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Abstract: This paper presents a new algorithm that allows a team otsdbaooperatively
search for a set of moving targets. An estimation of the apéalse environment that are
more likely to hold a target agent is obtained using a griseblaBayesian filter. The robot
sensor readings and the maximum speed of the moving tangetssad in order to update
the grid. This representation is used in a search algoriti@hdommands the robots to those
areas that are more likely to present target agents. Thisitdgn splits the environment in a
tree of connected regions using dynamic programming. Taesis used in order to decide
the destination for each robot in a coordinated manner. Tgaithm has been successfully
tested in known and unknown environments showing the \wglafithe approach.

Keywords: dynamic agent search; grid-based Bayesian filtering; beatgorithm;
multi-robot systems

1. Introduction

This paper investigates the search problem in which a teamgerfits (the searchers) collectively try
to find another set of moving agents (dynamic targets). Tiegest in this particular problem stems from
the fact that, in the last years, a great number of applicatimve emerged in which it is necessary to
deploy search tasks in unstructured environments. For gbeasearch and rescue tasks, surveillance and
other military tasks. The deployment of mobile robots irsthsituations is advantageous, since it avoids
the presence of humans in dangerous places or in envirosrddéfitult to reach. In addition, mobile
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robots can take advantage from the use of sensors speaaltyrabd for the detection of objectives, such
as motion detectors, infra-red cameras or laser range §inder

The dynamic agents search problem is related to the pursdié@asion problemlf2]. The pursuit
and evasion problem describes a two teams game in which #mgsaig the Pursuer Team try to find the
agents of the Evader Team. Since the agents of the Evaderafeammotion, the problem is not reduced
to a simple exploration problem as it would be if they wergistdn this case, the pursuers should make
a fast coverage of the environment trying to find all the evmdelowever, since the evaders may enter
an area previously covered by the pursuers, the pursuersovay completely the environment without
finding all the evaders. As a consequence, a simple expporatgorithm B] is not enough to perform
this task. Consequently, most of the pursuit and evasidmtgqaes try to sweep the environment with
the team in such an optimal way that there is no possible edoathe evaders. That is, provided that
there are enough pursuers, an optimal path can be founddbrpemsuer in order to cover all the search
area without letting any opportunities for the evaders tmps. This kind of algorithms fail in the case
there are not enough pursuers for a given scenario. In thiese/hen not enough searchers are provided
more general approaches are necessary.

We focus in this paper on the dynamic agents search problémnchvis the particular case of the
pursuit and evasion problem in which the evaders are nolligeat and their movements do not try
to avoid the pursuers. This particular case of searchingangagent that is not trying to escape is
quite common in robotics applications. For instance, a r@bth human-robot interaction capabilities
may need to find a human in its proximities in order to interath and get some informatiord].
Other application scenario is the case of searching forunetioning robots that may be moving around
without control.

The proposed problem will be approached in a general waynasg there are not enough robots to
perform a full optimal search of the target area. In this egtise robots choose to explore first those
areas where it is more likely to find the moving targets. Nthe, main hypotheses that are considered
in this approach are detailed. Firstly, it is assumed thastarchers know the top speed of the dynamic
agents, so the movement of these moving targets can be t&linin the majority of the applications,
it can always be assumed that a maximum speed for the dynagmintsacan be determined. Secondly,
it is assumed that the searchers are equipped with an apgepensory system that is able to detect
each one of the targets within a range. Nowadays, the use oidmectional vision systems allows to
assume this premise. In addition, the team of searchersst®n$ a set of mobile agents that maintains
a communication channel around all the environment. Bssittee problem of the localization and
reconnaissance is obviated.

