aforementioned problems of MSIS sensing. Also, a probabilistic
scan matching method previously tested on terrestrial sonars, the sonar probabilistic Iterative
Correspondence (spIC) introduced in [30], is used to perform the matching. Because of this, the
framework introduced in this paper will be referred to as the underwater spIC (uspIC). Throughout this
paper, uspIC will refer to the whole localization framework whilst spIC denotes the scan matcher module.

The uspIC is compared to other, previously existing, approaches. The results show the quality
of our approach and the superiority of our proposal with respect to the existing underwater scan
matching approaches.

2. The Mechanically Scanned Imaging Sonar

The scan matching approach presented in this paper has to explicitly deal with the particularities
of MSIS sensors. In order to properly handle these particularities it is important to understand the
behavior of these sensors. To this end, this section briefly explains the basics behind the acquisition of
acoustic images by means of an MSIS. A comprehensive description of these sensors is available in [34].
Although most of the provided description is general to all MSIS, some details are specific to the Tritech
Miniking Imaging Sonar, which is the particular MSIS used in our experiments.

2.1. Basic Operation

An MSIS mechanically rotates the sensing head through a set of predefined angular increments. In
our particular case, the sensing head is able to rotate 360◦ in steps of 1.8◦. At each angular position,
an ultrasonic fan-shaped beam is emitted. This acoustic beam travels in water and, eventually, collides
with one or more objects in the environment, being totally or partially echoed back to the transducer. If
the signal is only partially echoed back, which is quite usual, the remaining signal continues traveling
and new echoes can be produced. As echoes are received, their amplitude is registered together with
the distance at which they were produced, computed by measuring the time of flight. Each of these
echo amplitude measurements associated to a range is called a bin. The set of all the bins gathered for a
specific transducer orientation is referred to as beam. In our configuration, each beam is composed of 500
bins and covers a maximum range of 50 m. The set of all the beams gathered during a 360◦ rotation of
the transducer head is referred to as acoustic image which, in our case, is composed of 200 beams.
Figure 1(a) illustrates the MSIS scanning process. An example of acoustic image is provided in
Figure 1(b).

2.2. Acoustic Image Interpretation

The basic MSIS operation is similar to other scanning devices, such as laser range finders. However,
there are some aspects in the MSIS operation that deserve special attention as they clearly influence the
way in which their measurements have to be interpreted. Also, these aspects make this sensor much
more problematic to perform localization than a terrestrial laser range finder. Next, these particularities
and their effects on the acoustic image interpretation are explained.



Sensors 2012, 12 7859

Figure 1. (a) Scanning process of an MSIS. The two boxes represent obstacles in the acoustic
wave path; (b) Example of acoustic image. The colors depict the echo intensities, ranging
from blue (low echo intensity) to red (high echo intensity).

(a) (b)
.

In general, gathering an acoustic image takes some time due to the time of travel of the sound that
limits the sensing head’s rotation speed. Let this time be referred to as scan time. For example, using
our particular configuration, the scan time is larger than 13 seconds. If the sensor is attached to a
mobile robot, the robot motion during the scan time can not be neglected. This induces a distortion
in the acoustic image because, as the robot moves, the relative position of the sensor with respect to
surrounding obstacles changes while the acoustic image is being built. Thus, contrarily to cameras or
laser range finders, the image cannot be considered a snapshot of the environment. Accordingly, some
processing has to be performed on the acoustic image to compensate this motion induced distortion.

Figure 2. (a) A scan as it should look like, overlaid to a satellite view of the
environment where the data was gathered; (b) The scan as it is obtained due to the motion
induced distortion.

(a) (b)
.
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Figure 2 illustrates this problem. In this example, the robot was rotating while gathering the data in the
environment shown in Figure 2(a). The expected acoustic image is shown in the same figure. However,
as the robot was rotating, the obtained measurements are those shown in Figure 2(b). Accordingly, some
processes are necessary to correct this distortion.

A second aspect that influences the acoustic image interpretation is the shape of the ultrasonic wave.
The ultrasonic wave expands with time, and, thus, it can not be considered a thin, pencil like, beam.
The resulting shape depends on the specific sensor, and is generally modelled as a wedge defined by
the expansion rates over the two axes perpendicular to the wave motion. These expansion rates are
commonly represented by the two angles that define the wedge. From now on, let us assume that the
sensor mechanical rotation happens in a plane parallel to the floor and let us refer to aforementioned two
angles as the horizontal and vertical openings. Figure 3 illustrates this model.

Figure 3. Uncertainty in object detection. All the depicted obstacles (boxes) produce the
same measurement (in red) as they are at the same distance to the sensor.

The beam shape is responsible for two effects. First, when an object is detected, its exact location is
unknown. The only knowledge we have is that the object lies somewhere in a region of equidistant points
inside the wedge. The second effect is that different obstacles located in the aforementioned region of
equidistant points will be indistinguishable and the sensor cannot decide if there is one or more obstacles
inside that region. Both effects are illustrated in Figure 3. It can be observed how all the boxes produce
the same echo, making it impossible to know their exact position (only the range is known) and, thus,
being indistinguishable between them.

The effects of the uncertainty in object detection depends on the two openings: the smaller they are,
the lower the uncertainty. The Tritech Miniking has a vertical opening of 40◦ and an horizontal opening
of 3◦. Thus, the detection accuracy is quite good in the horizontal plane and has a very important
uncertainty in the vertical plane. As our goal is to perform 2D localization in the horizontal plane,
the vertical opening barely influences the process and the horizontal opening is small enough to obtain
reasonably accurate acoustic images.

A final aspect that deserves attention is related to our specific goal, which is scan matching. In
general, scan matchers operate on point clouds such as those provided by terrestrial laser range finders.
However, the MSIS does not provide a point cloud but an acoustic image. Thus, if scan matching has to
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be performed, the acoustic image has to be processed in order to obtain a point cloud representing the
most significant objects present in the acoustic image.

There are some more aspects, such as multiple reflections, full reflections or shadows that influence
the acoustic image formation but are not especially relevant in the context of this study. The reader is
directed to [34] for a detailed explanation of such effects.

