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Abstract: This study proposes a mathematical uncertainty model for the spatial 
measurement of visual features using Kinect™ sensors. This model can provide qualitative 
and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. 
In order to achieve this objective, we derived the propagation relationship of the 
uncertainties between the disparity image space and the real Cartesian space with the 
mapping function between the two spaces. Using this propagation relationship, we 
obtained the mathematical model for the covariance matrix of the measurement error, 
which represents the uncertainty for spatial position of visual features from Kinect™ 
sensors. In order to derive the quantitative model of spatial uncertainty for visual features, 
we estimated the covariance matrix in the disparity image space using collected visual 
feature data. Further, we computed the spatial uncertainty information by applying the 
covariance matrix in the disparity image space and the calibrated sensor parameters to the 
proposed mathematical model. This spatial uncertainty model was verified by comparing 
the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered 
matching visual features. We expect that this spatial uncertainty model and its analyses will 
be useful in various Kinect™ sensor applications. 

Keywords: Kinect™ sensor; depth sensing camera; 3D acquisition; uncertainty model; 
visual feature; depth calibration; disparity map; point cloud 
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1. Introduction 

On 4 November 2010, Kinect™ was launched as a non-contact motion sensing device by Microsoft 
for the Xbox 360 video game console [1]. However, the remarkable ability of a Kinect™ sensor lies in 
the important functionality that it can provide after acquisition of high quality 3D scan information in 
real time at a relatively low cost. Therefore, in addition to motion sensing for gaming, the use of 
Kinect™ sensors in various applications has been actively investigated in many research areas such as 
robotics, human-computer interface (HCI), and geospatial information. In the domain of robotics,  
in particular, many studies are trying to utilize Kinect™ sensors as 3D sensors for perception 
functionality of intelligent robots [2–7]. 

Kinect™ sensors provide disparity image and RGB image information simultaneously. Hence, the 
colored 3D point cloud information could be acquired by fusing the disparity and RGB information 
from a Kinect™ sensor. However, a calibration process is required for utilizing a Kinect™ sensor as a 
3D sensor. For Kinect™ sensor calibration, certain parameters are required: the pin-hole projection 
and lens distortion parameters of the disparity and RGB cameras, the homogeneous matrix of the  
two-camera coordinate frame, and the depth calibration parameter, which can transform disparity 
image data into actual distance. The pin-hole projection and lens distortion parameters of the depth and 
RGB cameras can be obtained with the existing calibration solution [8,9]. Further, the homogeneous 
matrix parameters between the depth camera and the RGB camera coordinates can be obtained by the 
stereo camera calibration method [10,11] or the point cloud matching method [12–14]. Some recent 
studies have presented results related to depth calibration methods and analyses for acquiring accurate 
3D data using the disparity image from a Kinect™ sensor [15–18]. 

Recently, Kinect™ sensors have been widely utilized as 3D perception sensors in various robotic 
applications such as 3D mapping, object pose estimation, and Simultaneous Localization and Mapping 
(SLAM) [3–6]. In these applications, extraction of visual features, matching, and estimation of the 3D 
position are essential functionalities. Kinect™ sensors are very suitable for these applications because 
the essential functionalities can be achieved easily using the disparity and the RGB information. These 
problems can be solved by stochastic optimization methods, which contain measurement error and 
uncertainties. In this phase, quantitative information about the measurement error and uncertainties of 
visual features are essential for a reliable estimation result. For example, the covariance matrix of the 
input noises and errors is the key design parameter for optimal estimation problem using a Kalman 
filter. In general, all sensors have static and dynamic errors. Static errors, representing the bias of the 
estimation results, can be corrected by calibration. Dynamic errors, representing the variance of the 
estimation results, can be improved by filtering methods. However, results for a mathematical 
uncertainty model representing the covariance matrix form for the spatial measurements of visual 
features using Kinect™ sensors are unavailable. Khoshelham and Elberink [16] presented an error 
model and its analysis results; however, these results were represented as an independent error model 
with respect to the X, Y and Z axis, and not as a covariance matrix. In the Cartesian space, the errors in 
the X, Y and Z axis data are correlated with each other; thus, the covariance matrix is not in a diagonal 
form. Therefore, we would like to derive the spatial uncertainty model of visual features using 
Kinect™ sensors, which is represented by the covariance matrix for 3D measurement errors in the 
actual Cartesian space. 
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To achieve this objective, we derive the propagation relationship of the uncertainties between the 
disparity image space and the real Cartesian space with the mapping function between the two spaces. 
Then, we obtain the mathematical model for the covariance matrix of the spatial measurement error by 
using the propagation relationship. Finally, a quantitative analysis of the spatial measurement of 
Kinect™ sensors is performed by applying the covariance matrix in the disparity image space and the 
calibrated sensor parameters to the proposed mathematical model. 