Consequently, provided that the searchers know the toplspiethe targets, the movements of the
targets can be completely delimited in a probabilistic walgerefore, from this information and from
their own trajectories and sensor readings, the Search Taammake an estimation of the areas of the
environment that are more likely to hold a target. In ordeintegrate all this information a grid-based
Bayesian filter (GBBF) is used. Then, a navigation algorigetects the areas according to the GBBF
where targets are more likely to be present as destinatioried searchers. In order to avoid that all the
searchers go to the same place, some coordination mectsagisrapplied in the destination selection.
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The algorithm presented here has been tested in simulatiovoi different cases. First, we consider
that the search team knows precisely the environment, hewée whole environment needs to be
explored in search of a set of moving targets. Second, wedemthat the environment is completely
unknown. In this case, a map of the environment is built as#aech team covers the different areas of
the environment. The map being built is used in order to imptbe search of the dynamic agents.

The rest of the paper is organized as follows. First, in the section we present some work in close
relation with this paper. Second, the grid-based Bayesltar fised to estimate the best target areas
is explained in Sectio®. Next, the coordinated goal selection for each agent of tec® Team is
developed in SectioA. Then the experiments carried out to test the approach g@sed in Sectiob.
Finally, Sectiort explains the conclusions and open research lines.

2. Related Work

In mobile robotics, exploration is considered as the pnobdé traversing all the areas of a particular
unknown environment3d). Normally, exploration algorithms are used jointly withSamultaneous
Localization and Mapping (SLAM) algorithm in order to crea map of the environment during the
exploration processs]. Classical exploration techniques direct the robots tangxe every place in
the environment in an efficient manner, thus reducing the tohe needed to cover a determined area.
For instance, some algorithms command the robots to thestefaontier p]. In these techniques, the
environment is represented in a discrete bi-dimensiond) gthere each cell is considered as occupied,
free or unknown (unexplored). Frontier cells are unknowls ¢kat lie next to a free cell. The application
of this family of algorithms to search problems is diredt [

When the main objective is to incrementally build a map oféheironment, exploration strategies
allow to select the vantage points that should be reacheldéosobots. In these activities, it is of capital
importance to design a good exploration strategy in ordéuttnl the most precise map in the shortest
time. Most of the exploration algorithms presented to dateser the evaluation of an utility function
in order to select the best trajectory for the rol®jt [Some authors have extended these ideas to the
case of multi-robot exploration. Commonly, the utility fititon used in exploration is a measure of the
information gain of visiting a place in the environment ahd tost of reaching it. The cost s in relation
with the distance between the robot and the possible déstmavhereas the utility is estimated in
dissimilar manners. For example, B ptility is considered as the visible area behind a frontief10],
the destinations chosen by other robots are taken into ataothe computation of the utility function.
Thus, when a robot is commanded to a point in the environntleatutility of this area is reduced for
the rest of the robots, in an effort to coordinate them anckige the exploration speed. A market-based
mechanism where the robots compete and optimize their sdajtenegotiating their destinations as a
function of the cost and the expected utility was suggesté¢tll]. Some other approaches focus on the
structure of the environment. For example, the doors fouaritié environment can be recognised and
represented inside a topological map. 12| this information is considered in order to assign utility
values to different unexplored areas for each robot.

This kind of search and exploration algorithms has beenegpb search and rescue tasks. In these
situations, we typically wish to search and localize a seofetargets or victims inside the search area,
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being the number of objectives to localize a priori unknowhe approaches in this field normally have
to deal with the problem of accessing and manoeuvring iretleasironmentsl3], thus in search and
rescue applications researchers are generally more cwtariith the development of algorithms that
allow the robot to manoeuvre in completely unstructureddradlenging environments. In consequence,
the processing of sensor information is of paramount ingmme in order to find the free navigable space
and obstacles. In addition, the localization of the targesgde this environments may be extremely
complicated 14]. There are different variations in the search and rescolkel@ms used for the detection
of a set of static targets. In these cases, and since thests &d prior knowledge about the position
of the targets, the search and exploration problem can lbedstés the maximization of the number
of detected targets in a fixed amount of time, or equally, tleimization of the explored area. For
example, an approach based on a Multi Criteria Decision Mgakigorithm that allows to define the
exploration strategies deployed by a set of robots in a Besand rescue problem is presented 18]
Other exploration strategies try not only to maximize thplesed areas, but to find and communicate
the position of the victims. Thus, il§], the exploration scheme is based on a utility function cotag
with several criteria that consider the distance, the ebggemformation gain and the probability of a
successful communication from the candidate destination.