3. Problem Statement and Notation

3.1. Scan Matching

Scan matching algorithms require two consecutively gathered sets of range measurements called
scans. Let Sref = {q1, q2, . . . , qn} be a set of n measurements gathered at frame A, which is called
the reference scan. Let Scur = {p1, p2, . . . , pm} be a set of m measurements gathered at frame B, which
is called the current scan. The aim of scan matching is to compute the relative displacement and rotation
of the coordinate frame B with respect to A so that the overlap between Sref and Scur is maximized.
This relative displacement and rotation constitutes the estimate of the robot motion from A to B and is
denoted by xA

B.
The measurements in Sref and Scur can be represented in different ways, depending on the

specific scan matching implementation. For example, the basic ICP and IDC algorithms represent
the measurements by their Cartesian coordinates with respect to the corresponding coordinate frame.
The proposal of this paper is similar to spIC. The measurements in both scans are represented by
normal distributions. The mean vectors represent the Cartesian coordinates of the measurements and
the covariances provide information about their uncertainty.

It is common to model the scan matching error as a normal distribution. Therefore, we will represent
the scan matching estimate as a multivariate normal distribution xA

B = N(x̂A
B, P

A
B ). As xA

B is a
rototranslation in the plane, the mean vector x̂A

B has the form [x, y, θ]T , where x and y represent the
translation and θ represents the rotation. Accordingly, the covariance PA

B is a 3×3 matrix. The obtention
of the parameters of the aforementioned normal distribution depend on the specific scan matching
approach under consideration. For example, [35] deals with the obtention of this covariance for the
IDC algorithm, [36] provides a closed form solution for the ICP covariance and some details regarding
the covariance of the spIC are provided by [37].

3.2. Scan Matching with an MSIS

The experiments conducted in this paper have been performed using the sensor data gathered by the
Ictineu AUV (see Figure 4). This AUV was designed and developed in the University of Girona (see [29]
for more details). Among other sensors, the Ictineu is endowed with a SonTek Argonaut Doppler Velocity
Log (DVL), which measures the velocities of the unit with respect to bottom and water at a frequency of
1.5 Hz. A low-cost Motion Reference Unit (MRU), the XSens MTi, is also used. This sensor provides
absolute attitude data by means of compass and inclinometers at a rate of 10 Hz. The Ictineu is also
endowed with the aforementioned MSIS, the Tritech Miniking Imaging Sonar.
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Figure 4. The Ictineu AUV, developed in the University of Girona. (Source:
http://cirs.udg.edu/).

As stated previously, performing scan matching with an MSIS has two important requirements. First,
acoustic images need to be converted to range scans. Second, the effects of the motion induced distortion
have to be taken into account. In order to meet these requirements, additional processes are necessary.

Our proposal is as follows. First, each new beam provided by the MSIS is processed to extract the
range information. Let this process be named the beam segmentation. Also, the information provided
by the DVL and the MRU is used to obtain rough pose estimates by means of dead reckoning. Both the
obtained range information and the dead reckoning estimates are stored in two buffers, called readings
history and transformations history respectively. When a full acoustic image has been gathered, the
information in the transformations history is used to compensate the robot motion and build a range
scan using the readings in the readings history. Let this process be called the scan building. When two
consecutive scans have been built in this way, the scan matching is executed. The proposal in this paper
is to use the spIC to perform the scan matching, although other scan matching algorithms can be easily
used thanks to the uspIC framework. The motion estimate provided by the scan matching is used to
correct the transformations history. It is the so-called pose correction process. Thanks to this, the robot
pose can be continuously computed from the data in the transformations history by means of the pose
extraction process.

Figure 5. Overview of the uspIC. The notation is explained throughout the paper.
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Figure 5 summarizes our proposal. The rest of the paper is devoted to describe the above-mentioned
processes except for dead reckoning. Dead reckoning is performed by means of an Extended Kalman
Filter (EKF) that fuses DVL and MRU data. A detailed description of this EKF is available in [34].

4. Beam Segmentation

Our goal is to obtain range scans instead of the beams as they are provided by the MSIS. Accordingly,
the beam segmentation is in charge of computing the distance from the sensor to one relevant obstacle
in the beam. Although in some cases, this distance corresponds to the bin with the largest intensity
value (Figure 6(a)), in some other cases it does not (Figure 6(b)), mainly because of noise and spurious
measurements. The first column in Figure 7 shows some acoustic images as they are provided by the
sensor and the result of selecting the maximum intensity bin for each beam. It can be observed that
several spurious ranges are selected.

Figure 6. Two different beams. The circle marks the bin where the largest obstacle is
located. The arrow points to the largest echo intensity. (a) A simple situation; (b) A more
complex situation.

(a) (b)

To deal with these problems, different approaches have been adopted in the literature. For
example, [38] performs the beam segmentation using simple thresholding. This approach, as stated
previously, is prone to errors and produces false ranges. The study [33] is also based on thresholding
to detect peaks on each beam, but improves the results by using a minimum distance between peaks
criterion. A more sophisticated approach to extract information from the acoustic images using a voting
schema in the Hough space is proposed in [34]. However, this approach is aimed at feature-based SLAM
and, thus, it searches high level features such as lines instead of the range measurements which are
required for scan matching.

In the context of this study, the following three methods to process MSIS data have been designed,
implemented and tested [28].

4.1. Method 1: Enhancement and Image Processing Techniques

The goal of this method is to isolate the high intensity areas of the acoustic image produced by
obstacles in the environment and, thus, to remove the spurious measurements due to sensor noise or
suspended particles in water, among others. In this case, the acoustic image is modified directly applying
standard image processing techniques. The acoustic image is represented in an angle vs. range (beam vs.
bin) space and each bin is considered to be a gray scale pixel for the image processing algorithms.
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Thus, this method operates without taking into consideration any of the acoustic image formation
particularities. The process consists of three steps:

(1) Contrast enhancement: The contrast of the gray scale image is enhanced, so that differences
between high and low echo intensities are emphasized.

(2) Thresholding: The resulting image is converted to a binary image by thresholding.
(3) Morphological operations: The resulting binary image is modified by consecutively applying

two morphological operators: closing and pruning. In this way, small objects in the image, which are
likely to correspond to spurious measurements, are removed.