2. 3D Reconstruction from Kinect™ Sensor Data 

Kinect™ sensors provide disparity image and RGB image information. The disparity image 
represents the spatial information, and the RGB image represents the color information. 3D point cloud 
data, which contains color information, can be obtained by fusing the disparity image and the RGB 
image information. Figure 1 shows the disparity image, the RGB image, and the colored 3D point 
cloud information that was reconstructed from a Kinect™ sensor. Disparity image data, containing 
information about the distance of the location of each pixel, is expressed as an integer from 0 to 2,047. 
This data contains relative distance information, which does not represent metric information. In 
addition, the relationship between distance and disparity image data is non-linear, as shown in the 
graph in Figure 2. Thus, the depth calibration function, which can transform disparity image data into 
actual distance information, is needed in order to reconstruct 3D information using Kinect sensors. 

Figure 1. Information from Kinect™ sensor. (a) Disparity map image; (b) RGB image;  
(c) Colored 3D point cloud data. 

 
(a) (b) 

(c) 
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Figure 2. Relationship between the disparity image and the real depth information 
(disparity: 400–1,069, real depth: 0.5–17.3 m). 

 

The mathematical model between disparity image data d and real depth is represented by  
Equation (1) [16]. In this equation, Zo, fo, and b indicate the distance of the reference pattern, focal 
length, and base length respectively. For depth calibration, two parameters, 1/Zo and 1/(fo b), are 
determined by the least square fitting method [17]: 
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In our experiment, the maximum detection range of the Kinect™ sensor was 17.3 m at disparity 
data 1,069, and the distribution of data changed rapidly beyond a distance of approximately 5 m, as 
shown in Figure 2. For performing data fitting, the depth calibration model of Equation (1) has only  
two-degrees-of-freedom for the optimization variables; therefore, it has limitations in representing the 
curvature of our measurement data. Hence, we proposed an extended depth calibration model using a 
rational function, which contains higher degree-of-freedom in the optimization variable space [19]. 
Equation (2) shows the rational function model that is applied to the depth calibration of the  
Kinect™ sensor: 
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where P(d) is the numerator polynomial and Q(d) is the denominator polynomial. 
To perform depth calibration with the rational function model, a non-linear optimization method 

such as the Levenberg-Marquardt algorithm can be used. We obtained the depth calibration function 
with fourth-order polynomials of the numerator and denominator, which can transform disparity data 
into a real distance of up to approximately 15 m. The depth calibration parameters for the fourth-order 
rational function model are shown in Table 1. Figure 3 shows the fitting results and the fitting residual 
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results for the depth calibration function in Equations (1) and (2), respectively. In Figure 3(a), both 
calibration functions seemed to fit the measurement data well. However, as seen in Figure 3(b), the 
residual error of the rational function model appeared to be nearer to the X-axis than the model 
represented by Equation (1). This implies that the rational function model with a higher degree-of-
freedom of the optimization variables can be fitted more precisely in the depth calibration problem. 
The norm of residual vector for Equation (1) and the rational function were computed to be 1.045495 
and 1.034060, respectively. 

Table 1. Depth calibration parameters (4th-order rational function model). 

Polynomial 
order Const. (d0) 1st (d1) 2nd (d2) 3rd (d3) 4th (d4) 

Numerator 
P(d) 452.705 –611.068 255.254 –7.295 7.346 

Denominator 
Q(d) –326.149 588.446 –548.754 340.178 –47.175 

Figure 3. Depth calibration results. (a) Fitting results (measurement data, Equation (1) 
model, fourth-order rational function model); (b) Residual (fitting error) results (Equation (1) 
model, fourth-order rational function model). 