Another applications that requires the development ofceand exploration algorithms is the pursuit
and evasion problem, in which a set of agents try to chaseaadize a number of intruderd]. The
main difference with respect to the before mentioned probles that, in this case, the targets try to run
away from the searching robot. Thus, in these situatiomspbijective of the evader is to stay out of the
reach of the pursuer, whereas the main task of the pursuztasdlize and capture the evader. In many
cases, the position of the targets and the searchers is edgarhe known at each time, thus leading to
an optimization problemf8]. For instance, in]], an environment in which both the evaders and the
pursuers have knowledge over the position of their opp@nisrtonsidered.

In other cases the position of the evaders is unknown. Ftangs, in ] the objective is to localize
a set of moving targets by making use of a prediction schenrece3he movement of the evader is
unknown by the pursuer, the robots have to make predictiassd upon the history of movements
performed by the evader. In this sense, an intelligent seaethod in which a subset of the pursuers
(the blockers) is positioned at some strategic points iretiwronment with the purpose to avoid the free
movement of the evaders was presentedLBj.[ A novel visibility-based pursuit and evasion problem
where a searching team needs to coordinate to find the evidarbi-dimensional environment was
addressed inZ0].

A particular application of the pursuit and evasion probigitihh unknown evaders positions consists
in the surveillance and supervision of buildings, indastestates and other restricted arezR.[In this
kind of task it is crucial to explore periodically the enviraent in order to verify the non-existence of
intruders. For instance, some authors have used a sulmhvise environment as a set of polygonal
regions R2] .

Little attention have been paid to the intermediate probienvhich the target agents are in motion
but they do not try to deliberately escape. As we said, thidcdcbe the case of robots with human-
robot interaction capabilities seeking for humans in otdeinteract with, or the case of looking for
malfunctioning robots moving around. Pursuit and evassmhniques could be applied to these cases.
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However, when the environment is complex a great number lebteomay be necessary in order to
perform an optimal search. Consequently, a new technige@fsmlly designed for this case has been
developed and it is exposed in this paper.

3. Grid-Based Bayesian Filter

The Search Team needs to track the positions that are meig tik hold a target. This is done by
means of a GBBF. The search ar€ds divided using a grid. The total number of cellsGhwill be
denoted byl". Each cell of the grid has a probability?(c,) of holding a target in the time stép This
probability will be evaluated for a single target. Since thaltiple targets case would have the same
probability to that of the single target case multiplied bgamstant, it does not affect the planning. In
this sense the algorithm works independently of the numbiargets. Next, the initialization of the map
and the prediction and update of the probabilities in thessgbent steps are detailed.

3.1. Initialization
In the beginning, it is assumed that all cells have the samwiegtility of holding a target agent:
P(cy) =1/T Nece C (1)

This initial probability P(cy) needs to be modified in time. On the one hand, since the taagets
in motion, there exists a possibility for the dynamic tasget enter an area previously visited by the
searchers. In this sense, the probability of each cell niedois propagated to its neighbours periodically
as a function of the speed of the targets and the resolutidimeofrid. This change in the probability
will be evaluated in the prediction stage. On the other haine,actions of the searchers with their
observations modify the probabilities in the grid too. Te¢hange in the probability is a consequence of
the reduction of the area where the targets can be found avitl lte covered in the update stage. The
observations consist of the different subsets of c&lls = {2y, 71, ...Z; }, with Z; € C, that have been
found to be clear at each time step. In the following, in otdedenote that the cells are clear according
to the observation, the terminology will be used. In this sense;(Z) expresses the probability that

no targets are found in the subset of céllsthat is,P(Z) = [],., P(z = False). The prediction and
update stages are described below.