Figure 7. Beam segmentation examples with sets of acoustic images. (a) Original image;
(b) Image processed with method 1; (c) Image processed with method 2; (d) Image
processed with method 3; (e) Ranges extracted from original image; (f) Ranges extracted
from method 1; (g) Ranges extracted from method 2; (h) Ranges extracted from method 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

The result of this method is a binary image which is used as a mask over the original acoustic image.
Among the remaining bins after applying the mask, the one with the maximum intensity is selected
for each beam. The second column in Figure 7 shows some acoustic images processed according to
this method and the ranges extracted from this image. The differences between this method and a
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simple selection of the largest bin for each beam (first column) can be clearly appreciated. Spurious
measurements are almost removed when using this method.

4.2. Method 2: Range Dependant Enhancement

In general, the acoustic signal attenuates with the traveled distance. To compensate this effect, most
sonar sensors, such as the one used in our experiments, use Time Variable Gain (TVG) methods to
enhance the received signal depending on the time of flight. However, we have observed that, even with
the TVG, the acoustic signal attenuation still appears as a loss of contrast depending on the range when
the acoustic image is represented as a visual image. This can be appreciated in Figure 7(a), where the
image contrast is lower on the right side of the image, which corresponds to larger ranges. The aim
of this method is to alleviate the problems due to this range dependent loss of contrast. Our proposal
is to enhance each bin individually depending on its range: the larger the range, the more the contrast
is enhanced.

When this process has been executed, there are two possible ways to obtain the ranges. On the one
hand, the resulting image can be binarized and the binary image can be used as a mask over the original
image to select, among the remaining bins, the largest bin value for each beam. The range dependent
contrast enhanced image and the resulting ranges are shown in the third row of Figure 7. Results are
slightly better than simple maximum selection, but clearly worse than method 1. The second way to
obtain ranges using this method is to apply the thresholding and morphological operations of method 1
over the range dependent contrast enhanced image. In this case, results are slightly better than method 1,
especially for large ranges, at expense of higher computational cost.

4.3. Method 3: Dynamic Thresholding

This proposal is as follows. When the MSIS provides a new beam, the beam segmentation process
obtains the corresponding range measurement by means of the following three steps:

(1) Thresholding: An echo intensity threshold is dynamically selected as follows. Firstly, the
histogram of echo intensities corresponding to the beam under analysis is computed. Secondly, the
histogram is smoothed. Afterwards, the threshold is located at the largest echo intensity value that
locally minimizes the smoothed histogram. Figure 8 exemplifies the threshold selection process. In this
way, the threshold separates two clearly defined areas in the echo intensity space. Finally, those bins
whose intensity is below the threshold are discarded.

(2) Erosion: The remaining bins are eroded. That means that those bins that, after the thresholding,
do not have another bin in their immediate neighborhood are removed. The purpose of this step is to
remove spurious measurements.

(3) Selection: At this point, it is usual that a single cluster of bins remains. The bin with the largest
echo intensity value is selected, and the distance corresponding to this bin represents the range value for
the beam under analysis. Let the point corresponding to this range be named the range reading.
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Figure 8. An example of the threshold selection process.
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An example of this method applied to some acoustic images is shown on the top of the last column
in Figure 7. On the bottom of the same column, the selected ranges are shown. It can be observed that
this method removes almost all spurious measurements, similarly to method 1, but also discards valid
measurements at large ranges.

However, method 3 provides important benefits when used to perform scan matching. First, it is
simple and fast, being very easy to implement and requiring very low computation. Second, it operates
on a beam basis, whereas the other two require full acoustic images. Thanks to this, the CPU usage is
more homogeneous than in the other methods, which perform their task when the acoustic image has
been obtained and do nothing when the data is being gathered. Finally, the experiments suggest that the
ratio between the quantity and the quality of the obtained ranges lead to better localization results when
used to perform scan matching. Accordingly, the ranges selected with this method are those used to build
the scans by means of the scan building process.

5. Scan Building

As stated previously, the MSIS data cannot be treated as a synchronous snapshot of the world. Instead,
the sonar data is actually acquired whilst the AUV is moving. Thus, the robot motions during the sonar
data acquisition have to be taken into account in order to correct the induced distortion. The scan building
epitomizes this idea. Roughly speaking, scan building is in charge of grouping range readings to conform
a scan usable to perform scan matching.

The scan building, and so the scan matching, can be performed in several ways depending on the
required temporal resolution and the available computational resources. For example, a sliding window
could be used to perform scan matching every time a new beam is acquired. In this way, scan matching
estimates would be available at high frequency at the cost of high CPU usage. Another approach is to
perform scan building and scan matching only when a fully new acoustic image is obtained. With this
approach, the temporal resolution is reduced and, between scan matching estimates, the vehicle has to
rely on dead reckoning. However, the CPU usage is drastically reduced. Also, all the described beam
segmentation methods can be used in this case, whilst only method 3 is useful in the sliding window case.

Our proposal is to perform scan building, and so scan matching, every time a fully new acoustic image
has been gathered. Nevertheless, depending on the desired scan matching frequency and computational
resources, this could easily be scaled to have scan matching estimates every, for instance, half acoustic
image or even every new beam.
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5.1. Modeling the Range Readings

The range readings provided by the beam segmentation constitute the range information used to build
the scans. Our proposal is to augment this range data with information about its uncertainty, which
comes, basically, from two sources: on the one hand, the uncertain knowledge of the robot motion while
gathering MSIS data; on the other hand, the uncertain location of the detected objects with respect to the
MSIS, as explained in Section 2.2. This augmented data will be modelled by a normal distribution. This
section discusses how this model can be constructed from the range information provided by the beam
segmentation process, the robot pose and a simple sonar model.

Let rt = N(r̂t, σ
2
t ) denote a measurement obtained at time t in form of random Gaussian variable

(RGV). Let this measurement be represented with respect to a coordinate frame centered on the MSIS
and having the x axis aligned with the beam acoustic axis at time t. In this case, the mean vector has the
form r̂t = [ρt, 0]

T , where ρt denotes the range reading provided by the beam segmentation at time t. The
covariance matrix σ2

t is as follows:

σ2
t =

 σ2
xx 0

0 σ2
yy

 (1)

where σxx models the range uncertainty and σyy = ρt
2
tan(α

2
) models the angular uncertainty of α

degrees. The range uncertainty σxx depends on factors such as the sensor resolution, which is 10 cm
in our case, and the beam segmentation characteristics, such as the mask sizes used for image operations
in beam segmentation methods 1 or 2 or the erosion radius and the specific beam shape, which affects the
threshold selection, in method 3. As it is very difficult to quantify these effects, σxx has to be obtained
experimentally. The angular uncertainty α is tightly related to the beam’s horizontal opening, and can be
obtained from the MSIS specification.