(a) (b) 

After performing depth calibration, the disparity image data can be transformed into the actual 
distance information by the depth calibration function. Using this actual distance information, the 3D 
spatial position information can be reconstructed with the pin-hole camera projection model. Equation 
(3) shows the mapping relationship between the disparity image space data u = [u v d]T and the spatial 
position information x = [x y z]T in the Cartesian space. u and v are the horizontal and vertical 
coordinates, respectively, of the disparity image, and d is the disparity data, expressed as an  
integer from 0 to 2,047. f(d) is the actual distance information that is calculated by the depth 
calibration function: 



Sensors 2012, 12 8645 
 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1
 

100

10

01

  )(
,

,

,

,

,

,

v
u

f
C

f

f
C

f

df
z
y
x

yDepth

yDepth

yDepth

xDepth

xDepth

xDepth

F(u)x

 (3) 

In the pin-hole camera projection model, fDepth,x and fDepth,y are focal length parameters, while CDepth,x 
and CDepth,y are optical axis parameters of the depth camera. These parameters can be obtained using 
various general camera calibration methods. The pin-hole camera projection parameters are shown in 
Table 2. We obtained these parameters using the Matlab camera calibration toolbox developed by 
Bouguet [20]. 

Table 2. Pin-hole camera projection parameters of the depth camera. 

Parameter xDepthf , yDepthf , xDepthC , yDepthC ,

Value 582.64 586.97 320.17 260.00

3. Spatial Uncertainty Model of Kinect™ Sensor 

The disparity image data from Kinect™ sensors can be converted into the 3D spatial point cloud 
data using the depth calibration function and the pin-hole camera projection model. However, the 3D 
position information of the visual features using Kinect™ sensors contains some errors caused by 
various sources such as inaccurate measurement of disparity, lighting condition, properties of  
the object surfaces in the disparity data, and image processing and matching errors in the image 
coordinates. In order to utilize sensor data in actual applications, the information about reliability or 
uncertainty of the sensor is very important. In this study, we would like to propose a mathematical 
model for the 3D measurement information, which can provide qualitative and quantitative analysis for 
Kinect™ sensors. 

3.1. Qualitative Analysis of Spatial Uncertainty 

The reliability of the measured 3D information can be represented by the multi-dimensional 
Gaussian model in the Cartesian space, as shown in Equation (4) and Figure 4. In the Gaussian model, 
random variables are modeled using the mean vector and the covariance matrix. The error of the mean 
vector with respect to the measured data is estimation bias, which should be corrected by calibration. 
The variance parameter of the Gaussian model represents uncertainties of the measurements, and it can 
be represented as an uncertainty ellipsoid related to the covariance matrix. Thus, we tried to derive a 
mathematical model of the covariance matrix that describes the spatial uncertainties: 
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Figure 4. Visualization of a 3D Gaussian model. (a) Uncertainty ellipsoid for  

(x – mx)TQ–1(x – mx) = k. (b) Density of p.d.f. g(x). where 
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To derive the spatial uncertainty model, the mapping relationship between the disparity image space 
and the real Cartesian space should be considered. Figure 5 shows this mapping relationship. Owing  
to the absence of correlations between the elements of vector u in the disparity image space, the 
covariance matrix R of vector u has a diagonal form, as shown in Equation (5). This deduction can be 
confirmed from experimental data. The symbols σu and σv represent the variance corresponding to the 
visual feature position image co-ordinates u and v, respectively. The variance is caused by image 
processing errors such as image pixel quantization and key point localization. The symbol σd 
represents the variance of disparity measurements, which result from inaccuracy, lighting condition, 
and properties of the object surfaces [16]. Thus, the elements of vector [u, v, d]T are unrelated, and the 
diagonal elements of the covariance matrix can be obtained independently. In addition, the causes of 
errors are independent of vector u, and hence, the covariance matrix R can be assumed to be the same 
in the entire disparity image space: 
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Uncertainty in the actual space appears as the propagation of uncertainty in the disparity image 
space by mapping relations. If the relationship between the two spaces is a linear mapping such as  
y = Ax, the propagated output covariance matrix Q is determined as Q = ARAT for the input 
covariance matrix R [21]. However, as shown in Equation (3), the relationship between the two spaces 
is a non-linear mapping. Therefore, we can obtain the covariance matrix in the actual space by a 
linearized approximation of the mapping function using Jacobian matrix, as shown in Equation (6). 
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Figure 5. Mapping relationship of uncertainty between the disparity image space and the 
real Cartesian space. 
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Thus, we can obtain the mathematical model of spatial uncertainty shown in Equation (7), and the 
uncertainty ellipsoid for Kinect™ measurement can be estimated in the entire measurable space using 
this covariance matrix model: 
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Figure 7 shows the uncertainty ellipsoid map for the Kinect™ sensor in the entire measurable 
Cartesian space. This uncertainty map is constructed by drawing the 3D ellipsoid for xTQ–1x = k, and 
calculating each spatial covariance matrix Q by using Equation (7) with increment steps of 40 for u, v, 
and d. The uncertainty ellipsoid map represents the distribution in volume and direction of the longest 
axis of uncertainty ellipsoids in the entire space. From this uncertainty map, it can be concluded that 
the volume of the uncertainty ellipsoid is greatly influenced by the distance of the measured point and 
its maximum direction is related to the direction of the optical axis of the sensor. 