3.2. Prediction Stage

The prediction stage consists in the propagation of the ghitity of each cell in the grid to its
neighbours according to the resolution and the target tep&pFor instance, a maximum linear speed
of 0.3 m/s and a resolution of.1 m can be used with & H = probability prediction frequency. Since
no other information about the movement of the targets isvknby the searchers apart from their top
speed, in order to model the motion of the targets it is asduthe they can stay in their current cell or
move to one of the contiguous cells (when they are not ocdyipweh the same probability. The next
equation models the result of the prediction stage:
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P(Ck|70:k71) = Z P(Ck|nk717ZO:kfl)P(nkfﬂ?O:kfl) (2)

TLGNC

where N, is the3 x 3 subset of cells centred an The termP(n;_1|Z.._1) is the prior, and the term
P(ck|np—1, Zox—1) models the probability of moving from one of the cells/y to c. As the robots
move, another grid is created with occupancy informatiotaioled with range finder sensors in the
robots R3]. The information from the occupancy grid is used to obtam transition probabilities. As
we said, it is assumed that a moving target can stay in theiecucell or move to any of the contiguous
cells when they are not occupied with the same probability.

3.3. Update Stage

For each time step, each searcher sweeps a new area with its sensors. The stibsts$ 7, will
denote the total area swept by all the Search Team addirrggafidividual areas. Furthermore, if the map
is previously unknown and the searchers are simultanebudhying it, it is likely that with the addition
of new obstacles to the grid map some area appears to be aodelkerefore inaccessible. Therefdie
includes three kinds of cells: obstacles detected, noessdale cells detected, and non-occupied cells.
Since the sensing of these areas reduces the area wherggtiis tan be found, the probability to find a
target in the other zones increases. This growth can be eghdathe grid applying Bayes’ rule:

P(Zk|ck, Zog—1)P(ck| Zo—1)
P(Zy| Zos—1)
where, P(Z|ck, Zoy-1) = 1, Yer ¢ Z, and P(Zi|ex, Zog—1) = 0, VYer € Z,. Furthermore,
P(Z1|Zo-1) can be expressed in terms of its complement@(y | Zo..—1) = 1 — P(Zi|Zoug—1).

Therefore, we have that

P(Ck|70:k) = (3)

P(ce|Zow) = { e et 4)
0, Ve, € 7,
where all terms can be found from the prediction stage.

To summarize the creation of the target probability gridu&igpn () is used to initialize the map,
Equation R) is used for each time stépin order to propagate the probabilities according to fdasib
movements of the targets and Equatiah s employed in order to update the map with the new
information acquired by the searchers respectively.

In order to clarify how the target probability mapper tracke most likely areas to hold a target,
Figurel has been included. This figure shows the evolution in timéetarget probability map created
by the GBBF for a search scenario with only one searcher. @rfifure, the probability of each cell
has been normalized with the maximum value for each time sitethis way, dark areas correspond to
low probability, whereas light zones correspond to higtbpimlity. The red circles indicate the range of
the sensor and the blue lines show the trajectory of the rolius example assumes that the robot has
initially a map of the environment. Therefore, all the olokta are included in the first update observation
Zy and they appear always in black. In step 1 (Figl(eg), all cells have the same probability of holding
targets except the non-accessible zones and the aredyirstaered by the sensors of the searcher.
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As the searcher moves in seek of the targets, more areassuered (Figuréd.(b) and1(c)). However,
since the targets are in motion, the propagation stage&msame probability for the targets to be in areas
previously covered by the searcher. This effect can belglsaen in the central areas of the Fig(d)
andl(e) Inthe end (Figuré.(f)), the searcher completes the exploration of all the enunemt. Despite
the fact that all the areas have been covered, it can be seespazially those areas that have not been
covered for a long time appear to be the most probable ardagda target now.

Figure 1. Evolution of the target probability map. The grey level icaties the normalized
probability of each cell, corresponding the dark zoneswopoobability and the light zones
to high probability. The red circles indicate the range & sensor and the blue lines show
the trajectory of the robot.