Let zt represent the measurement rt with respect to the robot coordinate frame. It is straightforward
to obtain zt from rt and the MSIS beam angle at time t. For the sake of simplicity, henceforth the zt will
be referred to as the sonar readings.

5.2. The Scan Building Process

The sonar readings have to be stored in the so-called readings history so that they can be easily
accessed by the scan building process. The readings history at time t contains the most recent N sonar
readings gathered until time t. It is defined as follows:

RHt = {zt−N+1, ..., zt−2, zt−1, zt} (2)

The value of N has to be decided so that RHt can store two consecutive full 360◦scans. In our particular
configuration a full MSIS scan is composed of 200 beams. Thus, N is set to 400. If beam segmentation
methods 1 or 2 are used, sonar readings will be included in RHt in blocks of 200 every time a full acoustic
image has been obtained. To the contrary, when using method 3, sonar readings will be included in the
readings history individually after each beam has been gathered.

Let x̄t denote the robot motion (displacement and rotation) from time step t − 1 to time step t. This
robot motion is modeled as a RGV. Although the MSIS and the dead reckoning sensors (DVL and MRU)
do not necessarily operate synchronously, it is trivial to obtain the x̄t from the dead reckoning EKF.
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Similarly to the readings history, let the transformations history be defined as a history of the most
recent N robot motions. That is,

THt = {x̄t−N+1, ..., x̄t−2, x̄t−1, x̄t} (3)

As the AUV is moving while acquiring the scan, each reading in RHt may have been obtained at a
different robot pose. The goal of the scan building process is to represent each reading in one scan with
respect to a common coordinate frame.

Let us denote by zi,j the measurement zi ∈ RHt represented with respect to the robot pose at time j,
where t − N + 1 ≤ i ≤ t and t − N + 1 ≤ j ≤ t, being t the current time step. zi,j can be computed
as follows:

zi,j =


zi i = j

x̄j+1 ⊕ x̄j+2 ⊕ ...⊕ x̄i ⊕ zi j < i

(⊖x̄j)⊕ (⊖x̄j−1)⊕ ...⊕ (⊖x̄i+1)⊕ zi i < j

(4)

where the operators ⊕ and ⊖ denote the compounding and inversion operations as described in [39].
Throughout this paper, to ease notation, the operator ⊕ will be used with the following addition with
respect to its original definition: if the right-hand operand is a set of points, the operator is applied
individually to each point and, thus, it returns the resulting set of points.

The robot motions involved in the Equation (4) are those in THt. Hence, by means of this equation,
each reading in RHt can be represented with respect to any coordinate frame referenced in THt. Next,
it has to be decided which coordinate frame choose to build a scan. The chosen coordinate frame
corresponds to the central position of the trajectory followed by the robot when collecting the readings
involved in the scan.

The central position has been chosen for two main reasons: on the one hand, because of the similarity
to the scans generated by a laser range finder; on the other hand, in order to reduce the maximum
uncertainty of each reading with respect to the reference frame. Thus, every time the MSIS performs a
360◦scan, Scur is built as follows:

Scur = {zi,tc ,∀i, t−
N

2
< i ≤ t} (5)

where tc corresponds to the time step at which the robot was at the central position of the trajectory
followed while the MSIS acquired the scan.

In order to build the reference scan, the measurements that took part in the construction of Scur in the
previous scan matching execution are used. Therefore, the reference scan has the following form:

Sref = {zi,tc2 ,∀i, t−N < i ≤ t− N

2
} (6)

where tc2 corresponds to the time step in which the robot was at the central position of the trajectory
followed while the MSIS acquired the scan data. Figure 9 graphically depicts the location of the
coordinate frames and time steps used during the scan building process.

Figure 10(a) illustrates the result of the scan building by showing a scan before and after the scan
building. The readings shown correspond to the acoustic images in Figure 2. Additionally, the sonar
measurements, as well as the robot motions, have been modeled by means of normal distributions. This
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aspect of the scan building is shown in Figure 10(b), where the 95% confidence ellipses of the resulting
normal distributions are shown. These normals model the sonar uncertainty, but also take into account
the AUV motion uncertainty, which has been included in the scan by Equation (4). This data corresponds
to the acoustic image in Figure 1(b).

Figure 9. The scan building coordinate frames.

Figure 10. Example of the scan building process. (a) A scan before and after the scan
building; (b) One scan showing the 95% confidence ellipses for each reading.
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It is important to emphasize that, due to the pose correction, which is described later in this paper,
the robot motions stored in the transformations history may change. As a consequence, Sref has to be
built at each scan matching execution by means of Equation (6). In other words, Scur is not directly used
in the next scan matching execution as Sref because of possible changes in the transformations history
between scan matching executions.

When the scan building has built Sref and Scur, the scan matching process is ready to be launched.

6. The uspIC

6.1. The ICP-Based Approach

The sonar scan matching process is in charge of finding the displacement and rotation between the
coordinate frames of the two scans built by the scan building. The sonar scan matching approach
adopted in this paper is the sonar probabilistic Iterative Correspondence (spIC), which follows the same
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algorithmic structure of ICP. Thus, it belongs to the ICP-based family of algorithms. Consequently, the
ICP-based approach is firstly described.

Generally speaking, the ICP algorithm consists of an iterative process to estimate the robot
displacement and rotation that maximize the overlap between two consecutive sensor scans by
establishing correspondences involving points in the two scans. Each ICP iteration consists of two steps:
the data association step and the minimization step, which are summarized next.

(1) Data association: This step is in charge of associating each reading in the reference scan with
another one in the current scan. This association is performed according to a proximity criterion: given
one reading in the reference scan, the closest one in the current scan is selected. Each association
is usually referred to as a correspondence. The specific distance used to establish correspondences
constitutes the main difference between different ICP-based approaches. The ICP algorithm makes use
of the Euclidean distance. As a consequence of this, the ICP considers that the readings can be properly
modeled by points. Because of this, the term point and the term reading will be used interchangeably
when referring to the ICP.