Figure 7. (a) Uncertainty ellipsoid map in the entire measurable Cartesian space; (b) View 
of x-y plane direction; (c) View of y-z plane direction. 

 
(a) 

(b) (c) 
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Figure 8 shows the distribution of maximum standard deviation (square root of norm for the 
covariance matrix Q) of the spatial uncertainties by varying u and v, and by keeping d fixed. The 
results showed a quadratic distribution in the Cartesian space when the depth remains the same. The 
measurement point is farther from the center of the optical axis in the image coordinate, and hence, the 
maximum standard deviation attains a higher value. Figure 9 shows the distribution of the maximum 
standard deviation obtained by varying u and d, and by keeping v fixed. Its distribution resembled a fan 
type plane in the Cartesian space when the horizontal measure remains the same. From the distribution, 
it can be observed that the maximum standard deviation increases with an increase in the depth. 
Further, an increase in depth causes a steeper gradient because it is farther from the center of the  
image coordinate. Figure 10 shows the integrated distribution of the maximum standard deviation for  
(a) various values of u and v, and three values of d and (b) various values of u and d, and three values 
of v. Further, Figure 11 shows the volume distribution of the maximum standard deviation for most of 
the disparity image space. From these analyses, it can be confirmed that spatial uncertainty varies with 
the distance and the image coordinates of the measurement position. 

Figure 8. (a) Distribution of maximum standard deviation for various values of u and v, 
and fixed value of d (d = 800, real distance = 1.2 m); (b) View of x-y direction; (c) View 
of x-z direction; (d) View of y-z direction. 

 
(a) 

 
(b) (c) (d) 
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Figure 9. (a) Distribution of maximum standard deviation for various values of u and d, 
and fixed value of v (v = 240, Vertical center of disparity image); (b) View of x-y direction; 
(c) View of x-z direction; (d) View of y-z direction. 

 
(a) 

 
(b) (c) (d) 

Figure 10. (a) Integrated distribution of the maximum standard deviation for various values 
of u and v, and three values of d (750, 800, 850); (b) Integrated distribution of the maximum 
standard deviation for various values of u and d, and three values of v (1, 140, 240). 

(a) (b) 
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Figure 11. Volume distribution of the maximum standard deviation for most of the 
disparity image space. (a) View of (AZ = –135°, EL = 45°); (b) View of (AZ = 120°,  
EL = 45°). 

(a) (b) 

4. Experiments and Results 

4.1. Estimation of the Input Covariance Matrix R 

The covariance matrix in the disparity image is necessary for the calculation of the spatial 
uncertainty model. We tried to estimate the input covariance matrix R in the disparity image space 
from real experiments. Figure 12 shows the overall experimental environment for estimation of the 
matrix R. In this experimental environment, objects were placed at various locations and orientations 
in order to obtain visual feature information with a uniform distribution at various conditions and in 
the entire measurable space. Figure 12(b) shows the visual feature detection results obtained by using 
the SURF algorithm in this experimental environment. As shown in Figure 12(b), 850 visual features 
were obtained. Each visual feature is tracked continuously by the SURF matching function, and the 
corresponding trajectory information is recorded. The index of each visual feature is assigned 
randomly during the first detection phase. Figure 13(a,b) shows the distribution of the 850 detected 
visual features in the disparity image space and the real Cartesian space, respectively. Figure 14 shows 
a histogram representation of the distribution of the visual features in the image space with respect to 
the u, v, and d axes. The distribution of the histogram for u, v, and d axes confirmed that the visual 
features were uniformly distributed in the entire image space. 