@ (b) ()
L
L
(d) (e ()

4. Search Algorithm

As it has been seen, Secti@describes how the target probability map is built. This maptjy
with an occupancy grid map is used to decide the movementeadarchers in order to find the targets.
Whereas the construction of the maps is made in a centraliagdoy all the searchers, the navigation
planning is distributed. In this subsection, the process #ach searcher follows in order to decide
the next goal for its navigation is explained. Once the g@al been determined, a simple low level
navigation function is used to give appropriate controica to reach the goal.

Firstly, a tree decomposition of the environment using dyigcgprogramming similar to the exposed
in [24] is applied. In this treé’(nodes, edges), each nodeV;(t;, ¢;, pi, R;, i) of typet; represents a
positionc; in the environment, the total cost to arrive to that npge region of cells associated}, and
the number of searchefgin that regionR;. There are three types of nodes: the root natle gateway
nodes {?) and frontier nodest{). EdgesE,..(d;.., N;, N,,) represent the straight line path connecting
the respective nodes; and V,,, requiring to travel a distanc ,,. Next, it is explained how to create
this tree.
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Initially, the root nodeV, (%o, co, po, Ro, 7o) Of the tree corresponds to a node of type rgot " with
the current positiomr, of the agent, a cost requiregg = 0 and a regionR, that is the subset of visible
cells Sy in the range of the sensor with a number of searchers insadestibset,. The subsel, = 5
is also used to initialize a processed cells mask= R,. As itis shown in p4], gateway cells can be
defined as the cells in the boundary of the visible &igthat are contiguous to free cells not belonging
to Sy. These cells can be grouped to obtain chains of contiguadesvggs cells. A new nod®’, of type
gatewayt, = tY and an edgdy,; is added for each chatnof gateway cells found. The positionsfor
the new nodes are situated in the cells in the middle of eaaimclAll these new nodes are also added
to a list of unprocessed nodes. If the map was not known aipitionight also be frontier cells in the
region Ry. Frontier cells are defined as free cells contiguous to uwkneells. In the same way, they
are grouped in chains, and a new node of type fromfierith its corresponding edge is added to the tree
and to the list of unprocessed nodes for each chain of fnocdis.

Figure 2. Tree segmentation of the environment.

(©) (d)

Figure 2 shows the tree creation process for one searcher in a knovimoement. In Figure2(a),
it can be seen how the root node and the first level nodes emied by squares) have been added
to the tree, one per each chain of gateways cells found. Towepsed zone has been emphasized in
the example. Next, the nodg€; from the list of unprocessed nodes that requires to trawektiortest
distancep; is selected to expand the tree and subtracted from the éstgl; the sum of all the costs
d;., from the root nodeV, to the N; node. The regiorR; associated to the nodg; is established in
different ways in function of the type of node. For a gatewagle R; is the subset; of expected
visible cells from the position; excluding the cells in the mask and only those cells thatrae fThat
is, R, =S;NM°NF, beingF the subset of free cells. Next, the non-connected cellslsoeramoved.
For a frontier nodepR; is the subset of expected visible ceflsbut only those cells that are unknown.
That is,R; = S; N U, beingU the subset of unknown cells. In the case of a gateway type, maze
gateway cells and frontier cells can be identified in theaedl,. However, in order to expand the tree
over the environment not including branches that returmecgssed zones, the gateway cells are filtered
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with the mask)/, and gateways not connected through the associated r&giare also removed. The
corresponding new nodes and edges are added to the tree thedunprocessed list and the mask is
updatedM = M U R;. Figure2(b) shows how the tree have been expanded. As it can be seen in
Figure 2(c), the process continues with the lower cost node in the listd A is repeated until all the
nodes have been processed (FigR(ich).

Once each searcher has built its own tree, it has to be eedluabrder to be able to decide the next
goals. In this sense, the objective of this evaluation ofttee is deciding a destination and a sequence
of nodes to be used as way points for the next movements th tbaaestination.