(2) Minimization: The goal of this step is to find the robot motion that maximizes the overlap
between the points in the two scans which have been selected during the data association step. This
is accomplished by computing the robot motion that minimizes the sum of squared distances between
pairs of associated points. Thus, the results of the minimization step are strongly dependent on the data
association step because the only readings taken into account are those selected by the data association. If
the data association performs some wrong correspondences or omits some useful ones, the minimization
step may converge to a wrong estimate.

The ICP iterates these two steps until a certain convergence criterion is met. The proposal by [19] is to
iterate until the changes in the least squares error is sufficiently small. However, the specific convergence
criterion used to terminate the iterations is not important. As a matter of fact, even the study by Lu and
Milios states that, in practice, performing a fixed number of iterations is sufficient.

The main difference between the ICP and the spIC is the distance criterion. The ICP uses the
Euclidean distance whereas the spIC utilizes the Mahalanobis distance in order to take into account
the statistical information stored in the scans. At the extent of the author’s knowledge, there are only
three studies, prior to this one, based on the use of such distance in the scan matching context: firstly,
the pIC proposed by [21], which is based on the use of a laser range finder; secondly, the spIC, which
is designed to be used with terrestrial ultrasonic range finders; finally, the MSISpIC proposed by [33],
which constitutes an adaptation of the pIC to be useable with the data provided by an underwater MSIS.
Both the pIC and the MSISpIC approximate each set of correspondences by a normal distribution. This
approximation, as discussed in [30], is problematic when used in the context of terrestrial ultrasonic
range finders. That is why the uspIC scan matcher is based on spIC, and not in the pIC or the MSISpIC.
The experimental results will show the benefits of this point of view.

Next, a detailed description of the spIC data association and minimization processes is provided.
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6.2. Data Association

To ease notation, let the readings in Scur and Sref be modeled as normal distributions of the form
pj = N(p̂j, Pj) and qi = N(q̂i, Qi) respectively. These normal distributions have been generated during
the scan building. Let the xA

B,k represent the scan matching estimate at iteration k. Also, let xA
B,k

be modeled by the normal N(x̂A
B,k, P

A
B,k). The value for the first iteration, xA

B,0, is obtained from the
transformations history as follows:

xA
B,0 = x̄tc2+1 ⊕ x̄tc2+2 ⊕ ...⊕ x̄tc−1 ⊕ x̄tc (7)

To decide whether, at iteration k, a correspondence can be established or not between qi ∈ Sref and
pj ∈ Scur given the motion estimate xA

B,k−1, the Mahalanobis distance is used. The squared Mahalanobis
distance between qi and pj given the motion estimate xA

B,k−1 is defined as follows:

D2(xA
B,k−1, qi, pj) = hT

i,jP
−1
i,j hi,j, (8)

where hi,j ≡ h(x̂A
B,k−1, q̂i, p̂j) computes the difference between q̂i and p̂j . In order to calculate this

difference, pj has to be previously transformed to the coordinate frame of Sref , A, by means of xA
B,k−1.

Thus, the function h(x, q, p) is computed as follows:

h(x, q, p) =

 xx + px cosxθ − py sinxθ

xy + px sin xθ + py cosxθ

−

 qx

qy

 (9)

where x = [xx, xy, xθ], q = [qx, qy]
T and p = [px, py]

T .
The covariance matrix of hi,j , Pi,j ≡ P (x̂A

B,k−1, q̂i, p̂j), is obtained linearizing h around the
displacement estimate x̂A

B,k−1 and the points q̂i and p̂j as follows:

Pi,j = ∇hxP
A
B,k−1∇hT

x +∇hpPj∇hT
p +Qi (10)

where

∇hx ≡ ∂h(x, q, p)

∂x

∣∣∣∣∣
x̂A
B,k−1

,p̂j ,q̂i

=

 1 0 −px sinxθ − py cosxθ

0 1 px cosxθ − py sinxθ

∣∣∣∣∣∣
x̂A
B,k−1

,p̂j ,q̂i

and

∇hp ≡ ∂h(x, q, p)

∂p

∣∣∣∣∣
x̂A
B,k−1

,p̂j ,q̂i

=

 cos xθ − sinxθ

sin xθ cos xθ

∣∣∣∣∣∣
x̂A
B,k−1

,p̂j ,q̂i

The Mahalanobis distance is, under Gaussian assumption, a chi-squared distribution with
dim(h(x, q, p)) degrees of freedom. Hence, points are compatible if and only if D2(qi, pj) < χ2

2,α,
where α is the desired confidence level. For each qi ∈ Sref , the set of compatible points in Scur is
searched and the closest one, in the Mahalanobis sense, is selected. As a result of this process, the set
Ck of correspondences is built as follows:

Ck = { (i, j)|qi ∈ Sref , pj ∈ Scur,

pj = argminD2(xA
B,k−1, qi, pj),

D2(xA
B,k−1, qi, pj) < χ2

2,α} (11)
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In order to illustrate the benefits of the spIC approach to data association, Figure 11 is provided. In this
example, the same data has been used both for the Sref and Scur only to provide a ground truth image.
The scans are misaligned 15◦. The lines in Figure 11(a) represent the ground truth correspondences.
Finally, the correspondences according to ICP and spIC are shown in Figure 11(b,c) respectively. By
comparing them with the ground truth, it is clear that the set of correspondences produced by spIC
is significantly better than the one produced by ICP. Also, it is clear that spIC is able to capture the
rotational error much better than ICP. The superior quality of spIC is mainly due to the fact that it takes
into account the sonar and the motion uncertainties.