Each visual feature was obtained from 100 data measurements by matching and tracking, and the 
mean mi and the covariance matrix Ri in Equation (9) were calculated from the measurement data. The 
covariance matrices were calculated differently owing to various reasons. However, the mean 
covariance matrix was computed in order to characterize the representative covariance matrix. Based 
on Equation (10), the mean covariance matrix was computed from the covariance matrix of 850  
visual features. 
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level threshold (99.7%), which can include most of the covariance matrices, was used for determining 
the elements of the covariance matrix R, as shown in Equation (11). Therefore, the estimated 
covariance matrix R represents the statistically worst case of measurement at the 3σ level. Figure 16 
shows the uncertainty ellipsoids for all the visual features and the estimated covariance matrix in the 
disparity image space. From the result, it can be confirmed that the ellipsoid for the estimated 
covariance matrix includes most of the ellipsoids for the visual features: 
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Figure 14. Histogram distribution of detected visual features in the disparity image space. 
(a) u data of visual features. (b) v data of visual features. (c) d data of visual features. 

 
(a) (b) (c) 

 
4.2. Comparison with the Uncertainty Model and the Distribution of Real Visual Features 

 
Given the covariance matrix in the disparity image space and the Kinect™ calibration parameters, 

the spatial covariance matrix can be calculated by using the uncertainty model proposed in this study. 
Using this spatial uncertainty model, we drew the uncertainty ellipsoid map shown in Figure 7, and we 
could identify its shape, volume, and direction in the Cartesian space. However, it must be confirmed 
that the calculated uncertainty model can represent the distribution of scattered measurement data. This 
can be verified by comparing the uncertainty ellipsoid with the distribution of the 3D position for 
tracked visual features. To confirm that the uncertainty model met all the requirements, some 
representative features were selected from the 850 visual features, and the uncertainty ellipsoid and the 
distribution of tracked measurement for the visual features were compared. Figure 17 shows the 20 
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selected visual features highlighted among all the visual features. As shown in Figure 17(a), the 
representative visual features were selected to ensure maximum possible uniform distribution in the 
Cartesian space. Figure 17(b) shows the 3D measurements for the visual features and the calculated 
uncertainty matrices, represented by the red symbol (*) and the cyan ellipsoids, respectively, for 20 
visual features in one frame. However, owing to the difficulties in representing the scale corresponding 
to each feature, Figure 17(b) is not suitable for performing a detailed analysis. Hence, the results of 
features (a)–(d) in Figure 17(b) were represented again in Figure 18 by modifying the scale to obtain 
more detailed results. Then, the uncertainty ellipsoid was compared with the distribution for 3D 
measurement of visual features. 

 
Figure 15. Standard deviations of visual features and histogram; (a) Standard deviations 
for u of visual features; (b) Standard deviations for v of visual features; (c) Standard 
deviations for d of visual features; (d) Histogram distribution for (a); (e) Histogram 
distribution for (b); (f) Histogram distribution for (c). 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
Figure 18(a) shows the results for the visual feature with id “100”, acquired at u = [331.6, 68, 1,023.6]T 