Firstly, since each node has a cpstand some utility regarding the probability of finding a tdrge
in its associated regioR(R;), a profit functionB(XV;) can be established to measure the importance of
visiting each nodeV;:

B(N;) = p ()

where theP(R;) = > . P(c) is the sum of the probabilities of the cells in that regi@n Using
these profit values, a simple choice for one robot would becsely the node of maximum profit as
destination and the intermediate nodes as way points. Haywewce each searcher is part of a team, it
has to consider positions of the other members of the teandir ¢o cooperate. Furthermore, it has to
consider also the profit of the intermediate nodes.

In this sense, the next recursive functibiiV;) gives each nodé/; a value that takes into account
its profit and the one from the best child node when this prefitigher than its own profit. In this case
of finding a child node with higher profit, this node is markedtiae next in the path for that branch
in order to rebuild later a full path. It could be considerbd best child node always. However, since
the estimation of the probabilities and the position of thieeo agents changes often, it is better not to
do too long term planning. Thus, the algorithms stops camsid child nodes if they do not provide a
significant profit. Besides, the function penalizes the saglbere other searchefrsare present in the
area associated to the node:

(147:)?

B(Ni)

(1+7:)?

beingj the subset of nodes for which there exists an efigeconnecting nodeV; with node V; and

being: < 7, or in other words, eaclV; is a direct child node ofV;.

However, this equation does not take into account the plespiiesence of other searchers in the
current area of the root node. Thus, in order to consideriggise, some changes have to be made in
order to correct the first level node values. In this sensenttdes that are far away from the other

searchers in that area and close to the current agent iedtegis values as follows:

(6)

else

B(N;)+max; V(N;) - V' (N.) > B(N.
V(Ni):{ if max; V(N;) (Vi)

V() = d% (o) Hd (¢ c») Y

where the functior/(z, y) measures the distance between celdsdy, ¢ is the position of the agemt
andb denotes the subset of first level nodes, that is, there east®dger), , connecting the root node
Ny with Np.
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Finally, the next goal~ is decided as the positiafy of the first level nodeV, that maximizes the
corrected values:

G = arg max V'(Ny) (8)

Since the best next child nodes has been saved during thea&weal process, a full set of way points
can be obtained beginning @ until the last node of the path marked in this branch. A sirmahagation
function follows each one of these way points. When the fifatiped node is reached the searcher plans
again building a new tree from its new position.

5. Experiments and Results

5.1. Dynamic Targets

The targets of the search could consist in a vast range otsagédistinct types. For instance, they
could be a group of humans, animals, or a team of mobile robasswe said, we are interested in
modelling applications as, for instance, robots with huimayot interaction capabilities that are looking
for humans in their proximities in order to interact with tbe case of seeking for malfunctioning robots
that can be moving around without control. In this sensesifmulation purposes, it can be assumed that
a target is some kind of abstract dynamic agent that makesmments to random destinations.

Consequently, in the simulations, for each target agemtstdeen assumed that it perfectly knows the
environment and its localization in the map. In additior, thovement of the targets is limited in speed,
and inside an environment of delimited dimensions.

Therefore, the movement of the targets has been implemastéallows. Each agent that acts as
a dynamic target knows a discrete representation of the@mwvient that describes the position of the
obstacles in a grid. With this representation of the envirent, they are able to select a random cell as
destination. The A* algorithmZb] is used to plan a path to reach that cell. The target ageloifslthat
path until it reaches its destination. Then, it selects a rasom destination cell and the same process
is repeated. The target only stops moving when it is detdayea searcher. When all the targets have
been detected by the searchers the search is considereddaadaded.

5.2. Search Team

The team of searchers consists of a set of mobile agents thatbde to sweep the environment
detecting targets. Nowadays, there are mobile robotstichide sensors such as laser range finders or
omnidirectional cameras that allow them to sense the emviemt within a range around them. From
laser scans and/or from omnidirectional images, therésgiassifiers that are able to identify different
kind of objects. For these reasons, it is assumed that eacthsz is able to detect mobile targets within
a determined area around it.