Figure 11. Example of data association. The two scans are misaligned 15
degrees. (a) Ground truth correspondences; (b) Correspondences according to ICP;
(c) Correspondences according to spIC.
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6.3. Minimization

The second step in the scan matching process is the minimization. Its goal is to find the relative
displacement xA

B,k between the two scans that minimizes the error between pairs of corresponding points.
Given Ck, the spIC error for a given motion estimate x is defined as follows:

ek(x) =
∑

(i,j)∈Ck

D2(x, qi, pj) (12)

The robot motion x̂A
B,k searched by the minimization step is the one that makes the spIC error

minimum. That is,
x̂A
B,k = argmin ek(x) (13)

Next, a closed form solution for Equation (13) is derived. By linearizing the function h, which is
involved in the Mahalanobis distance, around the previous scan matching estimate x̂A

B,k−1 and using the
first order Taylor approximation, a point qi ∈ Sref can be expressed by ∇hxx̂

A
B,k−1 − hi,j , where ∇hx

denotes the Jacobian in Equation (11). Thanks to this, the spIC error can be rewritten as follows:

ek(x) = (Jx− A)TQ−1(Jx− A) (14)

where J and A are column vectors of |Ck| elements whose components are such as the form of ∇hx and
∇hxx̂

A
B,k−1 − hi,j , respectively, and Q is a block diagonal matrix containing the Pi,j , ∀(i, j) ∈ Ck.
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By using the orthogonality principle, the solution to Equation (13) is as follows:

x̂A
B,k = (JTQ−1J)−1JTQ−1A (15)

This equation constitutes the closed form solution to compute the mean of xA
B,k. Consequently, the

obtained x̂A
B,k is ready to be used in further spIC iterations. The obtention of the covariance PA

B,k is not
a trivial issue and is out of the scope of this paper. Some approaches exist in the literature to deal with
this problem. The reader is encouraged to see [35–37] for more information on this subject.

7. Pose Correction and Pose Extraction

7.1. Pose Correction

The scan matching provides the estimate xA
B of the displacement and rotation between the two scan

coordinate frames, A and B. However, the scans have not been obtained at these frames. Instead, the scan
readings have been obtained throughout a robot trajectory and the use of A and B is only a convenient
way to represent the MSIS data. The goal of the pose correction is to correct the aforementioned robot
trajectory so that it fits to the scan matching estimate.

The information about the trajectory followed by the robot during the scan building is available in
the transformations history. Accordingly, the goal of the pose correction is to properly include the scan
matching estimate into the transformations history. To this end, it has to be taken into account that the
composition of the transformations history items from x̄tc2+1 to x̄tc should be equal to the scan matching
estimate. As a matter of fact, the composition of the aforementioned transformations history items was
the initial scan matching estimate, as shown in Equation (7).

A possible way to do this is to correct each motion estimate in the transformations history according
to its uncertainty. This solution is the so-called trajectory correction and is described by [30]. The pose
correction discussed in this paper is a simplified version of the trajectory correction that runs much faster
at the cost of producing slightly less smooth trajectories. Instead of distributing the error correction
through all the mentioned transformations history items, the pose correction performs one single change
in the transformations history. Figure 12 illustrates this idea.

Figure 12. The pose correction process. Only one item in the transformations history is
changed to meet the scan matching estimate.

From this Figure, it is easy to see that the mean of x̄tc should be corrected to the mean of x̄′
tc as follows:

x̄′
tc = ⊖(x̄tc2+1 ⊕ ...⊕ x̄tc−1)⊕ xA

B (16)
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The covariance of the corrected transformations history item, P ′
tc, is also needed. However,

the covariance of x̄′
tc is not a good approximation because it accumulates the uncertainties of

⊖(x̄tc2+1 ⊕ ...⊕ x̄tc−1) and xA
B. A possible way to overcome this problem is as follows. To ease notation,

let xth = N(x̂th, Pth) be defined as x̄tc2+1 ⊕ ...⊕ x̄tc−1. Thus, it is easy to see that:

xA
B = xth ⊕ x̄′

tc (17)

From this equation, the covariance of xA
B can be expressed as follows:

PA
B = J1⊕PthJ

T
1⊕ + J2⊕P

′
tcJ

T
2⊕ (18)

where the terms J1⊕ and J2⊕ are the Jacobians matrices of the composition, as defined by [40].
Consequently, the covariance matrix P ′

tc can be computed as follows:

P ′
tc = J−1

2⊕ (P
A
B − J1⊕PthJ

T
1⊕)(J

T
2⊕)

−1 (19)

This equation can only be used if the eigenvalues of PA
B are smaller than those of Pth. Otherwise, the

resulting P ′
tc will not be positive definite and, thus, not actually be a covariance matrix. As a matter of

fact, in these cases the covariance P ′
tc does not even exist. A possible way to deal with these situations is

to leave the covariance unchanged in the transformations history. The experimental results suggest that
the error introduced by this simplification is negligible.

Besides, if necessary, the pose correction process can be substituted by the aforementioned trajectory
correction.

7.2. Pose Extraction

The goal of the pose extraction is to obtain an estimate of the robot pose. As the scan matching
estimate has been used to correct the transformations history, the corrected robot pose can be easily
obtained, precisely, from the transformations history.

The transformations history contains the last N robot motions obtained from dead reckoning and,
eventually, corrected by means of the scan matching estimate. When a new motion estimate is obtained
from dead reckoning, it is included into the transformations history and, at the same time, the oldest
item is discarded. Consequently, the relative position of the first item in the transformations history with
respect to a fixed reference frame can be iteratively computed by

xW
t = xW

t−1 ⊕ x̄t−N (20)

where x̄t−N represents the item in the transformations history that has been discarded at time step
t. The term xW

t = N(x̂W
t , PW

t ) denotes the relative position, at time step t, of the first item in the
transformations history with respect to an earth-fixed coordinate frame W . Initially, both x̂W

t and PW
t

can be set to zero, meaning that the initial robot pose is the origin of coordinates and that, initially, the
robot location is perfectly known.

The robot pose with respect to the global frame W at time step t is denoted by xW
R and can be

computed as follows:
xW
R = xW

t ⊕ x̄t−N+1 ⊕ ...⊕ x̄t−2 ⊕ x̄t−1 ⊕ x̄t (21)
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where the terms x̄t−N+1 to x̄t are those in the transformations history. As the scan matching
estimates have been used to correct the transformations history, computing the robot pose by means
of Equation (21) implicitly takes into account the scan matching corrections. The pose extraction is
summarized in Figure 13.

Figure 13. The pose extraction process. The term xW
R denotes the robot pose.

8. Experimental Results

8.1. Experimental Setup

The experimental data used to validate the uspIC was obtained by [29] in an abandoned marina
situated near St. Pere Pescador in the Costa Brava (Spain). The Ictineu AUV was tele-operated along
a 600 m trajectory at an average speed of 0.2 m/s. The trajectory includes a small loop as well as a
200 m long straight path. The gathered data included measurements from the DVL, the MRU and the
MSIS. The DVL was configured to use the bottom velocities. The MRU has been used only to provide
compass data. The particular MSIS configuration has been discussed in Section 2. Additionally, a buoy
with a GPS was attached to the robot in order to obtain the ground truth. Some more details regarding
the experimental setup are provided in [29]. Also, some other authors [33,38,41] have used the same
dataset to test their localization and SLAM algorithms.