in the disparity image space. In the result, the measurements represented by the red symbol (*) appear at 
seven points clustered around the point x = [0.1, –1.7, 5.2]T in the Cartesian space. The input data in 
the disparity image space is discrete, and hence, the transformed 3D measurement must also be 
discrete. Therefore, the 3D measurement distribution is observed as a discrete distribution, and 100 
measurements for this visual feature overlap at seven points. Further, it is verified that the cyan 
uncertainty ellipsoid includes all the 3D measurements corresponding to the visual feature. Figure 
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18(b) shows the results for the visual feature with id “220”, acquired at u = [36.4, 233.8, 963.8]T in the 
disparity image space. In the result, the symbols representing the measurements are seen at various 
points clustered around the point x = [–1.3, –0.1, 2.8]T in the Cartesian space. Further, the uncertainty 
ellipsoid includes most of the 3D measurements corresponding to the visual feature. In this 
distribution, 3 measurements are located slightly outside the ellipsoid boundary, but their distances 
from the boundary are extremely small. Figure 18(c) shows the results for the visual feature with id 
“282”, acquired at u = [297.6, 300.0, 937.0]T in the disparity image space. In the result, the 
measurements appear at 7 points clustered around the point x = [–0.1, 0.2, 2.3]T in the Cartesian space, 
and the uncertainty ellipsoid includes all the 3D measurements corresponding to the visual feature. 
Figure 18(d) shows the results for the visual feature with id “614”, acquired at u = [490.2, 188.0, 
986.6]T in the disparity image space. In the result, the measurements appear at 5 points clustered 
around the point  
x = [1.0, –0.4, 3.4]T in the Cartesian space, and the uncertainty ellipsoid includes all the 3D 
measurements corresponding to the visual feature. The results for all the 20 visual features are 
represented in Figure 19 by modifying the scale to obtain more detailed results. The overall results 
show that the simple equation for the proposed spatial uncertainty model represents the worst case 
model for image space uncertainties; however, it was confirmed that the spatial uncertainty model 
provided a sufficiently good description of the discrete distribution for most of the 3D measurements 
of the visual features. 

 
Figure 16. Uncertainty ellipsoids for all the visual features and the estimated covariance 
matrix in the disparity image space. (Cyan: ellipsoids for covariance matrix Ri, Magenta: 
ellipsoid for the estimated covariance matrix R). 
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Figure 17. 20 representative visual features in the Cartesian space. (a) 20 representative 
visual features highlighted among all the visual features; (b) 20 representative visual 
features and their uncertainty ellipsoids. 

 
(a) 

 
(b) 
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Figure 18. Distribution of 3D measurements for 4 visual features and their uncertainty 
ellipsoids. (a) id: 100; (b) id: 220; (c) id: 282; (b) id: 614. 

(a) (b) 

 
(c) (d) 
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Figure 19. Distribution of 3D measurements for the 20 selected visual features. 

  
(a) id: 317 (b) id: 57 (c) id: 582 (d) id: 100 (e) id: 639 

  
(f) id: 470 (g) id: 530 (h) id: 197 (i) id: 160 (j) id: 220 

  
(k) id: 727 (l) id: 59 (m) id: 299 (n) id: 282 (o) id: 566 

  
(p) id: 742 (q) id: 187 (r) id: 247 (s) id: 614 (t) id: 576 
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5. Conclusions 

In this study, we proposed a mathematical model for spatial measurement uncertainty, which can 
provide qualitative and quantitative analysis for Kinect™ sensors. To achieve this objective, we 
derived the spatial covariance matrix model using the mapping function between the disparity image 
space and the actual Cartesian space. Next, we performed a quantitative analysis of the spatial 
measurement errors using actual sensor parameters. In order to derive the quantitative model of the 
spatial uncertainty for the visual features, we estimated the covariance matrix in the disparity image 
space using the collected visual feature data. Further, we computed the spatial uncertainty information 
by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to 
the proposed mathematical model. This spatial uncertainty model was verified by comparing the 
uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual 
features. Quantitative analysis of a Kinect™ sensor facilitates the availability of concrete information 
about the sensor, rather than abstract information. For example, abstract information, such as “If the 
measurement distance increases, the uncertainty will be increased”, could be transformed into concrete 
information, such as “Maximum error at a measurement distance of 1.2 m is 1.68 cm at the level 3σ.” 

Recently, Kinect™ sensors have been widely utilized as 3D perception sensors for intelligent robots 
to solve various problems such as 3D mapping, object pose estimation, and SLAM. In these actual 
applications, information about the reliability and the uncertainty of the visual features for 3D 
measurements is very important. Hence, we expect that the uncertainty model presented in this paper 
will be useful in many applications that employ Kinect™ sensors. 
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