Regarding the knowledge of the environment, two cases hewe studied in this paper:
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e The searchers have full knowledge of the map of the enviromm&his case represents the
situation in which the team of searchers needs to find ana@tegroup of mobile agents inside a
known environment, as for instance inside a previously redpgjuilding.

e The searchers have not a priori knowledge of the environereshbuild cooperatively a map of it:
This case tries to model the hypothetical situation in whiesearchers have to find a group of
dynamic agents in a completely unknown environment.

As in the case of the dynamic targets, in both cases the magstem a discrete representation of
the environment that describes the position of the obsdola grid. When the map is not a priori
known, cells can be also labelled as unknown besides freeaupted. A ray tracing function with
the information of the laser scans clears or marks the cetlerdingly using a reflection probability
model 6]. Furthermore, the localization of the searchers is assuimbe known. There exists several
techniques to provide localization for a team of mobile itsbas for instance, a GPS device in outdoor
environments, Monte Carlo localizatio®q], when the map is known, or Simultaneous Localization and
Mapping (SLAM) algorithms 28] to build the map and localize the robots concurrently. 8itfus is
not the focus of this paper, the localization is assumed tkniogvn and its error is considered to be not
significant. In this way, the localization and the map (f@dr complete) is shared by all the searchers.
However, in contrast to other authodd,[the position of the targets remains unknown to them.

As it was explained in SectioB, a map that stores the probability of finding a target in eaah c
of the grid is built by the GBBF. This map can be understood gsreeralization of an occupancy grid
map where each cell stores the probability of being occupied target. This map is constructed in a
centralized way and is also shared by all the searchers., Tiserg the information from this map, the
searchers apply the search algorithm exposed in Setiioorder to find a route to the areas where it is
more likely to find a target.

5.3. Simulator Description

The method proposed in this paper has been tested in a siomsaftware developed for this purpose.
Figure 3 shows the two scenarios included in this simulator that wesed during the tests. Both
scenarios have fixed dimensions3sfx 26 m. All the maps are built with a resolution 6f1 m.

Figure 3. Simulation scenarios. The searchers are shown as filledessjaad the dynamic
targets as empty squarea) Scenario 1;l§) Scenario 2.

Gs ",

(@) (b)
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The simulated agents, both searchers and dynamic targete,with a linear speed limited @3 m/ s
and the angular speed limited@®5 rad/s. The sensors of the pursuers have an omnidirectional range
of 6 m. The experiments were carried out using a simulation tinte wifixed time period 06.33 s,
which means that independently of the time needed for theilzdlons we assume that the elapsed time
between data acquisition and the new commands given to #m@samq order to go to next waypoint
according to the planning is fixed.

The GBBF has a complexit(7") with the number of cell§". Therefore, the algorithm is mainly
limited with the size of the area to explore. The complexitihe search planning algorithm is dependent
of the number of noded” found in the process of creation of the tree. This depends®@structure of
the environment. In this sense, it is necessary to processreaie in order to find its associated region
R;. Furthermore, for each node added to the tree, it is requaréidd the node with the minimum cost
in the remaining unprocessed nodes list in order to contoilding the tree. This list can be maximum
N — 1in size. Thus, the complexity i9(N(R + N — 1)), being R the maximum number of cells for
a node according to the sensor maximum range. TypicAllg, fixed and much bigger thaN making
the complexity almost linear with number of nod€¥s However, the planning does not take place all the
time, only when the last planning has finished. Consequethidycomputation of the search tree is not
critical and the main bottleneck is the size of the map. The ef the scenarios chosen for simulation
allows a fast update in real time.

The experiments were performed for each scenario varyiegittmber of searchers and targets in
a range of 1-4 for searchers and 1-10 for targets. Each exparwas performed 25 times randomly
changing the initial positions of the agents. All the resplitesented hereafter are the average of all these
simulations.