Figure 14(a) shows all the gathered acoustic images combined according to the dead reckoning. The
problems of dead reckoning can be appreciated. For example, the data in the entrance to the canal is
misaligned due to the suffered drift.

Figure 14(b) shows the dead reckoning and GPS trajectories layered over a satellite view of the area.
The problems of drift are clearly visible here, as the dead reckoning trajectory clearly goes outside the
water. The black dots represent the MSIS readings after the beam segmentation plotted according to
dead reckoning.

In order to evaluate the proposal in this paper, the uspIC is compared to two approaches to scan
matching using an MSIS, i.e., MSISpIC [33] and Underwater Sonar ICP (usICP). MSISpIC is based
on the so-called scan grabbing, which is in charge of segmenting the MSIS beams and collecting them
to build scans, and the pIC algorithm by [21] to perform the matching. In contrast, usICP consists in
performing the same beam segmentation, scan building, pose correction and pose extraction processes
described in this paper but changing the scan matching. Instead of the spIC, the usICP makes use of the
standard and well known ICP algorithm.
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Figure 14. (a) The acoustic images drawn according to the dead reckoning; (b) Dead
reckoning and GPS data overlaid to a satellite view of the environment.

(a) (b)

8.2. Quantitative Evaluation

The trajectories estimated by dead reckoning, usICP, MSISpIC and uspIC have been compared to the
ground truth provided by the GPS. The comparison consists of measuring, at each time step, the distance
from the GPS ground truth to the estimated robot pose according to each of the mentioned methods. The
results are shown in Figure 15. Also, Table 1 shows the percentage of the mission time in which each
method provided better results than each of the other ones.

Figure 15(a) shows the results for those methods to which the proposal in this paper is compared. It
is clear that both the MSISpIC and the usICP are able to provide pose estimates much better than dead
reckoning. According to Table 1, the usICP provides better estimates than MSISpIC in 65.28% of the
time. Figure 15(b) compares usICP and uspIC. In this case, the uspIC error is below the usICP one in
69.53% of the time. Also, the uspIC improves dead reckoning in the 97.31% of the time. The remaining
2.69% in which uspIC results are below dead reckoning only happens at the very beginning, when dead
reckoning error is still very low. Finally, Figure 15(c) compares the uspIC and the MSISpIC and shows
that the uspIC provides better pose estimates than MSISpIC in the 73.62% of the time. According to
this, the scan matching approach that provides better results during the most part of the time is the uspIC,
followed by the usICP and the MSISpIC, in this order.

Table 1. Percentage of time where method A provided better results than method B. DR
means dead reckoning.

A/B DR usICP MSISpIC uspIC

DR 0% 7.94% 16.41% 2.69%
usICP 92.06% 0% 65.28% 30.03%
MSISpIC 83.59% 34.72% 0% 26.38%
uspIC 97.31% 69.53% 73.62% 0
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Figure 15. Quantitative evaluation, comparing dead reckoning with (a) MSISpIC and usICP;
(b) usICP and uspIC; and (c) MSISpIC and uspIC.
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Table 2 shows the mean and the maximum improvement of each method with respect to each other.
In this table, improvement of method A with respect to method B is measured as the error difference in
those cases in which A is better than B. As the table shows all the combinations, the situations where
each method performs worse than the others is also shown. For example, it can be observed that in
the 2.69% of the time where uspIC provides higher error than simple dead reckoning (Table 1), the
maximum improvement of dead reckoning with respect to uspIC was 0.8 m and the mean was 0.3 m.
To the contrary, in the 97.31% of the time when uspIC was better than dead reckoning, the maximum
improvement reached 44.05 m and the mean was 14.52 m. Thus, Table 2 provides a numerical measure
of how better was each method during the percentage of time shown in Table 1.

The mean error, the maximum error and the standard deviation of the absolute error for all the
discussed scan matching methods are provided in Table 3. The minimum error is not provided because
it is zero for all the methods just at the beginning of the experiment. The uspIC is the algorithm that has
the lowest average and maximum error. Regarding the usICP and the MSISpIC, they behave similarly in
terms of mean and maximum error.
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Table 2. Mean/maximum improvement, in meters, of method A with respect to method B.
DR means dead reckoning.

A/B DR usICP MSISpIC uspIC

DR NA 0.48 m/1.7 m 1.85 m/4.56 m 0.3 m/0.8 m
usICP 13.43 m/40.42 m NA 2.26 m/6.67 m 1.16 m/4.04 m
MSISpIC 14.88 m/38.86 m 3.7 m/12.03 m NA 1.65 m/7.13 m
uspIC 14.52 m/44.05 m 3.08 m/5.95 m 3.28 m/8.26 m NA

Table 3. Maximum, average and standard deviation of the error for the tested methods.

Method/Error Mean Maximum Std. Dev.

Dead Reckoning 18.32 m 49.03 m 13.64
MSISpIC 6.19 m 13.25 m 2.26
usICP 6 m 15.29 m 4
uspIC 4.21 m 10.47 m 2.5

The standard deviation of the error somehow represents the stability of the localization method. High
standard deviations represent frequent changes in the pose quality. From this point of view, the uspIC
and the MSISpIC have similar stability, and both are significantly more stable than the usICP. This
is consistent with Figure 15, where it can be observed that the usICP error is more irregular than the
other ones.

Figure 16. Histogram of the error for dead reckoning, MSISpIC, usICP and uspIC. The error
frequency has been normalized for clarity purposes.
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Figure 16 shows the histograms of the localization error. The histograms clearly reflect the
aforementioned maximum error. However, the histogram also provide information about how this error
is distributed. For example, it is clear that the dead reckoning error spreads over a large region but the
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most part of it is concentrated between 0 m and 20 m of error. It is remarkable that the most part of the
usICP error is around the 3 m, which is significantly below the 6 m of the MSISpIC. However, the usICP
errors spread over a larger area than MSISpIC, and that is why both approaches have a similar average
error. Finally, it is also remarkable that not only is uspIC the method with the lowest maximum error,
but also that the most part of the error is concentrated around 2 m.