Next, we analyse the results in terms of search time for knam¢chunknown environments.

5.4. Experiments in Known Environments

Figure4 shows the results of the experiments performed in knowrrenments for the two proposed
scenarios. It is shown the mean and standard deviation @beriments carried out for a range of 1-4
in the number of searchers and 1-10 in the number of targetisisicase, it is assumed that the searchers
know the occupancy map of the scenario where the searchng tbe carried out from the beginning
of the search. Thus, they do not need to create an occupantyWtaen there is only one searcher, the
search time grows almost linearly when the number of taigétsv. When the number of targets is high
the total time remains almost constant. That can be obsamaath scenarios. This is because only one
searcher has to explore an extensive environment.

As the number of searchers grows, the search time decreasagyiven number of targets. Since
the size of the map is constant, it is reasonable to assurhaththe number of searchers increases, the
search time is reduced. The search time is inversely priopaitto the number of robots approximately.

The most complex scenarios with more loops, like Scenarredjire a higher search time. This is
observed for all the performed tests and it is due to the mighmber of escape ways. In this case, the
variability in the required time for a single robot is gradtean in Scenario 1.



Sensor012 12 8827

Figure 4. Results of experiments with a known map.
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From a given number of searchers (approximately 3 or morth®environments in the simulations)
and for a given number of targets (about 6 in Scenario 1 and®@mario 2), as the number of targets
grows, the search time does not grow significantly. This cafjuitified because the environment is
covered in few steps. Thus all the targets are found quiakdlyiadependently of their number.

The standard deviation of the experiments that were caoigds high despite the fact of having
performed 25 tests in every case. This is mainly observedencase of one pursuer. This is a
consequence of the initial positions being establishedaarty and also the paths of the targets being
random.

5.5. Experiments in Unknown Environments

Figure5 shows the results of the experiments performed in unknowit@ments. The two graphs
show the mean and standard deviation of the experimentgdarut for a range of 1-4 in the number
of searchers and 1-10 in the number of targets in scenarial 2 aespectively. In these experiments,
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the searchers do not have a previous knowledge of the emveninso they need to build a map of the
environment while they are searching for targets.

Figure 5. Results of experiments with an unknown map.
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The results are quite similar to the case of known maps. Asuhgber of searchers grows, the search
time decreases for a given number of targets. In this sehsesdarch time is approximately inversely
proportional to the number of robots.

However, a considerable increase in the search time is\waséor all combinations. The main cause
of this delay is that the pursuers have no a priori knowledgée environment. Thus the destination
selection is not the best, since the pursuers do not havegbnoformation about the environment.

There are fewer differences between both scenarios simce th no information available at the
beginning in both cases.
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6. Conclusions and Future Work

In this paper a new search and exploration algorithm thatvalla team of robots to cooperatively
look for a set of moving targets inside a delimited environtdeas been presented. An estimation of the
areas of the environment that are more likely to hold a tangstbeen obtained. The only assumption
that we make about the movement of the targets is a randommadiel and a top speed. In this sense,
a technique to create a map of the probability for a cell talloltarget has been explained using a
grid-based Bayesian Filter. Besides, a navigation aligwribas been designed in order to command the
robots to the more likely areas to find a target including soméi-agent coordination mechanisms.

The algorithm has been successfully tested in known andaymkenvironments. In this sense, the
algorithm has been demonstrated to work with or without joey knowledge of the environment and
with no other information of the movement of the dynamic ésgapart from their top speed. The results
in unknown environments have been found to be reasonabtyeeifi

As future work, the use of this algorithm in real applicaBowill be considered. Furthermore, the
most complex case in which the target tries to deliberatetydathe searcher will be studied. In this
sense, a subdivision of the environment using a cyclic gnagtiead of a tree can be useful to coordinate
the pursuers in order to find cooperative strategies to éoalitthe evaders. Unsupervised learning
incorporating semantic mapping information will be alseds¢d in order to enhance the search.
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