In our proposal, scan matching is performed every time a fully new acoustic image is available. While
each acoustic image is being gathered, the robot has to rely on dead reckoning. As in our particular
configuration gathering an acoustic image takes 13 s, the dead reckoning error may increase significantly
and, thus, the scan matching correction may be significantly large. In order to show how large are the scan
matching corrections, we have measured the differences in the pose estimate from each acoustic image
to the next according to dead reckoning and according to uspIC. We have observed that, in mean, each
uspIC execution involves a change in the pose estimate of 0.746 m with respect to the dead reckoning
one, with a standard deviation of 0.486 m. The maximum correction is 2.636 m.

These changes in the pose estimate when scan matching is executed may be problematic for local
navigation. However, they are not for large scale mapping or planning. Thus, for local navigation where
the absolute robot pose is usually not relevant, dead reckoning could be used and combined with the scan
matching estimates only when absolute pose information is required.

The time consumption of uspIC has also been measured in order to analyze the feasibility of an
on-line implementation. The uspIC has been executed on a laptop endowed with an Intel Core Duo at
2.4 GHz running Ubuntu 10.04LTS. The implementation consists of Matlab 7.9 R2009b code except for
the uspIC data association and the beam segmentation histogram management which have been coded in
C and interfaced with Matlab through MEX functions. We would like to emphasize that Matlab barely
takes advantage of the dual core and, thus, the programs are basically executed by one of the two CPU
cores.

Table 4. Time consumption for each task involved in uspIC. The percentages denote the
fraction of time of the whole mission execution corresponding to each task.

Task Time Percentage

Dead reckoning 176.031 s 5.54%

Beam segmentation 993.139 s 31.23%

Scan building 6.751 s 0.21%

spIC 117.282 s 3.69%

Pose correction 0.0115 s 0.0004%

Total 1, 293.214 40.667%

Table 4 shows the time spent in each of the uspIC tasks during all the mission execution. As the
experiment consisted of moving the underwater robot in the marina environment during 53 minutes,
the percentages shown in the table denote the percentage of the whole mission actually spent in uspIC
computations. It can be observed that the spIC scan matching time only represents a 3.69% of the time,
which is lower than the time spent by the dead reckoning EKF. Of course, it has to be taken into account
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that dead reckoning is performed continuously while spIC is only executed when a fully new acoustic
image is available.

It can also be observed that the pose correction and scan building times are almost negligible, whilst
the most part of the time consumption is due to the beam segmentation.

One of the most important aspects is that the whole localization process consumes, in mean, the
40.667% of the mission time. Thus, in mean, the CPU is free to perform other tasks during the most part
of the time even using a Matlab implementation. Moreover, during the mission execution 218 scans were
gathered, meaning that the whole localization process consumes 5.932 s per scan in mean. As this time
is significantly lower than the 13 s required to gather a fully acoustic image, it is reasonable to assume
that even the Matlab implementation could be used for on-line execution.

8.3. Qualitative Evaluation

Figure 17 shows the trajectories obtained by MSISpIC, usICP and uspIC and visually compares them
to the ones provided by dead reckoning and the GPS ground truth. Moreover, the data is superimposed
to a satellite view of the area to provide a clear idea of the quality of the obtained trajectories.

Figure 17. Trajectories corresponding to GPS, dead reckoning and (a) MSISpIC; (b) usICP;
and (c) uspIC.

(a) (b)

(c)

The first thing to be noticed is that the three methods produce a trajectory close to the ground truth,
especially when it is compared to the dead reckoning data. Besides, there are some differences that
deserve special attention.
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Firstly, the MSISpIC (Figure 17(a) has not been able to solve the double wall effect on the left side
of the image, although the effect has been significantly reduced with respect to dead reckoning (see
Figure 14(b). This effect appears when the AUV returns to a previously visited area with a significant
pose error. Also, the data corresponding to the entrance to the canal is misaligned, similarly to dead
reckoning, where two entrances to the canal seem to exist.

Secondly, the usICP (Figure 17(b) has, similarly to dead reckoning and MSISpIC, the problem of
perceiving a double wall on the left side of the image. However, contrarily to MSISpIC, the usICP has
been able to align the data corresponding to the canal entrance. Moreover, it can be observed that the
trajectory provided by usICP is slightly shorter than the one provided by MSISpIC. This difference is
due to the canal shape. As the canal is almost straight, it is very difficult for an scan matching algorithm
to determine the robot motion along the corridor direction.

Moreover, the uspIC (Figure 17(c) is the algorithm that clearly exhibits better results. First, the double
wall effect does not appear. Moreover, the canal entrance data is perfectly aligned. Also, at the end of
the experiment, the uspIC is the approach whose pose estimate is the closest to the ground truth. It can
also be observed that the uspIC data fits the satellite image better than the other methods, especially on
the water tank on the left.

Finally, for the sake of completeness, Figure 18 shows the data provided by the MSIS depicted
according to usICP and uspIC trajectories. The same data drawn using the dead reckoning trajectory
has been shown in Figure 14.

Figure 18. All the gathered acoustic images drawn according to (a) usICP; and (b) uspIC.

(a) (b)

9. Conclusions

This paper presents a novel approach to localize an underwater mobile robot. The localization process,
which also relies on some proprioceptive sensors to perform dead reckoning, is focused on the use of an
MSIS. When used to perform scan matching, these sensors present two important problems. Firstly, they
provide echo intensity profiles instead of the sets of range measurements required in the scan matching
context. Secondly, the scan time is not negligible and, thus, the robot motion during the data acquisition
has to be explicitly taken into account.
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The approach presented in this paper is the so called uspIC. The uspIC deals with the aforementioned
problems. On the one hand, the uspIC extracts range information from the echo intensity profiles by
means of a beam segmentation process. On the other hand, it groups the extracted range measurements
taking into account the robot motion in order to build range scans. Moreover, by adopting a probabilistic
scan modeling and matching, it includes statistical information in the scan matching process.

The experimental results compare the uspIC to other previously existing methods. Our approach is
compared to the well known and widely used ICP algorithm. It is also compared to the MSISpIC, which
is an underwater scan matching method that utilizes the pIC concepts.

The obtained results show an important improvement in the pose estimate with respect to the other
tested methods. Some graphical representations of the obtained trajectories have also been provided for
the reader to visually compare them.
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